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ABSTRACT

The theoretical aspect of close flybies of space-crafts
near planets-—gravitational mamoceuvres have keen studied. It
is proved that the space-craft motion with gravitational man-
oeuvres admits the existence of routing scheme and,consequen-
tly shows the existence of quasi-random motion.

INTRODUCTION

The practical application of close flybies of spacecrafts
near planets - gravitational manoeuvres - is wide-gpread amd
usual in space research. Gravitational manoeuvres minimize
flytime or fuel expense and give diverse opportunities to ch-
oose variants of space missions.

This is the applied aspect of the problem. Rit it is not
less interesting from theoretical view point: the trajector-
ies with mumerous flybies prove to ke an example of stochas-
tic motions in classical deterministic dynamical system. It
is this side of the problem that is under consideration in
the present paper.

The cause of stochasticity is, of principle, evident:
this is instability, leading to the expansion of initial tube
of trajectories in the course of time (Fig. 1). The negligi-
ble small deviations of elements of initial orbit resilt in
small changes of impact parameter, lut the latter cause con-
siderahle changes of orkital elements after encounter. As a
result,the dynamical system rapidly "forgets" its initial
state.
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Fig. 1. The cause of stochasticity is
unstability leading to the expansion of
initial tube of trajectories.

Let us start with giving more rigorous mathematical me-
aning to the statement "the motion has stochastic properties”,
Introduce the concept "quasi-random motion", following V.M.
Alekseev (1981). Suppose the dynamical system allows the tra-

nsformation to a system with discrete time t ¢ {tn}:--w i.e.

to the iterations of some phase space transformation. Let us
assume, further, that any motion is such as ¥n X = X (tn) € Rn'

L= v 9’i being the totality of nom-overlapping subsets of the
i

phase space. Hence, any motion is to be represented Ly a se-~

quence of the "letters" of the “alphabet" L:

v 1?,12,223. .

The sequence for which corresponding motion exists is call~
ed admissible., A part of admissible sequence of the length 2
(i.e.consisted of tw "letters") is called admissible transi-
tion. One can say thmt the motion is quasi-random if it's
impossible to predict the next letter of the sequence, pro-
vided the fragment of admissikle sequence of arbitrary length
is known.

The another (prolahbly,more understardable) way to describe
these ideas is to use the notion of routing scheme. The lat-
ter is the oriented graph, its nodes being the "letters" of
the "alphabet" L,and the presence of arc (with arrow prescri-
ked) between two nodes means that corresponding transition is
admissikle.The motion is called quasi-=random if it may be re-
presented by routing scheme with two or more arrows starting
from each node (Fig.2).
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Fig. 2. An example of quasi-random
motion represented by routing
scheme.

If the part of the admissible
sequence is known (e.g., ...abc...), it is
impossible to find its unique
continuation. The continuation
...abca... is admissible as well as
...abcd....

Our goal is to prove that the problem of spacecraft mo-
tion with gravitational manoeuvres admits the existence of
routing scheme and,consequently, there exist quasi-random
motions in this problem,.

THE MODEL

Let us consider the simplest problem of celestial mech-
anics revealing stochastic properties - the plane circular
restricted three-body problem Sun-planet-spacecraft (Fig. 3).
Moreover, for the sake of simplicity let us treat now the

V2

flanek

Fig. 3 The plane circular restricted
three-body problem Sun-planet-
spacecraft.
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approximate model of this proktlem (@lthough the latter is al-
ready a model problem). Namely, we shall use the metlod of
action spheres with zero radii (or, kriefly, point-like act-
ion spheres method). It can be summarized as follows. The
spacecraft motion 1is supposed to be Keplerian hel iocentric
everyvhere except for points of encounter with planet, where
instant change of velocity vector occurs. This change is re-
duced to the rotation of velocity vector to the angle ¢ (be-
tween the asymtotes of planetocentric hyperlola). Any flyby,
therefore, looks like a "collision" of spacecraft with planet.

Let heliocentric gravitational constant be equal to uni-
ty wherea s planetocentric one equals to u. The planet moves
on the circular orbit of radius A with linear velocity u= 1/
YA .Denote heliocentric _velocity vector of spacecraft asv,
planetocentric one as w.

It is easy to deduce formulas expressing the change of
spacecraft orbit as a result of a collision with planet:

vilay? s 2 o -y )y Jp ) @)
14z
R T N 2)
|2 '2
v(r) =v'2 -v(n) 3)

Bere the prime indicates to values immediately after colli-
sion, whereas its absence correspords to values directly be-
fore it. The quantity z = tan({/2) may be referred to as
flyby parameter.It is connected with the impact parameter p
by known relation

z= ww o @)

‘One can .obtain an approximate expression for P by means
of llnearwl.zatlon of_ spacecraft motion in the vicinity of the
planet. With technical details omitted, the fimal result is

o yalsl v @, | )
§ being the angular distance from spacecraft to planet while
the unperturbed spacecraft is crossing the planet orbit.

Let us recall,finally, the well-known Keplerian relations:

V2 =2/A -1/a, (6)

2
V(n) =a(l-e2)/A2, a)
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with a and e standing for major semiaxis and eccentricity
of spacecraft orbit, respectively.

The set of formulas (1)~(7) completely describes the
transformation of Keplerian heliocentric orbit of spacecraft
as a result of a flyby:

@a,e) » @',e').

STOCHASTIC PROPERTIES

In many well-known stochastic dynamical systems the re-
petition of collisions is guaranteed automatically (e.g. in
billjards). It is not the case here: we ought to take care of
saich a repetition. Mamely, one have to clobose the parameters
of each flyby such as to reach next flyby in the nearest
future.

This condition is satisfied particularly for resonmant
orkits, for which the next collision occurs at the same po -
int as previous one after p completesrevolutions of planet
and g completesrevolutions of spacecraft:

(a/A)a'/2 = p/q, prq € N 8)

The non-resonant orbits (also containin? the orbits of colli-
sion) were also investigated (Sokolov, 1990) hut are not dis-

cussed here.

Restricting ourselves by the consideration of resonant
orbits we have:

=3/2 2,-3/2 _ 3/2

8,41 = §; + 2nA [qi(Z/A -vi) i A ] (9)
Zia T 7 3 w172 @ 0)
. A|6i+l Ivi Ww; +u” - 2u Vin ) /
2 oy, ha w-v™) - G)] 1)
Vi T Vi T T2 idl BTV Vi
4+ Z,
i+l
C N S T TN S LN T Y 12)
vy = (vi u - w)/2u, v, =vy -V,

Here i = 1,2,3,... stands for the mumber of collision,

v, = {vi(n), vi(r)} is the velocity after i-th collision (the
same as the velocity directly before i+l-th collision, because
the orbits are resonant).
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It can be easily shown that for each set of pairs (p.,q.),
i=1,2,3,..., the system of equations (9)-(12) has an exict
solution,provided u is sufficiently small. In order to show
it,let us fix the value of planetocentric velocity w (w is
an invariant, because its values before and after each colli-
sion coincide).Choose an arbitrary sequence of resonant heli-
ocentric velocity values v, (corresponding to. the values of
P;r9y chosen from the intdrval u-w, u+w), restricting our-

selves by not too large values of pi,qi. Braluate normal amd
radial components vjfn) and vi(r) by means of (12). The quad-
ratic equation (11) determines z; (one can prove the existe-
nce of real roots). The next stép is to calculate §, with

the aid of (10). Finally, we use formula (9) either * to ob-
tain 61 (when i = 1) or to correct the value of v, (when

i= 2,3,...). The corrections to v.(n) and v(r) are to be fourd

i i

now from (12).These operations are to be repeated until the
required accuracy is achieved (Fig. 4). This iterative proc-
edure, performed for all transitions, results in the set of
values Vi Note that the iterations converge as geometric pro-
gression” with factor ~w, independently of the path in the
routing scheme.It can be clarified Ly the presernce of small
parameter y in (10) which provides the "compression". Indeed,
if the correction to z is of order uK, the correction to &

(and v) is of order uk+l.

[$ %] (11) (10)
’qu y‘;‘"
Vi [ vy z P

w A

u_)t (1= 2,3,..)
5 l<bzY

Fig. 4 The iterative procedure of Vpq
calculation.
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Therefore,the existence of the trajectory corresponding
to each sequence of (pi,qi) is proved. Thus, there exists

routing scheme - the infinite oriented graph - with at least
two arcs originating in each node (Fig. 5). We can conclude
therefore that the motion is quasi-random according to our
definition. All routes are permitted -all pairs of nodes are
linked by arrows. For each route within this scheme there
exists a correspording trajectory in the simplified three-~
lody problem, e.g., the path1/2 +2/3 + 1/1 +,.. on the Fig.
5 may have an arbitrary contimation. The spacecraft ramhles
through the nodes of scheme.

Fig. 5 Centrol port of the routing
scheme. Eoch nede contains
the pair ot volues (pyq)

DISCUSSION

Thus, in the given specific problem of celestial mech-
anics an example of quasi-random motion has been constructed.
It should be noted that we have considered not the "true"
factual) three-body problem huit "distorted”, "spoiled” by the
using of tw operations - the point-like action spheres met-
hod and linearization of spacecraft motion while evaluating
the impact parameter. S the motions unmder consideration do
not exist in reality. Nevertheless, they approximate actual
solutions with sufficient accuracy - the fact that has been
proved by the comparison with exact analytical results, in
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particular, with Tisserand criterion. It is especially impo-
rtant that quasi-random nature of the motions "survives" in
the actual three-body prohlem. Let us quote Vladimir Arnold:
"Unlike the stability, the instability is stakle"”,

We shall come now to the other consequences of our tre-
atment, It is clear that the measure phase space subset where
the stochasticity is actually revealed is very small. On the
contrary, the velocity of accuracy loss caused by consequent
spacecraft flybies is consideralble, amounting to 3-4 decimal
order s per one flyby. As a consequence, it is absolutely
useless to amalyze an individual stochastic trajectory by
mimerical integration if the time interval is not small.

Further, it seeams to be evident that the technique used
in the paper may ke generalized to more complicated cases of
N-body problem. For example, one can consider four-lkody pro-
blem in which two planets like as Mercury and Verus are in-
volved. It doesn't make difficulties also to study 3 -dimen-
sional (non-planar) problem. The list of possible generaliz-
ations is okviously to ke contimed.

The applied aspect of the problem mentioned alove is
also of great interest. It includes the investigation of the
regions of attainability, the amalysis of the possibilities
to fall down to the 8un, or to escape from the Slar system,
or to leave the ecliptic plane.

All these generalizations and aspects of the problem are
considered in detail in a series of papers (Sokolov,l980;
S kolov, Titov, 1990). These papers contain also the descr-
iption of the interactive computer system constructing sto-
chastic trajectories. It makes it possible to "grow" trees
of trajectories by contimiing appropriate kranches and stop-
ping md ones, due to accepted criteria. Mimerical examples
of trajectories constructed using the descriked system are
al so presented.
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