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Abstract. We present a new formulation to compute numerically stationary and axisymmetric
equilibria of magnetized and self-gravitating astrophysical fluids. Under the assumption of ideal
MHD, the stream function for the flow can be chosen as a basic variable with which the Euler-
Maxwell equations are cast into a set of basic equations, i.e. a generalized Bernoulli equation
and a Grad-Shafranov-like equation by employing various integral conditions. A novel feature
of this formulation is that systems with stars, disks and winds are treated in a simple unified
picture and the magnetic field structures can contain both poloidal and toroidal components.
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1. Introduction
From the scale of the solar surface activities to those of galactic nuclei, magnetic field

is a very important factor in astrophysical processes. Many activities of stars, such as
flares, high energy photon emission or stellar winds, are thought to be driven by their
magnetic field. Evolution of a molecular cloud as a birth place of a star is affected by
the presence of magnetic field, while the proto-stellar activity is mediated by magnetic
field. Accretion processes onto compact objects and outflows from them are thought to
be driven/affected by magnetic field.

Although in reality outflows/inflows from magnetized objects are time-dependent and
asymmetric, many of the objects are regarded to possess well-defined time-averaged states
with axisymmetry. Therefore a theoretical modeling of stationary and axisymmetrtic
structure in magnetized objects has been an important issue in astrophysics. The sta-
tionary solutions of magnetized objects, however, has been rather difficult to obtain,
especially with the out/inflow. Numerical solutions so far obtained are that of Weber &
Davis (1967), Pneuman & Kopp (1971) and Sakurai (1985, 1987), the last two of which
are the only ones of self-consistent treatment. Most of the other solutions of (quasi-)
stationary states are obtained by long-time numerical MHD simulations (cf. Keppens
& Goedbloed, 1999). This method has an advantage of avoiding apparent singularity of
equations related to critical points of flows, while it is rather difficult to study a struc-
ture of flow and magnetic field in a large scale by MHD simulations. Thus an important
problem of collimation and acceleration of astrophysical winds and jets may not be fully
solved by this method (at least by the present computational resources). We therefore
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develop a new numerical scheme that solves stationary and axisymmetric out/inflows
around magnetized stars/disks. The new scheme solves integrated form of the equation
of motion of gas, rather than a differential form of it. This makes us easier to spot and
handle critical points of flow which are not known a priori, but obtained only after the
system of equations are solved.

2. Formulation
We assume the system to be stationary and axisymmetric. Fluid in the system is

perfect, isentropic. The conductivity of it is infinite and the electromagnetic field follows
that of ideal MHD

Ea +
1
c
εabcvbBc = 0, (2.1)

where εabc is Levi-Civita tensor and the other symbols have their usual meanings. Ba-
sic equations are 1) Continuity equation, 2) four of Maxwell’s equations, 3) equation of
hydromagnetic momentum balance and 4) Poisson’s equation for gravity. From the as-
sumption of stationarity and axisymmetry with 1) Continuity equation, we can define a
stream function Q in such a way that the meridional velocity components are expressed
as

vR = − 1
ρR

∂Q

∂z
, vz =

1
ρR

∂Q

∂R
, (2.2)

in cylindrical polar coordinate (R,ϕ, z). The solenoidal condition of magnetic field from
Maxwell’s equation implies similar expression of magnetic field as a scalar magnetic flux
function Ψ, which is used in an alternative formalism of magnetized flow (Lovelace et al.
(1987); see also Fujisawa et al. in this volume). From the ideal MHD condition it can
be shown that the magnetic flux function is a functional of Q. On the other hand, other
components of the same condition imply that there is a relation

Bϕ

ρR2 − dΨ
dQ

vϕ

R2 = σ[Q], (2.3)

where σ is an arbitrary functional of Q. From the toroidal component of the momentum
equation we have

vϕ − 1
4π

dΨ
dQ

Bϕ = �[Q], (2.4)

where � is an arbitrary functional of Q. Another arbitrary function ν of Q is shown to
exist by examining a curl of momentum equation

vϕ Bϕ

4π

d2Ψ
dQ2 + vϕ d�

dQ
+

1
4π

dσ

dQ
Bϕ − ζϕ

ρ
+

jϕ

cρ

dΨ
dQ

= ν[Q], (2.5)

where 
ζ is vorticity of the flow and 
j is current density.
From the meridional components of the momentum equation has a first integral

∫ Q

ν(q)dq − Bϕ

4π
σ −

∫ p dp′

ρ
− Φ − 1

2ρ2R2 |∇Q|2 − 1
2
vϕvϕ = C (const.), (2.6)

where Φ is the gravitational potential satisfying Poisson’s equation

�Φ = 4πGρ. (2.7)
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Figure 1. Profiles of Fast-wave Mach number for wind (left panel) and breeze (right panel)
solutions.

From the definition of vorticity in ϕ, we have a Poisson-like differential equation for Q

�
(

Q

R
eiϕ

)
= eiϕ

(
∇ρ

ρ
· ∇Q

R
− Rζϕ

)
(2.8)

These two Poisson PDEs are formally integrated by using proper Green’s function as

Φ = −G

∫
ρ(
r′)

|
r − 
r′|
dV ′ (2.9)

and

Q = −e−iϕ R

4π

∫
SQ (
r′)

|
r − 
r′|
dV ′ (2.10)

where SQ is the right hand side of Eq.(2.8).
By specifying functionals of Q (Ψ,σ,�,ν), we iteratively solve Eq. (2.6), Eq. (2.9) and

Eq.(2.10) .

3. Results
In the following we show some of the preliminary results obtained by our numerical

code to compute fluid flow and magnetic field structure of rotating stars. The equation of
state of the gas is assumed to be polytropic ones, whose indices are N = 3 inside the star
and N = 20 outside, respectively. The stellar surface is defined by ρ/ρc = 10−3 where ρc

is the central density.
We show two kinds of solution here. in Fig.1, the Mach number (defined to be the ratio

of poloidal velocity component to poloidal fast-wave velocity) is plotted as a function of
radial distance from the center of the star. On the left panel, the Mach number increases
from the surface of the star (r = 1) and exceeds unity at r ∼ 30. This solution corresponds
to the proper “wind” solution. On the right panel we have a solution whose Mach number
always stays below unity. This solution is so-called “breeze” solution.

In Fig. 2 two typical profiles of stream lines (magnetic field lines) in the meridional
section of the star are plotted. With different choices of the functionals of Q, we have
complex field structure inside the star, though the flow pattern far out may be close to
Parker’s solution of the solar wind (Parker, 1958). In this example, the magnetic field is
rather weak and the structure outside the star looks very close to the Parker’s solution.
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Figure 2. Examples of wind (left) and breeze (right) solutions. Stream lines (magnetic field
lines) in the meridional section of a star shown as a solid lines. Blue dashed line corresponds to
the surface of the star (defined as a isobaric surface of ρ/ρc = 10−3 ).
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Figure 3. Density profiles of the wind (left) and the breeze (right) solutions. As the wind solution
here tends asymptotically to Parker’s solution far out the star, the density distributions falls as
∼ r−2 , while that of the breeze solution does not.

In Fig. 3 we show density profile of wind/breeze solutions. The wind solution (left
panel) tends to a Parker’s solution far outside, with a density ρ ∼ r−2 , while the breeze
solution (left panel) tends to a constant density as expected.

References
Fujisawa, K., Yoshida, S., & Eriguchi, Y. 2010, MNRAS, submitted
Keppens, R. & Goedbloed, J. P. 1999, A & A, 343, 251
Lovelace, R. V. E., Mehanian, C., Mobarry, C. M., & Sulkanen M. E. 1986, ApJS, 62, 1
Parker, E. N. 1958, ApJ, 128, 664
Pneuman, G. W. & Kopp, R. A. 1971, Solar Phys., 18, 258
Sakurai, T. 1985, A & A, 152, 121
Sakurai, T. 1987, PASJ, 39, 821
Weber, E. J. & Davis, L. 1967, ApJ, 148, 217

https://doi.org/10.1017/S1743921311007435 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311007435



