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Abstract

In this paper, we study the properties of k-plurisubharmonic functions defined on domains in Cn. By the
monotonicity formula, we give an alternative proof of the weak continuity of complex k-Hessian operators
with respect to local uniform convergence.
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1. Introduction

Employing an approach developed by Trudinger and Wang [16], in this paper we shall
give an alternative proof of weak continuity of the complex k-Hessian measures with
respect to local uniform convergence. The same technique was also used to obtain
weak continuity results of Hessian measures in the Heisenberg setting [9, 11, 12, 18].

The complex Monge–Ampère operator is naturally defined for C2 plurisubharmonic
functions. Unlike the real Monge–Ampère case, it is not clear whether the complex
Monge–Ampère operator can be defined for all plurisubharmonic functions. How to
extend the domain of definition of the complex Monge–Ampère operator is an old
topic. In [7], Chern et al. established an estimate for the complex Monge–Ampère
operator which turned out to be very useful. Thanks to this and similar inequalities,
the complex Monge–Ampère operator could be shown to admit extensions to wider
classes of functions. Using Chern et al. estimates, Bedford and Taylor [1] defined
the complex Monge–Ampère operator on continuous plurisubharmonic functions. In
the same paper, they defined it for locally bounded plurisubharmonic functions by
an induction argument. Later, Bedford and Taylor [2] proved the weak continuity of
the complex Monge–Ampère operator on decreasing sequences of locally bounded
plurisubharmonic functions. For more extensions of the definition of the complex
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Monge–Ampère operator as well as the continuity property, we refer to [3, 4, 6, 8, 10,
13, 15, 19] and the references therein.

For an n × n Hermitian matrix A = (ai j), the operator Fk on A is defined as the sum
of all k × k principal minors of A, that is

Fk(A) =
1
k!

∑
δ

(
i1 i2 · · · ik
j1 j2 · · · jk

)
ai1 j̄1 ai2 j̄2 · · · aik j̄k ,

where

δ

(
i1 i2 · · · ik
j1 j2 · · · jk

)
=


1 if j1 j2 · · · jk is an even permutation of i1i2 · · · ik,

−1 if j1 j2 · · · jk is an odd permutation of i1i2 · · · ik,

0 otherwise,

is the generalised Kronecker delta symbol and all the summation indices run from 1
to n.

Let Ω ⊂ Cn be a domain and u ∈C2(Ω) be any real-valued function. Using the
standard notation

∂

∂z j
=

1
2

(
∂

∂x j
−
√
−1

∂

∂y j

)
,

∂

∂zk̄
=

1
2

(
∂

∂xk
+
√
−1

∂

∂yk

)
,

we write

u j =
∂u
∂z j

, uk̄ =
∂u
∂zk̄

, u jk̄ =
∂2u
∂z j∂zk̄

.

The complex k-Hessian operator Fk on u is defined by

Fk[u] = Fk((u jk̄)).

It is easy to see that Fk[u] is real-valued. A function u ∈C2(Ω) is said to be
k-plurisubharmonic if F j[u] ≥ 0 for j = 1, . . . , k. A function u ∈C(Ω) is said to
be k-plurisubharmonic if there exists a sequence {um} ⊂C2(Ω) such that um is k-
plurisubharmonic and converges to u locally uniformly. Let Φk(Ω) denote the class
of continuous k-plurisubharmonic functions.

Let dV be the usual Lebesgue measure in Cn. The main result of this paper is the
following theorem.

T 1.1. For any u ∈ Φk(Ω), there exists a Borel measure µk[u] such that

µk[u](e) =

∫
e

Fk[u] dV,

if u ∈C2(Ω) and e is a Borel subset of Ω. Moreover, if {um} ⊂ Φk(Ω), u ∈ Φk(Ω),
and um→ u locally uniformly in Ω, then the corresponding measures µk[um]→ µk[u]
weakly, that is, ∫

Ω

g dµk[um] dV →
∫

Ω

g dµk[u] dV

for all g ∈C(Ω) with compact support in Ω.
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Section 2 is devoted to the proof of Theorem 1.1. The monotonicity formula, that
is, Lemma 2.2, plays a central role in our proof. In some sense, it is a substitute for
the estimates of Chern et al. For completeness we also provide a detailed proof of
Theorem 1.1, rather than referring to Trudinger and Wang [16] for similar arguments.
We also remark that Theorem 1.1 does not extend to almost everywhere convergence
(see Cegrell [5]) unlike the real case in Trudinger and Wang [17].

2. Weak continuity of the complex k-Hessian operators

First we state the divergence theorem in complex variables.

L 2.1. Suppose Ω ⊂ Cn is a bounded domain with C1 boundary. If u ∈C1(Ω̄) is a
real-valued function, then we have∫

Ω

∂u
∂z j

dV =
1
2

∫
∂Ω

uγ̄ j dS ,
∫

Ω

∂u
∂z̄ j

dV =
1
2

∫
∂Ω

uγ j dS ,

where γ j = r j +
√
−1rn+ j and r = (r1, r2, . . . , r2n) is the unit outer normal of ∂Ω.

P. By the divergence theorem in Euclidean space,∫
Ω

∂u
∂z j

dV =

∫
Ω

(1
2
∂u
∂x j
−

√
−1
2

∂u
∂y j

)
dV

=
1
2

∫
∂Ω

ur j dS −

√
−1
2

∫
∂Ω

urn+ j dS

=
1
2

∫
∂Ω

uγ̄ j dS .

The second formula can be proved in the same way. �

Next, the monotonicity formula for complex k-Hessian operators is a
straightforward modification of the real case in Trudinger and Wang [16].

L 2.2. Let Ω ⊂ Cn be a C1 bounded domain. Let u, v ∈ Φk(Ω) ∩C2(Ω̄) satisfy
u ≥ v in Ω and u = v on ∂Ω. Define

w = w(z, s) , (1 − s)u(z) + sv(z), z ∈ Ω̄,

for s ∈ [0, 1]. Then the function

s 7→
∫

Ω

Fk[w(z, s)] dV

is nondecreasing on [0, 1]. In particular,∫
Ω

Fk[u] dV ≤
∫

Ω

Fk[v] dV.
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P. Using the null Lagrangian property of the complex k-Hessian operator
n∑

l=1

∂

∂z j

(Fk[u]
∂u jl̄

)
= 0 for j = 1, . . . , n

(see Reilly [14] for a similar argument in the real Hessian case), we then obtain by
Lemma 2.1,

d
ds

∫
Ω

Fk[w] dV =

∫
Ω

∂Fk[w]
∂w jl̄

(ws) jl̄ dV

=
1
2

∫
∂Ω

∂Fk[w]
∂w jl̄

(ws)l̄γ̄ j dS ,

where ws is the partial derivative ∂w/∂s = v − u. If we denote ∇u = (u1, . . . , un), then
(ws)l̄ = γl · |∇ws|. Hence by ellipticity,

d
ds

∫
Ω

Fk[w] dV =
1
2

∫
∂Ω

∂Fk[w]
∂w jl̄

γlγ̄ j|∇ws| dS ≥ 0.

This concludes the proof. �

L 2.3. Let u1, . . . , um ∈ Φk(Ω) and f be a convex function on Rm. Assume further
f is nondecreasing in each variable. If we define w = f (u1, . . . , um), then w ∈ Φk(Ω).

P. Define
Γk = {A ∈Sn : F j(A) ≥ 0, j = 1, . . . , k},

where Sn is the set of all n × n Hermitian matrices. It is easy to see that Γk is a
convex cone. Therefore, the linear combination of k-plurisubharmonic functions with
nonnegative coefficients is also k-plurisubharmonic. For the general case, we may
assume u1, . . . , um ∈ Φk(Ω) ∩C2(Ω) and f ∈C2(Rm). By straightforward calculation,

w jk̄ =
∂ f
∂up

up
jk̄

+
∂2 f

∂up∂uq
up

j u
q
k̄
.

Recalling the assumptions we imposed on f , we have (w jk̄) ∈ Γk, that is, w ∈ Φk(Ω). �

L 2.4. If u ∈ Φk(Ω) ∩C2(Ω), then for any subdomain Ω′ bΩ,∫
Ω′

Fk[u] dV ≤C(oscΩu)k,

where C is a constant depending on n, k, Ω′ and Ω.

P. Let BR = BR(z0) bΩ be a ball with centre z0 and radius R. For 0 < σ < 1, BσR

denotes the concentric ball of radius σR. Without loss of generality, we assume z0 = 0
and u < −ε in BR for some given positive constant ε. For z ∈ BR, define

ψ(z) =
infBR u

1 − σ2

(
1 −
|z|2

R2

)
,

w(z) = max{u, ψ}.
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It is easy to see that w ≥ ψ in BσR and w = ψ on ∂BR. In order to apply Lemma 2.2 to
the functions w and ψ, we replace w by its mollification wh = fh(u, ψ) for h > 0 small,
where

fh(x) = h−2
∫
R2
ζ
( x − y

h

)
max{y1, y2} dy,

and

ζ(x) =


1
C

e−1/(1−|x|2) if |x| < 1,

0 if |x| ≥ 1

is the usual mollifier with
∫
R2 ζ(x) dx = 1.

For sufficiently small h, it follows by Lemma 2.2, that∫
BσR

Fk[u]dV =

∫
BσR

Fk[wh] dV ≤
∫

BR

Fk[wh]dV ≤
∫

BR

Fk[ψ] dV

=

(
n
k

)(
−2 infBR u

1 − σ2

)k

ωnRn−2k.

By letting ε→ 0 and covering Ω′ with balls, we obtain the desired estimates. �

We are now at a stage to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose u ∈ Φk(Ω), {um} ⊂ Φk(Ω) ∩C2(Ω) and um→ u locally
uniformly in Ω. By Lemma 2.4, the integrals∫

Ω′
Fk[um] dV

are uniformly bounded for any subdomain Ω′ bΩ. Hence there is a subsequence
{Fk[ump ]} that converges weakly to a Borel measure µk[u]. The main task is to prove
that the measure µk[u] is uniquely determined by the function u. Assume there exist
two sequences {um}, {vm} ⊂ Φk(Ω) ∩C2(Ω) which both converge to u locally uniformly,
but the corresponding sequences {Fk[um]} and {Fk[vm]} weakly converge to Borel
measures ν1 and ν2, respectively. Let BR = BR(z0) bΩ be a ball with centre z0 and
radius R. Fix some σ ∈ (0, 1). Let η ∈C2(B̄R) be a convex function satisfying η = 0 in
BσR, η = 1 on ∂BR. For fixed ε > 0, it then follows from the uniform convergence of
{um} and {vm} on B̄R, that

−
ε

2
≤ um − vm ≤

ε

2
on B̄R,

for sufficiently large m. Hence,

um +
ε

2
≤ vm + εη on ∂B̄R.
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Define
Ωm =

{
g ∈ BR | u

m +
ε

2
> vm + εη

}
.

Without loss of generality, we may assume that ∂Ωm is sufficiently smooth so that from
Lemma 2.2, ∫

Ωm

Fk[um] dV ≤
∫

Ωm

Fk[vm + εη] dV.

Recalling Lemma 2.4 and expanding Fk[vm + εη] as the sum of mixed k-Hessian
operators, ∫

Ωm

Fk[vm + εη] dV ≤
∫

Ωm

Fk[vm] dV + εC,

where the constant C depends on n, k, η, u and BR.
Since η = 0 in BσR, by the definition of Ωm, we have BσR ⊂Ωm, and hence∫

BσR

Fk[um] dV ≤
∫

BR

Fk[vm] dV + εC.

Letting ε→ 0, σ→ 1 and m→∞, we then obtain

ν1(BR) ≤ ν2(BR).

By interchanging {um} and {vm}, we have ν1(BR) = ν2(BR), whence ν1 = ν2. This
completes the proof of the theorem, as the above argument shows that µk[u] is well
defined and the mapping µk is weakly continuous from Φk(Ω) to the space of locally
finite Borel measures in Ω. �

Let us conclude with two corollaries.

C 2.5. Let u ∈ Φk(Ω). Then for any subdomain Ω′ bΩ,

µk[u](Ω′) ≤C(oscΩu)k,

where C is a constant depending on n, k, Ω and Ω′.

C 2.6. Let u, v ∈ Φk(Ω) ∩C(Ω̄) satisfy u = v on ∂Ω. Then u ≥ v in Ω if and
only if the corresponding measures µk satisfy µk[u] ≤ µk[v] in Ω.
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