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Abstract Let X be a smooth, projective and geometrically connected curve defined over a finite field
Fq of characteristic p different from 2 and S ⊆ X a subset of closed points. Let X and S be their base
changes to an algebraic closure of Fq . We study the number of �-adic local systems (� �= p) in rank 2 over
X−S with all possible prescribed tame local monodromies fixed by k -fold iterated action of Frobenius
endomorphism for every k � 1. In all cases, we confirm conjectures of Deligne predicting that these
numbers behave as if they were obtained from a Lefschetz fixed point formula. In fact, our counting
results are expressed in terms of the numbers of some Higgs bundles.
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1. Introduction

Let X be a smooth, projective and geometrically connected curve defined over a finite
field Fq of genus g. In the two-page article [12] of Drinfeld, he counts the number of two-

dimensional geometrically irreducible �-adic (in Q�-coefficients with � � q) representations
of π1(X ⊗Fq) that can be extended to a representation of π1(X) (here, we ignore the
base point in the notation). These numbers behave as if they were expressed by a

Lefschetz fixed-point formula on an algebraic variety over the finite field. Moreover, they

are independent of �.
It is equivalent to consider �-adic local systems (smooth Q�-sheaves). Although the

Langlands correspondence established by Drinfeld and Lafforgue shows the motivic nature

of �-adic local systems counted by Drinfeld, their definition depends very much on �. We

do not know how to construct a moduli space of �-adic local systems in a reasonable
sense that can explain these counting results. In fact, the techniques that we dispose

of will only produce a space over Q̄�, instead of Fq. In this direction, the works [1]

and [2] are fascinating, where an algebraic stack over Q̄� is constructed and many
interesting applications are expected. These works present valuable insights; however,

they do not offer a Lefschetz-type fixed point formula that would aid in comprehending

the counting problems. For example, each irreducible �-adic local system induces one
connected component in their stack.

Deligne has made some conjectures ([10]) on counting �-adic local systems with

prescribed local monodromies (i.e., with prescribed ramification types) to extend and

understand Drinfeld’s result. More explicitly, Deligne conjectures that the number of
�-adic local systems with a fixed rank and prescribed tame ramifications that are fixed

by k -iterated action of Frobenius endomorphism looks like the number of Fqk -points of a

variety defined over Fq. Kontsevich [19] makes some conjectures toward an understanding
of Drinfeld’s result. It is worth noting that Kontsevich considers the Hecke operator as

well, which adds an interesting perspective to the discussion.

Some progress has been made since Deligne raised his conjectures. In fact, when the
ramifications are split semisimple and in general position (which ensures that an �-adic

local system is automatically irreducible), Arinkin has verified that in these cases, similar

results hold ([10]). When the ramifications are unipotent with one Jordan block, and there

are at least two such ramifications, Deligne’s conjecture has been verified by Deligne-
Flicker [11]. The case in rank 2 with one unipotent ramification is verified by Flicker [13].

We have generalized Drinfeld’s result to a higher rank in [37], and Arinkin’s result to allow

semisimple regular in general position but possibly non-split ramifications in [38]. In the
case of rank 2, Flicker ([14]) also obtains an explicit expression of the number of �-adic

local systems with prescribed semisimple regular in general position ramifications that

are fixed by Frobenius endomorphism. But, further analysis is needed to verify Deligne’s
conjecture since it is essential to let Frobenius endomorphism acts iteratively to observe

if it is of the form asked by Deligne or not.

In this article, we verify Deligne’s predictions on counting of �-adic local systems in

rank 2 for all possible tame ramifications. We show that the number is always related
to the number of Higgs bundles. The results show an interesting analogy with Simpson’s
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non-abelian Hodge theory, especially when g = 0 and the ramifications are in general
position and the parabolic weights of the parabolic Higgs bundles are also in general

position (these two conditions correspond in Simpson’s theory). We will discuss it in

more detail at the end of the Introduction.
The fundamental principle underlying the proofs of all existing cases is the same:

employing the Langlands correspondence and addressing the corresponding question

within the realm of automorphic forms instead. There are several difficulties and technical

novelties in this article compared to the existing partial cases.
On the automorphic side, we use the Arthur-Selberg trace formula to do the counting.

Since we are interested in absolutely cuspidal automorphic representations (i.e., those

whose base change in the sense of Langlands functionality from F := Fq(X) to F ⊗Fq
Fqk

remain to be cuspidal for all k � 1), we use in fact a twisted trace formula. The spectral

side of the trace formula for GL2 consists of cuspidal, residual and continuous parts.

Different from higher rank cases, the continuous and residual parts are relatively easy
to treat because the group is small. To allow all tame ramifications, the more difficult

part is the cuspidal part where we need to calculate twisted traces. Using Whittaker

models, the question is reduced to a local question, and we use an explicit calculation of

Whittaker function given by Paskunas-Stevens. The geometric side of the trace formula
uses a similar approach that I already used in the generic case that we pass to Lie algebra

and uses a Lie algebra trace formula and Weil’s dictionary.

After computing the trace formula, we obtain an equation representing the count of
absolutely cuspidal automorphic representations. However, this equation alone does not

prove Deligne’s conjectures. While we have an expression for the count in terms of

Fq-points of certain varieties, the nature of the expression changes when transitioning
from F to F ⊗ Fqk . It is not obvious that the expression we have is of a Lefschetz

type formula, as conjectured by Deligne. The reason behind these is that (1) a closed

point will split into several different closed points after base change, and (2) ramification

type on the automorphic side changes as well. Especially, it is the mixture of twisted
Steinberg components that creates problems. In this context, certain arguments involve

combinatorial aspects, but it is crucial to analyze the Frobenius action on the moduli

spaces of Higgs bundles in order to establish the dominant term as being of Lefschetz
type. It is amusing to see that the calculations given by the trace formula (Theorem 4.2.2)

are subdivided into 13 cases while the statement of our main theorem is rather clean.

1.1. Main results

1.1.1. Let us recall Deligne’s conjectures that will be treated in this article. We follow

Deligne’s presentation in [10], but we restrict to the rank 2 cases.
Let X be a smooth, projective and geometrically connected curve defined over a finite

field Fq. Let S ⊆X be a subset of closed points. We fix an algebraic closure Fq of Fq. Let

X :=X⊗Fq and S := S⊗Fq. For each point x ∈ S, let X
∗
x =Xx−{x} be a punctured

disc in x (Xx is defined to be either the Henselization or the completion of X in x ).

We fix a rank 2�-adic local system (Q�-smooth sheaf) Rx over X
∗
x. Let E2(R) be the set

isomorphism classes of irreducible rank 2�-adic local systems over X−S whose restriction
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to X
∗
x is isomorphic to Rx for every x ∈ S. Let Frob be the Frobenius endomorphism of

X (i.e., the base change to Fq of the morphism induced by the map a �→ aq on X ). If

Frob∗(RFrob(x))∼=Rx (1.1.1)

for every x ∈ S, then the pullback of Frob permutes E2(R). Let E2(R)Frob
∗k

be the set

of fixed elements of k -iterated action of Frob∗.
Deligne conjectured that if all Rx are tamely ramified, then there are q-Weil integers

α and integers mα such that

|E2(R)Frob
∗k |=

∑
α

mαα
k, ∀k � 1,

where |E2(R)Frob
∗k | is the cardinality of subset of the fixed points by k -fold iterated action

of Frob∗. To formalize this property, let us introduce some integral valued functions on
N∗. We say that a function k �→ h(k) form N∗ to Z is of Lefschetz type if there are q-Weil

integers α and integers mα ∈ Z such that

h(k) =
∑
α

mαα
k.

Therefore, the conjecture is to prove that

k �→ |E2(R)Frob
∗k|

is of Lefschetz type. A typical example is a function k �→ |V (Fqk)| for a variety V defined

over Fq. In particular, given a permutation σ on a finite set P, the function k �→ |P σk | is
a periodic function of Lefschetz type. Note that not all integral valued periodic functions

are Lefschetz type as the integrality of mα is essential.

1.1.2. The tame étale fundamental group of X
∗
x is topologically generated by one

element. Therefore, an isomorphism class of tame local system of rank 2 over X
∗
x

corresponds bijectively to conjugacy classes in GL2(Q�).

The set S ⊆X(Fq) is fixed by Frob, and its orbits correspond bijectively to S. Following

the types of prescribed local monodromies, we can define a partition on S and hence S
into a disjoint union of subsets:

S = Ss∪Su∪Scr,

where Rx has different eigenvalues for x∈ Scr, Rx induces a scalar matrix in GL2(Q�) for

x ∈ Ss and Rx induces a quasi-unipotent conjugacy class with non-trivial Jordan block
for x ∈ Su. As each of these sets is stable under Frob, we have a partition

S = Ss∪Su∪Scr.

Let x1 ∈ Scr. Suppose x1
Frob−−−→ x2

Frob−−−→ ·· · Frob−−−→ xd+1 = x1 be the orbit containing x1

of the Frobenius action (xi 
= x1 for any 1< i� d). There are two non-isomorphic rank 1

�-adic local systems L1 and L2 over X
∗
x1

such that

Rx1
∼= L1⊕L2.
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The condition (1.1.1) implies that

Frob∗dL1
∼= Li,

for i= 1 or i= 2. This allows us to further subdivide Scr so that

Scr = Sc∪Sr,

where Sr is the set of points such that i = 1 and Sc consists of those points such that

i= 2. Again, we deduce a partition

Scr = Sc∪Sr.

1.1.3. Now we need to introduce some functions of Lefschetz type that are used to

express the final results.
Let R be a collection of tame local monodromies as above so that the condition (1.1.1)

is satisfied. Its eigenvalues for each x ∈ S define a couple of numbers (εx(1),εx(2)) ∈Q
×
�

which could be the same. Let S = {x1, · · · ,xr}. We define a set PR by

PR := {(εx1
(i1), . . . ,εxr

(ir)) |
r∏

j=1

εx(ij) = 1; ij ∈ {1,2},j = 1,2, . . . ,r}. (1.1.2)

Let Frob∗ be a permutation on PR defined so that for any (εx)x∈S ∈ (Q
×
� )

S , we have

Frob∗((εx)x∈S) = (ε′x)x∈S,

with

ε′x = εqFrob(x), ∀x ∈ S.

The relation (1.1.1) tells us that it is a well-defined permutation since εFrob(x)(1)
q equals

either εx(1) or εx(2). We define a function cR : N∗ −→ Z by

cR(k) := |PFrob∗k

R |,

the number of the fixed points of Frob∗k on PR. It is of Lefschetz type. Let σ be an

involution on PR that sends (εx(ix))x∈S to (εx(3− ix))x∈S . Define

bR(k) := |P σ=Frob∗k

R |

as the cardinality of the fixed point set of the action of σ ◦ Frob∗k. We prove in

Proposition 6.1.1 that it is also of Lefschetz type.
Now we introduce some functions of Lefschetz type coming from counting of Hitchin

bundles. Suppose that k ∈ N∗, and V ⊆ Su⊗Fqk . Let V = V ⊗F
qk

Fq and

D =KX +
∑

x∈V ∪Scr

x

be a divisor over X where KX is a canonical divisor on X (i.e., a divisor whose associated

line bundle is the canonical line bundle Ω1
X/Fq

). A parabolic Hitchin bundle of rank 2
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and degree 1 with parabolic structures in V for the divisor D is a triple (E,ϕ,(Lx)x∈V )
consisting of a vector bundle of rank 2 and degree 1 over X, a bundle morphism

ϕ : E → E ⊗OX(D),

and a family of one dimensional Fq-subspace Lx of Ex (x ∈ V ), the fiber of E in x, such

that ϕx(Lx) = 0 and Im(ϕx)⊆ Lx, for any x ∈ V . We say that (E,ϕ,(Lx)x∈V ) is stable if

for any subline bundle L of E satisfying ϕ(L)⊆ L⊗OX(D), we have

deg(L)< degE
2

.

We denote M1
V
(D) the coarse moduli space of these stable parabolic Hitchin bundles. It

is a variety defined over Fq (more details are given in Section 5). We show in Section 5.2

that it admits canonical Fqk -structure (i.e., M1
V
(D) is the base change to Fq of a variety

defined over Fqk) whose Fqk -points classify isomorphism classes of stable parabolic Hitchin

bundles over X⊗Fqk , which we denote by M1
V (D).

For each v ∈ Scr, we fix a monic polynomial ov ∈ κv[t] of degree 2 with coefficients in
κv (the residue field of the point v), so that we require that ov is irreducible for v ∈ Sc

and ov has distinct roots in κv if v ∈ Sr. It defines a polynomial in κx[t], for every closed

point x of X lying over v via the isomorphism:

κv[t]⊗Fq
Fq

∼=
∏
x �→v

Fq[t].

We define M1
V (oScr

) to be the closed sub-variety of M1
V (D) over Fqk consisting of those

parabolic Hitchin bundles so that the characteristic polynomial of ϕx at x ∈ Scr is given

by ox. We suppose that the sum of roots of ox (x ∈ Scr) is zero (this is always possible if

p 
=2; see Remark 5.3.2). We refer to Section 5.3 for a more precise and detailed definition.
We define for each k � 1,

HiggR(k) =
∑

V⊆Su⊗F
qk

(−1)|Su⊗F
qk

−V |2|V |q−k(4g−3+|V |+|Scr|)|M1
V (oScr

)(Fqk)|.

This expression depends only on Frobenius action on R, but not on (ov)v∈Scr
. We show

in Theorem 6.2.1 that this is a function of Lefschetz type in k.

Let Pic0X be the Jacobian variety of X. We also define for every k � 1

Pic(k) := |Pic0X(Fqk)|,

and

Pic(2)(k) := |S2Pic0X(Fqk)|,

where S2Pic0X := (Pic0X)2/S2 is the symmetric square of Pic0X . They are surely also

functions of Lefschetz type in k ∈ N∗.

1.1.4. The following theorem proves Deligne’s conjectures [10, 2.15 (i)(iii)] when n= 2

and ramifications are tame.
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Theorem 1.1.1. Suppose that p 
= 2. Suppose that (1.1.1) is satisfied, so that Frob∗ acts
on E2(R). Suppose that ∏

x∈S

εx(1)εx(2) = 1, (1.1.3)

otherwise E2(R) is empty. Then the function

k �→ |E2(R)Frob
∗k |

is of Lefschetz type.

More precisely, we have the following explicit identities that express |E2(R)Frob
∗k |

following different cases.

i. Scr = Su = ∅. Then |E2(R)Frob
∗k | equals

HiggR(k)− cR(k)

(
Pic(k)2(g−1)+Pic(k)

)
.

ii. Scr = ∅, Su 
= ∅. Then |E2(R)Frob
∗k | equals

HiggR(k)− cR(k)

(
βSu

(k)(−1)|Su|+1Pic(2)(k)+γSu
(k)Pic(k)+ωSu

Pic(k)2
)
.

iii. Scr 
= ∅, Su = ∅. If |Sc| is even, then |E2(R)Frob
∗k | equals

HiggR(k)− cR(k)(2g−2+ |Scr|)
2

Pic(k)2.

iv. Scr 
= ∅, Su = ∅. If |Sc| is odd, then |E2(R)Frob
∗k | equals

HiggR(k)−
(
cR(k)

2g−1+ |Scr|
2

− cR(k)+ bR(k)

2

)
Pic(k)2− bR(k)Pic(2)(k).

v. Scr 
= ∅, Su 
= ∅. If |Sc| is even, then |E2(R)Frob
∗k | equals

HiggR(k)−
(
cR(k)αSu

(k)

2
+(−1)|Su| bR(k)βSu

(k)

2

)
Pic(k)2

+(−1)|Su|bR(k)βSu
(k)Pic(2)(k).

vi. Scr 
= ∅, Su 
= ∅. If |Sc| is odd, then |E2(R)Frob
∗k | equals

HiggR(k)−
(
cR(k)αSu

(k)

2
− (−1)|Su| bR(k)βSu

(k)

2

)
Pic(k)2

− (−1)|Su|bR(k)βSu
(k)Pic(2)(k).

In the above expressions αSu
, βSu

, γSu
and ωSu

are periodic functions of Lefschetz type

(see Proposition 6.1.1 for their explicit expressions). When Scr is non-empty, cR/2+bR/2

and cRαSu
/2± bRβSu

/2 are of Lefschetz type. If |Sr| is odd, then cR/2 is of Lefschetz

type and bR is constantly zero.
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Remark 1.1.2.

(1) Even in characteristic 2, the theorem holds as long as a residue datum oScr
=

(ov)v∈Scr
in the definition of HiggR exists. If p 
=2, it always exists. However, if p=2

and Scr is a singleton, then such a datum does not exist. If Sc = ∅, Theorem 5.5.3 can
be employed to express HiggR without the necessity of choosing a residue datum.

Therefore, Theorem 1.1.1 is applicable in this case for p= 2 as well.

(2) A key point of the theorem is that k �→ HiggR(k) is of Lefschetz type. This is
non-trivial if not all points in Su have degree 1.

(3) The necessity of the condition (1.1.3) for E2(R) to be non-empty is explained in

[10, 2.10]. It can be checked by passing to characteristic 0 and then passing to C,
where one can use an explicit presentation of the topological fundamental group of
a punctured Riemann surface (see the proof of Corollary 7.7 of [11]).

(4) The ramification Rx for x ∈ Ss only affects cR(k) and bR(k) and is not involved in

any other term.

(5) In the case of general position (i.e., when the set PR = ∅), we have

|E2(R)Frob
∗k |=HiggR(k), ∀k � 1.

The appearance of additional terms may be related to the singularity of the moduli

space of (S-equivalent classes of) semistable parabolic Higgs bundles in cases that
are not in general position.

The following corollary confirms Deligne’s conjectures [10, 6.3].

Corollary 1.1.3. The cardinality |E2(R)Frob
∗k | is divisible by Pic(k) and

k �→ |E2(R)Frob
∗k |/Pic(k)

is still a function of Lefschetz type.

Although we deal only with the tame local monodromies, the method of this article

allows us to treat some wild ramified cases as well – namely, the cases in which
the prescribed local monodromies (Rx) can be wildly ramified. For example, we can

allow some places to give the so-called simple supercuspidal representation on the

automorphic side (see [3, 3.1, 3.4] for the definition and explicit constructions of simple

supercuspidal representations and their Langlands parameters). There could be a similar
result involving wild/meromorphic Hitchin bundles. More precisely, we can consider those

�-adic local systems on X−S with S 
= ∅ whose ramifications are restrictions of Langlands

parameters of prescribed simple supercuspidal representations to the inertia Galois group.
We conjecture that the number of such �-adic local systems fixed by the Frobenius

endomorphism equals to, up to a power of q, the number of Higgs bundles over X whose

Higgs fields have non-simple poles in S and the principal part of the Higgs field around
a point of S belongs to some fixed coadjoint orbit of a Lie algebra (we refer to [4] for

related theories over complex numbers). In a private note by Zhiwei Yun, he has a simple

geometric method to deal with some cases with wild ramifications.
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1.2. When g = 0.

1.2.1. In the following, the characteristic of Fq is allowed to be 2.

Suppose that g = 0 (i.e., the curve X is P1) and Sc = ∅. We will present an analogy

with Simpson’s non-abelian Hodge theory. One can compare with [38, Theorem 1.4]. New

phenomena appear when there are quasi-unipotent local monodrmies. However, a naive
generalization does not hold in a more general case which we hope to understand in the

spirit of conjectures [10, 2.18, 2.21]. We are interested in the case that R is in general

position (i.e., when PR is empty).
Let

R= Sr ∪Su,

and

D =KX +
∑
v∈R

v.

Note that we do not consider points in Ss. We use the same letter D for the divisor

KX+
∑

x∈Rx over X. Let ξ= (ξx)x∈R ∈ (Q2)R such that ξx,1 � ξx,2 � ξx,1−1 and ξx = ξy
for any x,y lying over the same closed point v ∈ R. These vectors serve as parabolic
weights (stability parameters). We call a parabolic Hitchin bundle a Higgs bundle if

D = KX +
∑

v v and parabolic structures are imposed in R. Let (E,ϕ,(Lx)x∈R) be a

parabolic Higgs bundle over X. Let L be a sub-line bundle of E . We define the parabolic

degree p-deg(L) by

p-deg(L) := deg(L)+
∑
x∈R

{
ξx,1, if Lx = Lx;

ξx,2, if Lx 
= Lx.

We say that (E,ϕ,(Lx)x∈R) is ξ-semistable if for any sub-line bundle L of E satisfying

ϕ(L)⊆ L⊗OX(D), we have

p-deg(L)�
degE+

∑
x∈R(ξx,1+ ξx,2)

2
.

Note that if

deg(E)+
∑
x∈R

±(ξx,1− ξx,2) /∈ 2Z, (1.2.1)

then the equality can never be achieved. We say that such cases are in general position.

Choose ξ as above and suppose that it is in general position. The coarse moduli space
of ξ-semistable parabolic Higgs bundles of rank 2 and of degree e that are semistable

with parabolic weights (ξx)x∈R over X has a canonical Fq-structure (see Section 5.2). We

denote the moduli space byMe,ξ
R =Me,ξ

R (D). We show in Theorem 5.6.1 that |Me,ξ
R (Fq)| is

independent of the choice of the parabolic weights as long as ξ is in general position. The

space Me,ξ
R has a Gm-action via dilation of the Higgs field. Let grMe,ξ

R := (Me,ξ
R )Gm ,

and grMe,ξ
R (Su) be its open subvariety consisting of those parabolic Higgs bundles

(E,ϕ,(Lx)x∈R) whose Higgs field ϕ does not vanish at x ∈ Su (i.e., ϕx 
= 0).
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Theorem 1.2.1. Suppose that Fq 
= F2, g= 0 and Sc = ∅. Suppose that (e,ξ) is in general

position and that

ξx,1 = ξx,2

for x ∈ Su. Suppose that R is in general position in the sense that PR = ∅. Suppose that∏
x∈S

εx(1)εx(2) = 1.

If either e is an odd integer or there is a place of odd degree in R, then we have

|grMe,ξ
R (Su)(Fqk)|= |E2(R)Frob

∗k |.

1.3.

Given a compact Riemann surface Σ and a finite set of points R ⊆ Σ, Simpson has
established a correspondence between semistable C-local systems over Σ−R of degree 0

and semistable quasi-parabolic Higgs bundles over Σ with parabolic structures in R of

parabolic degree 0 (we refer to Simpson’s original article [31] for more details). On the local

system side, Simpson defines residual data for each x∈R using the local monodromy and
stability weight at the puncture x. Similarly, Simpson defines residual data for each x∈R

using the Higgs field and the parabolic weight in the Higgs bundle side. His correspondence

preserves the nilpotent part of the residual data and permutes the stability weights and
eigenvalues of the residual datum. Theorem 1.2.1 presents an analogy with Simpson’s

theory if we choose the stability weights of the local systems to be trivial and we choose

(e,ξ) in accordance with Simpson’s correspondence (cf. the diagram in [31, p.720]). An
interesting phenomenon is that R being in general position corresponds to that (e,ξ)

being in general position under Simpson’s correspondence.

The dominant term in Theorem 1.1.1 when k varies is (q4g−3+|Su|+|Scr|)k. It is half of
the dimension of the moduli space of parabolic Higgs bundles of the relevant complex
analogy in Simpson’s theory. This may be related to the motivic nature of �-adic local

systems over a curve over Fq.

We cannot expect a naive generalization of Theorem 1.2.1 to the cases g > 0. However,
we expect it to be a special case of (a possible modification of) Deligne’s conjecture in

[10, 2.21]. Indeed, suppose that all ramifications are split regular semisimple (for n = 2,

it is the case that Ss = Sc = Su = ∅), in the cases of in general position, we have ([38, Th.
1.1] for any rank)

|En(R)Frob
∗k |=

∑
i

(−1)iTr(V ∗k|Hi
c((M

e,ξ
n,Sr

)
Fq
,Q�)),

for any endomorphism V ∗ conjugate to q−
1
2 (n

2(g−1)+|Sr|)F ∗
q . We can expect to generalize

it to the cases where ramifications are only supposed to be semisimple but remain in

general position. The more demanding question is to generalize it to allow non-trivial

quasi-unipotent ramifications or even cases not in general positions. Now we may ask if
V ∗ is induced from a morphism of (Me,ξ

n,Sr
)
Fq
. This does not seem to be the case if we

consider only algebraic varieties over Fq. We likely have to consider a lifting of the curve
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to characteristic 0 and consider p-adic geometry which the author is not competent to
comment on. Instead, we refer the reader to Deligne’s course at IHES [9].

In this article, we only need semistable parabolic Higgs bundles with parabolic weights

in general position. It is not necessary to do so. However, with our method, it is more
natural to consider the algebraic stack version of the moduli of semistable parabolic Higgs

bundles when the parabolic weights are not in general position, and we should expect a

more complicated expression for the point counting problem in this case.

2. Notation

We gather notation that will be used throughout the article. Other notation will be

defined where they appear.

• F,|X|,Fv,Ov,℘v,κv,qv,A,O. Let F = Fq(X) be the global function field of the curve
X. Let |X| be the set of closed points of X, identified with the set of places of F. For every

v ∈ |X|, let Fv be the local field in v, Ov the ring of integers in Fv and κv the residue

field of Ov. Let ℘v be the maximal ideal in Ov, and we choose a uniformizer �v. Suppose
that κv has cardinality qv; therefore, κv

∼= Fqv . Let A be the ring of adèles of F and O be

the sub-ring of integral adèles.

• G,B,N,T,B,N. If not specified otherwise, we use G for GL2. Let B be the Borel
subgroup of G consisting of upper triangular matrices and T be the torus consisting of

diagonal matrices. Let N be the unipotent radical of B (i.e., the group of upper triangular

matrices with 1 on the diagonal). Let B be the Borel subgroup that is opposite to B (i.e.,

consisting of lower triangular matrices), and N be the unipotent radical of B.
• g,b,n,t. Let g, b, n and t be respectively the Lie algebra of G, B, N and T.

• Gv,Bv,Kv,Iv. Given a variety V defined over Fq, we will use Vv to denote V (Fv) for

any places v ∈ |X|. This notation applies in particular to Gv, Bv. We will denote G(Ov)
by Kv. Let Iv be the Iwahori subgroup consisting of matrix in Kv whose reduction modulo

℘v lies in B(κv).

• G(A)e. For any e ∈ Z, let

G(A)e = {x ∈G(A)|degdetx= e}.

Here, the degree map of A× is normalized so that for (av)v∈|X|,

deg(av)v∈|X| =−
∑
v∈

v(av)[κv : Fq].

• We fix Haar measures on G(A), N(A) so that G(O) and N(F )\N(A) (with counting

measure on N(F )) have volume 1. The local Haar measures on Gv, Bv and Nv are defined

so that, respectively, the volumes of Kv, B(Ov) and N(Ov) are 1.
• Ev,ϕv. Given a vector bundle E over X, and a place v ∈ |X| identified as a κv-point

of X, we use Ev to denote the fiber over v. It is a κv-vector scheme. Suppose ϕ : E −→F
is a bundle morphism over X. Then it induces a κv-linear map ϕv : Ev −→Fv.
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3. Global and local Langlands correspondence for GL2

We are going to reduce the calculation of the cardinality of E2(R)Frob
∗k

to a question of
counting certain automorphic representations of GL2 with the help of global Langlands

correspondence in rank 2 established by Drinfeld. Note that

X = (X⊗Fq
Fqk)⊗F

qk
⊗Fq,

and the Frobenius endomorphism of X deduced from X⊗Fq
Fqk is Frobk. Therefore, we

can do the calculation for k = 1 and apply the results to the curves X⊗Fq
Fqk over Fqk

(k � 1) later.

3.1. Galois representations

It has been explained by Deligne [10, 2.1-2.9] how to pass to the automorphic side, and

the reader is invited there for more details. This section aims to give precise information

on the ramifications of automorphic representations determined by the Frobenius action

on R. The data on the local monodromies are carried over to the automorphic side,
described by local Langlands correspondence.

We continue to use notation in the introduction. Let v ∈ S and x ∈ S that lies over v.

We fix an algebraic closure F of F. Then η := Spec(F ) is a geometric point lying over
the generic point of X. Let X(x) be the Henselization of X in x and X

∗
(x) =X(x)−{x}. If

we choose an embedding of Fq(X
∗
(x)) in F , then the étale fundamental group π1(X

∗
(x),η)

is canonically isomorphic to the inertial group Ix = Gal(F/Fq(X
∗
(x))). An �-adic local

system over X−S (resp. X
∗
(x)) is equivalent to an �-adic representation of π1(X−S,η)

(resp. Ix). Let I
t
x = π1(X

∗
(x),η)

t be the tame fundamental group of X
∗
(x) (i.e., the maximal

prime-to-p quotient of π1(X
∗
(x),η)). A tame �-adic local system of X

∗
(x) is equivalent to

an �-adic representation of Itx.
For an algebraic closed field k, let

Ẑp′
(1)(k) := limμn(k),

the projective limit where the transition map is the norm map. We denote Ẑp′
(1)

for Ẑp′
(1)(Fq). Let κx

∼= Fq be the residue field of the point x. We have a canonical

isomorphism

Itx
∼= Ẑp′

(1)(κx).

Choose an embedding κv ↪→ Fq. We deduce from

κv ⊗Fq
Fq

∼=
∏
x �→v

Fq,

isomorphisms κx
∼= Fq. This gives us an isomorphism

Itx
∼= Ẑp′

(1).
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The morphism Frob :X
∗
x −→X

∗
Frob(x) induces an isomorphism between tame fundamental

groups. It is the multiplication by q map on Ẑp′
(1) via the above isomorphisms.

To make the set E2(R)Frob∗-stable, the �-adic local systems (Rx)x �→v have to satisfy

the compatibility condition

Frob∗(RFrob(x))∼=Rx. (3.1.1)

Let Iv and Dv be, respectively, the inertial subgroup and decomposition group of F at

v. The condition (3.1.1) implies that (Rx)x �→v come from a representation ρv of Dv. By
Grothendick’s local monodromy theorem, ρv|Iv is quasi-unipotent in the sense that it

becomes unipotent on an open subgroup. We will use Rv to denote ρv|Iv .
Let WF be the Weil group of F. Then π1(X−S,η) is a quotient of the degree 0 part of

WF . Let G2(F ) be the set of isomorphism classes of �-adic representation of WF . We call
two �-adic representations σ1 and σ2 in G2(F ) inertially equivalent: σ1 ∼ σ2 if there is a

character λ :WF
deg−−→ Z−→Q

×
� such that σ1

∼= σ2⊗λ.

Proposition 3.1.1. The set

E2(R)Frob
∗k

is in bijection with the subset of inertially equivalent classes in G2(F ⊗Fqk)/∼ consisting

of σ such that

σ⊗λ∼= σ =⇒ λ= 1, (3.1.2)

σ|Iv is trivial for v /∈ S and

σ|Iv ∼=Rv

for v ∈ S.

Proof. It has been explained in [10, Section 2]. The condition (3.1.2) is to make sure that

σ is irreducible restricting to the degree 0 part (see [37, Proposition 2.1.3]).

Let Wv be the local Weil group at v. We choose an isomorphism ι :Q�
∼−→C. Recall that

the local Langlands correspondence is a canonical bijection between the set of smooth

irreducible C-representations of Gv and the set of rank 2, Frobenius semisimple �-adic
(continuous) representations of Wv.

For any v ∈ S, let IrrR(Gv) be the set of irreducible representations of Gv whose

associated �-adic representation of the local Weil group Wv under local Langlands
correspondence extends Rv. For a place v /∈ S, we define IrrR(Gv) to be the set of

unramified representations of Gv (i.e., those representations whose associated �-adic

representation of Wv under local Langlands correspondence is trivial when restricting
to Iv).

We have the following theorem that characterizes the set IrrR(Gv) purely by their

representation theoretic structures.
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Theorem 3.1.2. Let Rv be tame. We have one of the following cases.

(r) We say that Rv is (split) regular if

Rv
∼= χ1⊕χ2

is the direct sum of two distinct characters χ1,χ2 of Iv. Each χi (i = 1,2) has

exponent qv −1 and can be factored as Iv −→ κ×
v

χ′
i−→Q

×
� .

In this case, for any irreducible smooth representation π of Gv, we have π ∈
IrrR(Gv) if and only if HomIv

(χv,π)∼=HomKv
(ρv,π) 
= 0, where

χv : Iv −→B(κv)

⎛
⎝a b
0 d

⎞
⎠ �→ι(χ′

1(a)χ
′
2(d))

−−−−−−−−−−−−−−−−→ C×,

and ρv is the induced representation of χv to Kv. Moreover, dimHomIv
(χv,π) = 1

for any π ∈ IrrR(Gv).

(c) We say that Rv is cuspidal (or anisotropic regular), if

Rv
∼= χ1⊕χ2

is the direct sum of two distinct characters of Iv such that χqv
1 = χ2 (necessarily,

we also have χqv
2 = χ1), where χi can be factored as Iv −→ F×

q2v

χ′
i−→Q

×
� .

In this case, for any irreducible smooth representation π of Gv, we have

π ∈ IrrR(Gv) if and only if dimHomKv
(ρv,π) 
= 1, where ρv is the irreducible

representation of Kv inflated from the Deligne-Lusztig induced representation

−ι(R
G(κv)
U(κv)

χ′
1),

with U being any non-split maximal subtorus of G defined over κv so that we have

U(κv) ∼= F×
q2v
. Moreover, for any π ∈ IrrR(Gv), we have dimHomKv

(ρv,π) = 1 and
π is supercuspidal.

(s) We say that Rv is scalar if

Rv
∼= χ⊕2,

where χ is a character of Iv that can be factored as Iv −→ κ×
v

χ′

−→Q
×
� .

In this case, for any irreducible smooth representation π of Gv, we have π ∈
IrrR(Gv) if and only if HomKv

(θv,π) 
= 0, where

θv :Kv
det−−→O×

v −→ κ×
v

ι◦χ′

−−−→ C×.

Moreover, we have dimHomKv
(θv,π) = 1 for any π ∈ IrrR(Gv). And the set

IrrR(Gv) consists of one-dimensional representations η of Gv that extend θv and
those twists by η of irreducible unramified representations of Gv.

(u) We say that Rv is principal quasi-unipotent if

Rv
∼= χ⊗ν
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is a quasi-unipotent with one principal Jordan block: χ is a character of Iv that

can be factored as Iv −→ κ×
v

χ′

−→Q
×
� and ν is a non-trivial unipotent representation

of Iv.

In this case, π ∈ IrrR(Gv) if and only if π = St⊗λ for some character λ of the

form Gv
det−−→ F×

v
λ′
−→ C× so that θv = λ′|O×

v
inflates ι◦χ′. Here, St is the Steinberg

representation of Gv (i.e., the unique irreducible quotient of the parabolic induction

of the trivial representation of Bv).

Proof. The cases (r) and (c) are explained in [38, Theorem 2.4.1, 2.4.4]. The case (s) is
deduced from the unramified case where dimπKv

v =1. In fact, it is enough to tensor Rv by

a rank 1 local system to make it trivial on Iv. Similarly, we can tensor a character to make

the case (u) into the unipotent case, which corresponds to the Steinberg representation

under the Langlands correspondence.

Let π = ⊗′πv be a cuspidal automorphic representation of G(A). We will say that πv

has the correct ramification type (for our counting problem) if πv ∈ IrrR(Gv).

3.2. Automorphic representations

Let Ccusp(G(A)) be the space of cuspidal automorphic forms. Recall that a cuspidal
automorphic form is a complex-valued function ϕ over G(F )\G(A) that generates a finite-

dimensional vector space under G(O)-right translation and ZG(A) translation, such that

the following cuspidality condition is satisfied:∫
N(F )\N(A)

ϕ(nx)dn, ∀x ∈G(A).

Note that the above integration is a finite sum because of G(O)-finiteness. The right
translation by G(A) makes Ccusp(G(A)) into a G(A)-representation. It is known to be

semisimple, and the multiplicity one theorem of Jacquet and Langlands and Piatetski-

Shapiro implies that Ccusp(G(A)) is multiplicity free. Its irreducible summands are called

cuspidal automorphic representations. A cuspidal automorphic representation π can be
decomposed as a restricted tensor product π = ⊗′πv for representations πv of Gv which

are called local components of π.

Let A2(F ) be the set of isomorphic classes of cuspidal automorphic representations
of G(A). We call two cuspidal automorphic representations π1 and π2 are inertially

equivalent π1 ∼ π2 if there are is a character λ : G(A)
deg◦det−−−−−→ Z −→ C× such that

π1
∼= π2⊗λ.

Theorem 3.2.1. The set E2(R)Frob
∗

is in bijection with the subset of A2(F )/ ∼
consisting of inertial equivalent classes of cuspidal automorphic representations π such

that for any character λ :G(A)
deg◦det−−−−−→ Z−→ C×,

π⊗λ∼= π =⇒ λ= 1,

and πv ∈ IrrR(Gv) for all v ∈ S.
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Proof. Applying global Langlands correspondence and the fact that it is compatible with
local Langlands correspondence, this is a corollary of Proposition 3.1.1 and Theorem 3.1.2.

4. Spectral side of the trace formula

We will use equality provided by the noninvariant Arthur-Selberg trace formula (a similar
but slightly different formula is obtained first by Jacquet-Langlands for GL2) established

by Lafforgue [21]. Indeed, the noninvariant Arthur-Selberg trace formula over a function

field is an equality for each e ∈ Z between two distributions on C∞
c (G(A)):

Je
geom(f) = Je

spec(f).

We will construct a function f ∈ C∞
c (G(A)) using Theorem 3.1.2 and do explicit

calculations for J1
spec(f). The result is summarized by Theorem 4.2.2. This theorem says

that it is always a sum of |E2(R)Frob
∗ | and an explicit error term. In a later section, we

will use a geometric method to study Je
geom(f), which induces a relation with the number

of Fq-points of Hitchin moduli spaces.

4.1. Explicit spectral decomposition of J1
spec(f)

Let M be either T or G. Let XM be the group of characters of M(A) to C× that are
trivial on M(A)0. Let XG

M ⊆XM be the subgroup consisting of those characters that are

trivial on ZG(A); that is,

XG
M =Hom(M(A)0\M(A)/ZG(A),C

×).

We have

XG
G = {1,ε},

where ε(x) = (−1)deg(detx) is the sign character of G(A). We identify XG
G with {±1}⊆C×.

We also have an identification

XG
T
∼= C×,

where for any λ ∈ C×, we associate a character

λ

((
a 0

0 b

))
= λdeg(a)−deg(b).

We will use this isomorphism in our calculations. Let ImXG
T be the subgroup of XG

T

consisting of unitary characters. Therefore, it is formed by elements λ ∈ C× of absolute

value 1. We endow a Haar measure on XG
G and ImXG

T so that the total volume is 1.

Following Jacquet-Langlands, we have the spectral decomposition

L2(G(F )\G(A))∼= L2
cusp⊕L2

res⊕L2
cont,
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where L2
cusp⊕L2

res is the largest semisimple subspace, L2
cont is its orthogonal complement,

and L2
cusp is the completion of the space of cuspidal automorphic forms. The residual

spectrum is decomposed as

L2
res

∼=
⊕̂
χ

χ,

where χ are compositions of Hecke characters with the determinant morphism. The sum
here is the Hilbert direct sum. For continuous spectrum L2

cont, we have a decomposition

L2
cont =

⊕̂
ψ

L2
[B,ψ],

where the sum is taken over the set of inertial equivalent classes of pairs (B,ψ) with ψ

being a Hecke character of T (A)∼= (A×)2. The explicit construction of L2
[B,ψ] is given by

the theory of Eisenstein series.

We fix an idèle a ∈ A× of degree 1, viewed as a scalar matrix. Let f ∈ C∞
c (G(A)). It

acts via the regular representation on L2(G(F )\G(A)/aZ), equivalently by convolution

from right by f̆ := (x �→ f(x−1)), which is an integral operator. We denote this action by
the function R(f). Therefore, its trace, if it exists, will be the integration of the kernel

function on the diagonal. However, the trace of f on the whole space L2(G(F )\G(A)/aZ)
does not exist in general. Arthur defines a truncated kernel function so that its integration
on the diagonal will contain the information Tr(f |L2

cusp) and expresses this integration in

two ways: a geometric expansion and a spectral expansion so that we have an identity. The

spectral expansion contains a piece that gives the most interesting part Tr(f |L2
cusp), and

we usually hope to obtain information from the geometric expansion and an understanding

of the error terms in the spectral expansion.

Over a function field, we have a decomposition

G(A) =
∐

G(A)e,

and G(F )\G(A)e has finite volume. The two different ways to express Arthur’s truncated

integral over the diagonal in G(F )\G(A)e×G(F )\G(A)e give an identity

Je
geom(f) = Je

spec(f).

It is slightly simpler to consider an odd integer e or simply that e = 1. The following
result is a special case of the formula obtained by L. Lafforgue.

Let A1 be the set of Hecke characters of F×\A×/aZ. Let

Acont :=A1×A1/S2,

where S2 acts by permutation. An element [(ψ1,ψ2)] ∈ Acont is called regular if ψ1 
= ψ2

and is called non-regular otherwise. Let

Ares
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be the inertial equivalent classes of 1-dimensional representations of G(A) trivial on

aZG(F ). Let

A0

be the set inertial equivalent classes of cuspidal automorphic representations of G(A)
whose central characters are trivial on aZ.
Let AB,ψ be the space of complex valued functions ϕ over G(A) satisfying that for any

k ∈G(O), there is a constant ck ∈ C so that for any n ∈N(A), t ∈ T (A), we have

ϕ(ntk) = ckρB(t)ψ(t),

where ρB(

(
a 0

0 c

)
) = |a|

1
2

|c|
1
2
. Equivalently, it is the space of those ϕ such that for any

x ∈ G(A), n ∈ N(A) and t ∈ T (A), we have ϕ(ntx) = ρB(t)ψ(t)ϕ(x). Let w be the non-
trivial element in the Weyl group of (G,T ) and λ∈XG

T . We have the intertwining operator

AB,ψ −→AB,w(ψ) defined by analytic continuation of the integral below which converges

when |Reλ|>> 0,

(M(w,λ)ϕ)(x) := λ(x)

∫
N(A)

ϕ(w−1nx)λ(w−1nx)dn, (4.1.1)

where we view λ ∈ XG
T as a function over G(A) using Iwasawa decomposition (i.e., if

x= ntk with n ∈N(A), t ∈ T (A) and k ∈ K, we define λ(x) := λ(t)).

Theorem 4.1.1 (Arthur, Lafforgue). The spectral expansion is the identity

J1
spec(f) =

∑
[π]∈A0

Jπ(f)+
∑

[χ]∈Ares

Jχ(f)+
∑

[ψ]∈Acont

Jψ(f),

where each sum is taken over a set of representatives, and the terms are defined as follows.
We denote the three sums by, respectively, J1

cusp(f), J
1
res(f) and J1

cont(f).

For π ∈ A0, if π⊗ ε∼= π, then

Jπ(f) =
1

2
(Tr(R(f)|π)−Tr(R(f)◦ ε|π)),

and if π⊗ ε 
∼= π, then

Jπ(f) = Tr(R(f)|π).

For χ ∈ Ares, we have

Jχ(f) = Tr(R(f)|χ).

For any λ ∈XG
T , let R(f,λ) be the twisted action on AB,ψ:

R(f,λ)ϕ= (R(f)(ϕλ))λ−1,
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where we view λ ∈XG
T as a function over G(A) by Iwasawa decomposition: λ(x) = λ(t) if

x= ntk for n ∈N(A), t ∈ T (A) and k ∈G(O). For ψ ∈ Acont, if ψ is regular, then

Jψ(f) =

∫
ImXG

T

lim
μ−→1

TrAB,ψ

((
− 1

μ−1−μ
M(w,λ)−1 ◦M(w,λ/μ)+

1

μ−1−μ

)
◦R(f,λ)

)
dλ,

and if ψ is not-regular, then

Jψ(f) =
1

2

∫
ImXG

T

lim
μ−→1

TrAB,ψ

((
− 1

μ−1−μ
M(w,λ)−1 ◦M(w,λ/μ)+

1

μ−1−μ

)
◦R(f,λ)

)
dλ

+
1

8

∑
λG∈{±1}

∑
λw∈ImXG

T

λ2
w=λ−1

G

λGTrAB,ψ
(M(w,w−1(λw))◦R(f,λ)). (4.1.2)

Note that if f is supported in G(O), then R(f,λ) =R(f).

Proof. The theorem is established by L. Lafforgue in [21], and we refer the reader to

[37, Th. 5.2.2, Co. 5.2.3]. For the group G=GL2, we can make the result more explicit.
In [37, 5.2.1], we have calculated explicitly the functions 1̂1

G, 1̂
1
B and 1̂1

B
on XG

T , which

appears in the spectral expansion of the trace formula. They are given by the following

formula:

1̂1
G(1) = 1 and 1̂1

G(ε) =−1,

that is,

1̂1
G(λ) = λ, ∀λ ∈XG

G,

and

1̂1
B(λ) =− 1

λ−λ−1
,

1̂1
B
(λ) =− 1

λ−1−λ
.

4.2. Summary of main results of this section

The primary purpose of this section is to construct a specific function f ∈ C∞
c (G(A))

(Proposition 4.2.1), and calculate explicitly the spectral side of the trace formula J1
spec(f)

(Theorem 4.1.1).

Proposition 4.2.1. We use notation of Theorem 3.1.2. For each v ∈ S, we define the

following functions following the ramification type of Rv.

(r) Let v ∈ Sr. The function fv ∈ C∞
c (Gv) is defined by

fv(x) =

{
0, x /∈ Kv;

Tr(ρv(x
−1)), x ∈ Kv,

where x is the image of x in G(κv) under the projection Kv −→G(κv).
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(c) Let v ∈ Sc. The function fv ∈ C∞
c (Gv) is defined by

fv(x) =

{
0, x /∈ Kv;

Tr(ρv(x
−1)), x ∈ Kv.

(s) Let v ∈ Ss. The function fv ∈C∞
c (Gv) is supported in Kv such that for any x ∈Kv,

we have

fv(x) = θv(detx
−1);

(u) Let v ∈ Su. The function fv ∈ C∞
c (Gv) is defined by

fv =

(
1

vol(Iv)
1Iv

(x)−21Kv
(x)

)
θv(detx

−1).

Let

f =⊗fv ∈ C∞
c (G(A)),

where fv is the function defined above if v ∈ S(?) for ? = r,c,s,u and fv = 1Kv
if v /∈ S.

Then for any cuspidal automorphic representation π of G(A), the condition

Tr(f |π) 
= 0

holds if and only if π has correct ramification type. If it is the case, we have

Tr(f |π) = 1.

Proof. Suppose π =⊗′πv is a cuspidal automorphic representation. We have

Tr(f |π) =
∏
v

Tr(fv|πv).

The statement is, therefore, of local nature.

For v /∈ S, the function 1Kv
acts as a projection to Kv-fixed part of πv. It is non-zero

if and only if πv is unramified by definition. If this is the case, πKv
v is a 1-dimensional

vector space, and the trace of 1Kv
is one. For v ∈ Ss, it is similar. In fact, suppose that

πv = π′
v ⊗η with π′

v being unramified. Then

Tr(fv|πv) = Tr(1Kv
|π′

v).

The trace is 1 or 0 depending on whether or not πv has the correct ramification.
For v ∈ Sc and v ∈ Sr, this result has been proved in [38, Theorem 2.4.4].

Finally, we consider the case v ∈ Su. As above, up to a twist, we are reduced to the

case that χ′ is trivial. Note that if

Tr(fv|πv) 
= 0,

then πv contains a non-zero fixed vector under Iv. By a result of Casselman [20, Th.

7.4.4], πv must be an irreducible subrepresentation of a parabolic induction IndGv

Bv
θv for

a character θv of Tv that is trivial on T (Ov). If the representation IndGv

Bv
θv is irreducible,

then it is unramified. Hence, its Iv-fixed subspace has dimension 2. We deduce that

Tr(fv|πv) = 0.
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If IndGv

Bv
θv is not irreducible, then it is of length 2 whose irreducible quotients are a

1-dimensional representation and an unramified twist of the Steinberg representation.

Since π is cuspidal, πv cannot be 1-dimensional; therefore, πv is an unramified twist

of the Steinberg representation whose Iv-fixed subspace is 1-dimensional and Kv-fixed
subspace is 0. This completes the proof.

The following result is deduced from Lemma 4.5.1, Corollary 4.5.3, Proposition 4.6.1

and Proposition 4.7.1. Notations are those of the introduction.

Theorem 4.2.2. For a finite set of places V of F, we define degV :=
∑

v∈V degv = |V |.
Let Su,even be the subset of Su consisting of places v such that degv is even.
The expression J1

spec(f) equals the following numbers depending on the cases:

(1) Sc 
= ∅, and Su,even 
= ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |.

(2) Sc 
= ∅, Su,even = ∅ but Su 
= ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |+(−1)|Su|+1bR(1)2|Su|−2(−1)degScPic(2).

(3) Sc 
= ∅, and Su = ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |+ bR(1)

4
(1− (−1)degSc)Pic(2).

(4) Sc = ∅, Sr 
= ∅, and Su = ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |+ 1

2
cR(1)Pic(1)2(2g−2+degSr).

(5) Scr = Su = ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |+ cR(1)Pic(1)2(g−1)+ cR(1)Pic(1).

(6) Scr = ∅, Su = {v} and 2 | degv. Then J1
spec(f) equals

|E2(R)Frob
∗ |− cR(1)Pic(1)+

degv

2
cR(1)Pic(1)2.

(7) Scr = ∅, Su = {v} and 2 � degv. Then J1
spec(f) equals

|E2(R)Frob
∗ |+ cR(1)

2
Pic(2)−cR(1)Pic(1)+ cR(1)

degv

2
Pic(1)2.

(8) Scr = ∅, |Su|� 2, and Su,even 
= ∅. Then J1
spec(f) equals

|E2(R)Frob
∗ |+ cR(1)(−1)|Su|Pic(1).

(9) Scr = ∅, |Su|� 2, and Su,even = ∅. Then J1
spec(f) equals

|E2(R)Frob
∗ |+ cR(1)(−1)|Su|Pic(1)+ cR(1)(−1)|Su|+12|Su|−2Pic(2).
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(10) Sc = ∅, Sr 
= ∅, Su = {v}, and 2 | degv. We have

J1
spec(f) = |E2(R)Frob

∗ |+ 1

2
cR(1)Pic(1)2degv.

(11) Sc = ∅, Sr 
= ∅, Su = {v}, and 2 � degv. We have

J1
spec(f) = |E2(R)Frob

∗ |+ 1

2
cR(1)Pic(1)2degv+

bR(1)

2
Pic(2).

(12) Sc = ∅, Sr 
= ∅, |Su|� 2, and Su,even 
= ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |.

(13) Sc = ∅, Sr 
= ∅, |Su|� 2, and Su,even = ∅. We have

J1
spec(f) = |E2(R)Frob

∗ |+(−1)|Su|+1bR(1)2|Su|−2Pic(2).

4.3. Counting �-adic local systems in rank 1

We need to discuss the cases in rank 1 first, not only for completeness but also because
these results will be needed when calculating the cases in rank 2. It has been dealt with

in [10, Section 6]; thus, our discussion will be concise.

A difference between a number field and a function field is that the function field F,

and hence all its local fields, is an Fq-algebra. Given a character χv : F
×
v −→Q

×
� , we can

consider its restriction to F×
q . Let χ be an �-adic Hecke character

χ=
∏
v

χv : F
×\A× −→Q

×
� .

It is a character of A× trivial on F×, in particular on F×
q ; therefore, necessarily, we have∏

v

χv|F×
q
= 1. (4.3.1)

Suppose that R1 = (R1,x)x∈S is a family of rank 1�-adic local systems over (X
∗
(x))x∈S

fixed by Frob∗. Suppose that they are tame and εx are eigenvalues of the local monodromy
actions. By similar discussion as in 3.1, but using local class field theory, we obtain for

each v ∈ S a character θv of O×
v trivial on 1+℘v by tameness. The condition∏

x∈S

εx = 1 (4.3.2)

is equivalent to ∏
v

θv|F×
q
= 1. (4.3.3)

Let A1(R1) be the set of inertial equivalent classes of Hecke characters χ of F×\A× such

that χv extends θv. The set A1(R1) is in bijection with E1(R1)
Frob∗

.

Lemma 4.3.1. The condition (4.3.2) is satisfied is and only if A1(R1) is non-empty.
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Proof. By (4.3.1), we have seen that (4.3.2) is a necessary condition for A1(R) to be

non-empty. Conversely, note that F×\A× is an extension of F×\A×/O× ∼= PicX(Fq) by

O×/F×
q ; the condition (4.3.1) ensures that

∏
v θv defines a character of O×/F×

q . Taking
(�-adic) Pontryagin dual, we see immediately that A1(R) is non-empty.

If the condition (4.3.2) is satisfied, then we have

|E1(R)Frob
∗ |= |Pic0(X)(Fq)

∨|= Pic(1), (4.3.4)

otherwise

E1(R)Frob
∗
= ∅.

In fact, as long as E1(R)Frob
∗
is non-empty, it is a principal homogenous space under

E1(∅)Frob
∗
. In this case, it has cardinality Pic(1) = |Pic0(X)(Fq)|.

4.4. Eulerian decomposition and calculations on Whittaker functions

Let f = ⊗fv ∈ C∞
c (G(A)) be the function defined in Proposition 4.2.1. Let π ∼= ⊗′πv be

a cuspidal automorphic representation of G(A).
Suppose that π ∼= π⊗ ε as representations of G(A). We need to consider

Tr(ε◦R(f)|π).

Note that this trace is not well-defined from a pure representation theoretical point of

view because the action of ε on π relies on the isomorphism π ∼= π⊗ ε. For G = GL2, a

canonical isomorphism is furnished by the multiplicity one theorem, which says that π

and π⊗ ε have the same underlying space of cusp forms.
A similar problem arises if we want to get a Eulerian decomposition of the trace Tr(ε◦

R(f)|π). We need to choose isomorphisms πv
∼= πv ⊗ ε so that their tensor product is

compatible with the global isomorphism (we also need to assume that the isomorphisms
can be glued together to a restricted tensor product isomorphism; that is, they fix the

implicit chosen Kv-invariant vector for almost all places v). A natural way to do so is by

using Whittaker models.
Let ψ =⊗ψv : A−→ C× be an additive character of A, viewed as a character of N(A),

where ψv are additive characters of Fv. Suppose that ψv has conductor ℘−nv
v (i.e., is

trivial on ℘−nv
v but not on ℘−nv−1

v ). We have∑
v

nv degv = 2g−2.

Recall that g is the genus of the curve X. Let W(π) be the global Whittaker model of π
with respect to ψ, that is, the space of smooth functions ϕ over G(A) such that

ϕ(ux) = ψ(u)ϕ(x), ∀u ∈N(A),∀x ∈G(A),

and W(πv) the local Whittaker model of πv with respect to ψv (space of functions over

Gv similarly defined). Then we have a natural decomposition W(π) = ⊗′
vW(πv) and

https://doi.org/10.1017/S1474748024000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000562


914 H. Yu

W(πv) =W(πv ⊗ ε). Therefore, we have

Tr(ε◦R(f)|π) =
∏

v∈|X|
Tr(εv ◦R(fv)|W(πv)), (4.4.1)

where εv(xv) = (−1)degvdeg(det(xv)) for v ∈Gv.

Theorem 4.4.1 (Paskunas-Stevens). Let ρ be a representation of Kv that inflates an

(irreducible) cuspidal representation of G(κv). Let πv be an irreducible representation
of Gv that contains ρ (i.e., HomKv

(ρ,π) 
= 0). Let ψ′
v be an additive character of Fv of

conductor ℘v (i.e., is trivial on ℘v and is non-trivial on Ov). It defines a character of

Nv by

(
1 x

0 1

)
�→ ψ′

v(x). Let W be the space of Whittaker functions of πv with respect to

ψ′
v. Let Wρ be the ρ isotypic subspace of W. Then every function in Wρ is supported in

N(Fv)ZvKv.

Proof. This is a corollary of Paskunas and Stevens’ result [26, Theorem 5.8]. Let us

explain their notation (see p. 1233 of op. cit.) from type theory that we need to apply

to our specific case. The group J is Kv, the group J is ZvKv, the group U is Nv, the
representation Λ of J is one that extends ρ, and the character Ψα is obtained by restriction

of ψ′
v to N(Ov), then extends to N(Ov)(1+℘vM2(Ov)).

Let X ∈ πv and Y ∈ π∨
v , where π∨

v is the contragredient representation of πv. Let ΦX,Y

be the matrix coefficient of πv defined by ΦX,Y (x) = 〈πv(x)X,Y 〉, for any x∈Gv. If there

are X,Y such that ΦX,Y 
= 0, then the map X �→ ΦX,Y embeds πv into W ⊆ C∞
c (Gv).

The result [26, Th. 5.8] shows that π∨
v contains a special vector Y ∨

α so that the linear

map from πv to the space of Whittaker functions

X �→
(
x �→
∫
Nv

ψ′
v(u)ΦX,Y ∨

α
(u−1x)du

)
is non-zero. Moreover, Paskunas and Stevens show that πv contains a vector Yα contained

in ρ-isotypic part (πv)ρ of πv, so that ΦYα,Y ∨
α

has support in ZvKv ([26, Prop. 5.7]) and
its associated Whittaker function

x �→
∫
Nv

ψ′
v(u)ΦYα,Y ∨

α
(u−1x)du

is supported in ZvNvKv and extends the function ΦYα,Y ∨
α

supported on ZvKv. Note

that since the irreducible representation ρ is contained with multiplicity one in πv ([38,
Theorem 2.4.4]), every X ∈ (πv)ρ is generated by 〈πv(k)Yα : k ∈ Kv〉. Therefore, every
Whittaker function associated to ΦX,Y ∨

α
for X ∈ (πv)ρ has support in ZvNvKv.

Corollary 4.4.2. Suppose we are in the situation of Theorem 4.4.1. Let W(πv) be the

Whittaker model for the character ψv of conductor ℘−nv
v . Then every function in W(πv)ρ

is supported in

{x ∈Gv|v(det(x)) ∈ −nv −1+2Z},

where v is the valuation of Fv normalized to be surjective to Z.
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Proof. Let tv be a uniformizer of ℘v. Let ψ
′
v := (y �→ψv(t

−nv−1
v y)). Then ψ′

v has conductor

℘v. Let b=

(
t−nv−1
v 0

0 1

)
. We have an Gv-equivariant isomorphism:

W(πv,ψv)−→W(πv,ψ
′
v),

ϕ �→ (x �→ ϕ(bx)).

By Theorem 4.4.1, we deduce that functions in W(πv,ψv)ρ are supported in bZvNvKv.
This implies the desired result.

4.5. Cuspidal terms

We apply the previous preparation works to compute the cuspidal terms Jπ(f) in the

spectral expansion. In fact, it is the case that π⊗ ε∼= π that is non-trivial.

Recall that we have defined in the Introduction two commutative actions σ and Frob∗

on PR (see (1.1.2)) so that bR(k) is the cardinality of the set of fixed points of σ ◦Frob∗k
and cR(k) is that of Frob∗k.

Lemma 4.5.1. If Scr = ∅, then bR(k) = cR(k) = cR(1) is either 0 or 1 for all k � 1.
If either Sc contains a point of even degree or Sr contains a point of odd degree, we

have bR(1) = 0.

If Sc 
= ∅, we have cR(1) = 0.

Proof. The first statement is trivial because, in this case, PR is at most a singleton.

Suppose that Sr contains a point of odd degree, meaning that Frob∗ has an orbit of

odd length on Scr. Suppose that a∈ 2Z+1 is the length of such an orbit and x0 ∈ Sr⊗Fq

is a point in it. We have εx0
(1) 
= εx0

(2). Suppose that Frob∗a((εx(ix))x) = (ε′x)x. Here,
ix ∈ {1,2} for each x ∈ S. By the choice of x0 and a, we have ε′x0

= εx0
(ix0

). In particular,

Frob∗a((εx(ix))x) 
= σ((εx(ix))x),

for any (ix)x ∈ {1,2}S . This implies that bR(a) = 0. Since a is odd, σ = σa, we have

bR(1) = 0.
Similarly, if Sc contains a point of degree a, we have cR(a) = 0. It implies that cR(1) = 0.

If a is even, then σa = Id. Hence, bR(1) = 0.

Theorem 4.5.2. Let π be a cuspidal automorphic representation of G(A). Recall that ε
is the sign character of G(A) that factors through deg◦det. Suppose that π⊗ ε∼= π. Let f

be the function introduced in Proposition 4.2.1. Then

Tr(ε◦R(f)|π) = 0,

unless all the following conditions are met: 1. bR(1) 
= 0; 2. every place in Su has odd

degree; 3. πv ∈ IrrR(Gv) for v ∈ |X| −Su and πv has scalar ramification determined by

semisimplification of Rv for v ∈ Su. If this is the case, we have

Tr(ε◦R(f)|π) = (−1)|Su|2|Su|(−1)degSc .
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Proof. By Langlands correspondence, if π ∼= π⊗ ε, no local component of π can be a
twisted Steinberg representation. In fact, since a Hecke character of F×\A× is of finite

order if and only if it sends an element of degree 1 to a root of unity, if necessary, by

replacing π by an inertially equivalent, we may assume that the central character of π is
of finite order. Suppose that L is the �-adic local system over X−S that corresponds to

π. If π⊗ ε∼= π, then

L|X−S
∼= L1⊕L2,

and Frob∗ permutes L1 and L2 ([37, Prop. 2.1.3]). In particular, the ramification of L at
every x ∈ S is semisimple. Therefore, π does not have a twisted Steinberg component by

Theorem 3.1.2.

It is clear that if

Tr(ε◦R(f)|π) 
= 0,

then πv has the desired ramification type for v ∈ |X| −Su, and the (Iv,ι ◦χ)-isotypic
subspace (πv)(Iv,ι◦χ) is non-trivial (notation as in Theorem 3.1.2) for v ∈Su. In particular,

for v ∈ Su, πv is either a twisted Steinberg representation in IrrR(Gv) or a twisted

unramified principal series in IrrR
ss

(Gv), where Rss is the semisimplification of R. We
have seen that πv cannot be a twisted Steinberg representation. Moreover, the product

of all eigenvalues of ramifications of L1 and L2 at all points x ∈ S should be 1, and they

are permuted by Frobenius action. This implies that bR(1) 
= 0.
Next, we need to calculate

Tr(ε◦R(f)|π)

when π ∼= π⊗ ε and πv has the above described property. The equation (4.4.1) allows us

to calculate it locally.
We note that Theorem 3.1.2 says if

Tr(R(fv)|πv) 
= 0,

then πv ∈ IrrR(Gv). Let v ∈ Su. If deg(v) is even, then εv equals the trivial character of
Gv, and we have

Tr(εv ◦R(fv)|W(πv)) = Tr(R(fv)|πv).

It must be zero as πv is not a twisted Steinberg representation.
Suppose now that v ∈ Su and deg(v) is odd. Up to a twist by a character, we may

assume that πv is unramified. We take a Whittaker function ϕv ∈ W(πv)
Kv . Note that

since both εvϕv and ϕv are contained in W(πv)
Kv =W(πv ⊗ εv)

Kv , they are differed by

a scalar:

εvϕv = cϕv.

Let xv be any element in the support of ϕv. We deduce that c= εv(xv). Let ℘
c(ψv)
v be the

conductor of ψv. We have shown in [37, Lemme 5.5.3] that the support of ϕv contains an
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element of valuation c(ψv). Therefore, c= (−1)deg(v)c(ψv). Let ϕ′
v ∈W(πv) be the function

defined by

x �→ ϕv

(
x

(
�v 0
0 1

))
.

Then {ϕv,ϕ
′
v} is a basis of W(πv)

Iv . In fact, by Bruhat-Iwahori decomposition, we

know that dimCW(πv)
Iv � 2 and it is clear that ϕv,ϕ

′
v are linearly independent. The

endomorphisms on W(πv)

εv ◦R
(

1

vol(Iv)
1Iv

)
and εv ◦R(1Kv

)

are composition of a projection onto πIv
v together with a linear map represented

respectively by the matrix(
(−1)deg(v)c(ψv) 0

0 (−1)deg(v)(c(ψv)+1)

)
,

(
(−1)deg(v)c(ψv) 0

0 0

)
.

We deduce that

Tr(εv ◦R(fv)|W(πv)) = (−1)deg(v)(c(ψv)+1)− (−1)deg(v)c(ψv).

Since deg(v) is odd, it equals

Tr(εv ◦R(fv)|W(πv)) =−2(−1)c(ψv).

Similarly, for v ∈ |X|−Scr−Su, we have

Tr(εv ◦R(fv)|W(πv)) = (−1)c(ψv)deg(v).

For v ∈ Sc, we deduce from Corollary 4.4.2 that

Tr(εv ◦R(fv)|W(πv)) = (−1)deg(v)(c(ψv)+1)Tr(R(fv)|W(πv)) = (−1)deg(v)(c(ψv)+1).

For v ∈ Sr, as we have seen in Lemma 4.5.1 that v must have even degree, otherwise
bR(1) = 0. We have

Tr(εv ◦R(fv)|W(πv)) = Tr(R(fv)|W(πv)) = 1.

In conclusion, by (4.4.1) we have

Tr(ε◦R(f)|π) = (−1)|Su|2|Su|(−1)
∑

v∈|X|−Sc
deg(v)c(ψv)+

∑
v∈Sc

deg(v)(c(ψv)+1).

We have ∑
v

c(ψv)deg(v) =−(2g−2).

Therefore,

Tr(ε◦R(f)|π) = (−1)|Su|2|Su|(−1)degSc .

https://doi.org/10.1017/S1474748024000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000562


918 H. Yu

Corollary 4.5.3. If Su 
= ∅ and at least one place in it is of even degree, then

J1
cusp(f) = |E2(R)Frob

∗ |.

If Su 
= ∅ and every place in it has an odd degree, then

J1
cusp(f) = |E2(R)Frob

∗ |+
{
(−1)|Su|+1bR(1)2|Su|−2(Pic(2)−Pic(1)), Scr = ∅;
(−1)|Su|+1bR(1)2|Su|−2(−1)degScPic(2), Scr 
= ∅.

If Su = ∅, then

J1
cusp(f) = |E2(R)Frob

∗ |+
{
0, Scr = ∅;
bR(1)

4 (1− (−1)degSc)Pic(2), Scr 
= ∅.

Proof. In fact, the sum of Jπ(f) over inertial equivalent classes of cuspidal automorphic

representations π such that π⊗ ε 
∼= π gives |E2(R)Frob
∗ | after Theorem 3.2.1.

We need to consider the sum

1

2

∑
π

Tr(R(f)|π)− 1

2

∑
π

Tr(ε◦R(f)|π),

where the sums over π are taken over inertial equivalent classes of cuspidal automorphic

representations π such that π⊗ ε ∼= π. The Langlands correspondence (see the proof of
Theorem 4.5.2) shows that no such cuspidal automorphic representation π can have a

twisted Steinberg component. Therefore, if Su 
= ∅, by Proposition 4.2.1,

1

2

∑
π

Tr(R(f)|π) = 0.

If Su = ∅, we need to know the number of equivalence classes of such π. By [37, 2.1.3]

and the first paragraph of the proof of Theorem 4.5.2, the set of such π is in bijection

with the set of non-ordered pairs (L1,L2) of rank 1�-adic systems over X−S such that
Frob∗Li

∼= L3−i, L1 
∼= L2, and that the local monodromies of the direct sum L1⊕L2 are

given by R. If Scr = ∅, then bR(1) equals 0 or 1 and there are bR(1)
Pic(2)−Pic(1)

2 such pairs.

If Scr 
= ∅, then there are
bR(1)

2 Pic(2) such pairs. We have

1

2

∑
π

Tr(R(f)|π) =
{

bR(1)
4 (Pic(2)−Pic(1)), Scr = ∅;

bR(1)
4 Pic(2), Scr 
= ∅.

By Theorem 4.5.2, if bR(1) = 0 or if Su 
= ∅ and contains a place of even degree, then

the sum

1

2

∑
π

Tr(ε◦R(f)|π)
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is 0. Otherwise if Su 
= ∅ and does not contain any place of even degree or Su = ∅, then
by Theorem 4.5.2, we have

1

2

∑
π

Tr(ε◦R(f)|π) = (−1)|Su|

{
bR(1)2|Su|−2(Pic(2)−Pic(1)), Scr = ∅;
bR(1)2|Su|−2(−1)degScPic(2), Scr 
= ∅.

4.6. Residual terms

The proposition below describes the contributions to the trace formula from the residual

spectrum.

Proposition 4.6.1. If Scr is non-empty, then

J1
res(f) = 0.

If Scr = ∅, then

J1
res(f) = cR(1)(−1)|Su|Pic(1).

Proof. For any v ∈ Scr and any character μv of Gv, we have

Tr(R(fv)|μv) = 0.

Therefore, the first statement holds, and it suffices to consider the case that Scr = ∅.
It is clear that if v /∈ S, then for a character μv of Gv, we have

Tr(R(1Kv
)|μv) =

{
1, μv|Kv

= 1;

0, μv|Kv

= 1.

Let v ∈ Ss. We have

Tr(R(fv)|μv) =

{
1, μv|Kv

= θv;

0, μv|Kv

= θv;

where θv is the character defined in Theorem 3.1.2. Similarly, let v ∈ Su. We have

Tr(R(fv)|μv) =

{
−1, μv|Kv

= θv;

0, μv|Kv

= θv.

Following our discussions in rank 1 in 4.3, we deduce that if∏
v

θv|F×
q

= 1, (4.6.1)

then

J1
res(f) = 0.

Otherwise, there are Pic(1) such equivalent classes of μ. Therefore, we have

J1
res(f) = (−1)|Su|Pic(1).
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The result is thus proved since (4.6.1) is equivalent to cR(1) 
= 0 (cf. [10, 3.2] or [38,

Proposition 2.4.2]).

4.7. Continuous terms

The proposition below describes the contributions to the trace formula from the

continuous spectrum.

Proposition 4.7.1. If Sc 
= ∅, then

J1
cont(f) = 0.

If Sc = ∅, then we have the following results.

(1) Sr 
= ∅.

J1
cont(f) =

⎧⎪⎨⎪⎩
1
2cR(1)Pic(1)2(2g−2+degSr), Su = ∅;
1
2cR(1)Pic(1)2degv, Su = {v};
0, |Su|� 2.

(2) Sr = ∅.

J1
cont(f) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cR(1)Pic(1)2(g−1), Su = ∅;
cR(1)Pic(1)2 degv

2 + 1
2cR(1)Pic(1), Su = {v} and 2 � degv;

cR(1)Pic(1)2 degv
2 , Su = {v} and 2 | degv;

cR(1)Pic(1)(−1)|Su|+12|Su|−2, |Su|� 2, and Su,even = ∅;
0, |Su|� 2, and Su,even 
= ∅.

The proof is given in 4.7.6. We need first to do some calculations about L-functions

and intertwining operators.

The first thing to remark is that if Sc 
= ∅, then for any ψ ∈ Acont, the action of R(f)

on AB,ψ must be the 0 map. In fact, at a place v ∈ Sc, we have AB,ψ
∼= IB(ψv), the

induced representation of ψv. By Theorem 3.1.2, it does not contain ρv, as ρv is cuspidal.

Therefore, we assume that Sc = ∅ in the following.

4.7.1. L-functions of Hecke characters. We will need information on L-functions
of Hecke characters when dealing with the continuous part of the trace formula. Over a

function field, we have a complete understanding of them.

Let χ : A×/F× −→ C× be a Hecke character of finite order. Let χ = ⊗v∈|F |χv be its
factorisation. Recall that the L-function L(χ,z) can be defined by the formal power series

L(χ,z) :=
∏

v∈|X|
Lv(χ,z),

where

Lv(χ,z) =

{
1

1−χv(
v)zdegv , if χv is unramified;

1 otherwise.
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The infinite product is absolutely convergent and is holomorphic if |z|< q−1. It admits a

meromorphic continuation to the whole C. Moreover, it is a rational function in z. Let R
be the set of places of ramifications of χ, identified with a subset of closed points of X.

We have fixed an isomorphism ι :Q�
∼−→ C. Let Lχ be an �-adic local system over X−R

corresponding to χ obtained by the global class field theory. The L-function of Lχ equals

that of χ:

ι(L(Lχ,z)) = L(χ,z).

Moreover, we know from Grothendieck’s cohomological interpretation (cf., for example,

[22, Théorème VI.1]) that

L(Lχ,z) =
det(1− zFq|H1

c (X−R,Lχ))

det(1− zFq|H2
c (X−R,Lχ))det(1− zFq|H1

c (X−R,Lχ))
,

where Fq is a geometric Frobenius element acting on cohomologies with compact support.

Proposition 4.7.2. (Riemann hypothesis) Let χ be a Hecke character on F×\A× of
finite order so that the set of ramified places is R. If χ is inertially equivalent to the

trivial character (in particular R= ∅), then

L(χ,z) =
P (z)

(1− z)(1− qz)
,

where P (z) is a polynomial of 2g.

If χ is not inertially equivalent to the trivial character, then its L-function L(χ,z) is a
polynomial in z of degree 2g−2+degR.

In any case, all of the zeros of L(χ,z) satisfy |z|= q−
1
2 .

Proof. If R is empty, then there are two cases. If Lχ|X is trivial, up to a twist of a rank

1 sheaf over Spec(Fq), we may assume that Lχ
∼=Q� is the constant sheaf. We have

L(Lχ,z) = ζX(z) =
P (z)

(1− z)(1− qz)
,

degP (z) = 2g and all of the zeros of P (z) satisfy |z| = q−
1
2 . If Lχ|X is non-trivial, then

L(Lχ,z) is a polynomial of degree 2g−2. For reference, see [37, Prop. 6.1.1].

We consider the case that R is non-empty. We know that

H0
c (X−R,Lχ) = 0 (4.7.1)

as Lχ is non-trivial. By Poincaré duality,

H2
c (X−R,Lχ)

∨ ∼=H0(X−R,L∨
χ)(1)

∼=HomX−R(L
∨
χ,Q�)(1). (4.7.2)

Therefore, we deduce that H2
c (X−R,Lχ) is 0 as well. The dimension of H1

c (X−R,Lχ)
can then be derived from the Euler-Poincaré characteristic:

dimH1
c (X−R,Lχ) =−χc(X−R,Lχ),

which can be calculated by the Grothendieck-Ogg-Shafarevich formula; see [27, Théorème

1, p.133]. In fact, since every local monodromy of Lχ is tamely ramified, the Swan
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conductor is zero. We deduce from loc. cit. that χc(X −R,Lχ) = χc(X −R) = 2− 2g−
degR.

The assertion about the positions of zeros is the Riemann hypothesis for rank 1 local

systems (see [22, Théorème VI.10] for a general statement).

4.7.2. Eulerian expansions of intertwining operators. Let ψ ∈ Acont. Let

M(w,λ) :AB,ψ −→AB,w(ψ)

be an intertwining operator. It is a G(A)-morphism.

Let IB(ψv) be the space of functions ϕ over Gv satisfying ϕ(ntx) = ρB(t)ψv(t)ϕ(x)
for any n ∈ Nv, t ∈ Tv and x ∈ Gv. By definition of intertwining operator, we have an

Eulerian expansion. Indeed, let Mv(w,λ) : IB(ψv)−→ IB(w(ψv)) be an operator defined

by analytic continuation of the integral which converges when |Reλ|>> 0,

(Mv(w,λ)ϕ)(x) = λ(x)

∫
Nv

ϕ(w−1nx)λ(w−1nx)dn. (4.7.3)

Choosing isomorphisms cψ : AB,ψ −→ ⊗vIB(ψv) and cw(ψ) : AB,w(ψ) −→ ⊗vIB(w(ψv)),

there is a constant c depending only on these isomorphisms such that the following
diagram is commutative:

AB,ψ
M(w,λ)−−−−−→ AB,w(ψ)

cψ

⏐⏐� cw(ψ)

⏐⏐�
⊗vIB(ψv)

c⊗vMv(w,λ)−−−−−−−−→ ⊗vIB(w(ψv))

.

In the special case that ψ is non-regular (i.e., w(ψ) = ψ), we have

c= q1−g.

This number is derived from the difference in the normalizations of the Haar measures
on Nv and N(A).

4.7.3. Intertwining operator on (Kv,θv)-isotypical subspace. In this part, we

treat the local intertwining operator when v ∈ Ss or v /∈ S.

Let θv be a character

θv :Kv
det−−→O×

v −→ κ×
v −→ C×.

We have

dimIB(ψv)(Kv,θv) � 1.

The space IB(ψv)(Kv,θv) is non-zero if and only if ψv = (ψv,1,ψv,2) with ψv,1|O×
v
=

ψv,2|O×
v

= θv. In this case, there is a μ ∈ C× such that for any y ∈ F×
v , we have

ψv1(y)/ψv2(y) = μdegy. Moreover, IB(ψv)(Kv,θv) is generated by the function ϕψv
defined

so that for any b ∈Bv and k ∈ Kv,

ϕψv
(bk) = ρB(b)ψv(b)θv(detk).
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For x ∈Gv and λ ∈XG
T
∼= C× (see Section 4.1 for the definition of XG

T ), let

ϕψv,λ(x) := ϕψv
(x)λ(x).

By dimension 1, we have

Mv(w,λ)ϕψv
= cλϕw(ψv)

for some constant cλ ∈C×. It suffices to evaluate the above equation at x= 1 to find the

value cλ:

cλ =

∫
Nv

ϕψv,λ(w
−1n)dn.

The integral can be decomposed:∫
N(Ov)

ϕψv,λ(w
−1n)dn+

∫
Fv−Ov

ϕψv,λ

((
1 y−1

0 1

)(
y−1 0

0 y

)(
−1 0

y−1 −1

))
dy.

Note that ∫
N(Ov)

ϕψv,λ(w
−1n)dn= vol(N(Ov)) = 1.

Besides, for y ∈ Fv −Ov, we have

ϕψv,λ

((
1 y−1

0 1

)(
y−1 0

0 y

)(
−1 0

y−1 −1

))
= μ−degyλ−2degvdegy.

Under our additive Haar measure on Ov, we know that vol(�n
vO×

v ) = q−n
v (1− q−1

v ). We

deduce that

cλ =

∫
N(Fv)

ϕψv,λ(w
−1n)dn=

1− q−1
v μλ2degv

1−μλ2degv
=

Lv(ψ1ψ
−1
2 ,λ2)

Lv(ψ1ψ
−1
2 ,q−1λ2)

.

4.7.4. Intertwining operator on (Iv,χv)-typical subspace: regular cases. In

this part, we treat the case that v ∈ Sr.
If χv is regular, then we have

dimIB(ψv)(Iv,χv) � 1.

In fact, we have Gv = BvIv
∐

BvwIv. Any function ϕ ∈ IB(ψv)(Iv,χv) is entirely
determined by ϕ(1) and ϕ(w). Moreover, for such a ϕ, using the definition of IB(ψv)

and (Iv,χv)-typical condition, we have

ϕ(tw) = ψv(t)ϕ(w) = ϕ(w)χv(w
−1tw)

and

ϕ(t) = χv(t)ϕ(1) = ϕ(1)ψv(t).

Therefore if ψv|T (Ov) 
= χv and ψv|T (Ov) 
= w(ψv), then ϕ must be zero. If ψ|T (Ov) = χv,

then ϕ is supported in BvIv, and if ψv|T (Ov) = w(χv), then ϕ is supported in BvwIv.
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Suppose that we have ψv|T (Ov) = χv. The space IB(ψv)(Iv,χv) is generated by the

function ϕψv
defined in such a way that for any n ∈Nv, t ∈ Tv and k ∈ Kv,

ϕψv
(ntk) =

{
ρB(t)ψv(t)ψv(k), if k ∈ Iv;
0, if k ∈ IvwIv.

The space IB(w(ψv))(Iv,χv) is generated by ϕw(ψv) defined in such a way that for any

n ∈Nv, t ∈ Tv and k ∈ Kv,

ϕw(ψv)(ntk) =

{
ρB(t)ψv(t)ψ(b), if k = nwb ∈ Iv+wIv;
0, if k ∈ Iv.

The local intertwining operator Mv(w,λ) is a linear map from IB(ψv)(Iv,χv) to

IB(w(ψv))(Iv,χv). By dimension 1, there is a constant cλ ∈ C such that

Mv(w,λ)ϕψv
= cλϕw(ψv).

Evaluating at the point x= w, we see that

cλ =

∫
Nv

ϕψv
(w−1nw)λ(w−1nw)dn.

We break the integral into two parts following the union:

w−1Nvw =

(
1 0
℘v 1

)
∪
(

1 0
Fv −℘v 1

)
.

The first part is included in Iv. For the second part, we need(
1 0
x 1

)
=

(
x−1 0
0 x

)(
1 x
0 1

)(
0 −1
1 x−1

)
.

Since

(
0 −1

1 x−1

)
∈ IvwIv, the integral over

(
1 0

Fv −℘v 1

)
vanishes and cλ = vol(℘v) =

q−1
v . As the local L-factor Lv(ψ1ψ

−1
2 ,λ2) is trivial, we can present the result as

cλ = q−1
v

Lv(ψ1ψ
−1
2 ,λ2)

Lv(ψ1ψ
−1
2 ,q−1λ2)

.

4.7.5. Intertwining operator on (Iv,χv)-typical subspace: non-regular cases.
In this subsection, we calculate intertwining operator on (Iv,χv)-typical subspace of

IB(ψv) when ψv = (ψv1,ψv2) is non-regular. That is, ψv1 and ψv2 differ by an unramified
character. Such calculations have already been done in [13, Lemma 4.7]. In fact, the

calculations are similar to the cases we have already treated. Therefore, we will briefly

recall the results.
If χv is a character of Iv that factors through determinant, we have

dimIB(ψv)(Iv,χv) = 2 or 0.
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The dimension is non-zero if and only if ψ|T (Ov) lifts χv. In fact, the double quotient

Bv\Gv/Iv ∼= Iv\Kv/Iv has cardinality 2. We know that

dimIB(ψv)(Iv,χv) � 2.

If ψv|T (Ov) lifts χv, the space IB(ψv)(Iv,χv) is generated by the basis (ϕψv,1,ϕψv,w), where
for any n ∈Nv, t ∈ Tv and k ∈ Kv, we have

ϕψ,1(ntk) =

{
ρB(t)ϕ(t)ψv(det(k)), if k ∈ Iv;
0, if k ∈ IvwIv.

ϕψ,w(ntk) =

{
ρB(t)ψ(t)ψv(det(k)), if k ∈ IvwIv;
0, if k ∈ Iv.

If ψv|T (Ov) does not extend χv, then IB(ψv)(Iv,χv) is zero since for any ϕ∈ IB(ψv)(Iv,χv),

we have

ϕ(t) = ψv(t)ϕ(1) = ϕ(1.t) = χv(t)

for any t ∈ T (Ov).
The local intertwining operator Mv(w,λ) is a linear map from IB(ψv)(Iv,χv) to

IB(w(ψv))(Iv,χv). In the basis (ϕψv,1,ϕψv,w) and (ϕw(ψv),1,ϕw(ψv),w), we have (see [13,

Lemma 4.7])

Mv(w,λ)(ϕψv,1,ϕψv,w) = (ϕw(ψv),1,ϕw(ψv),w)

(
(1− q−1

v ) μλ2

1−μλ2 1

q−1
v (1− q−1

v ) 1
1−μλ2

)
.

Here, μ ∈ C× is the element such that for any y ∈ F×
v , we have ψv1(y)/ψv2(y) = μdegy.

We need to present the result in the form

Mv(w,λ)(ϕψv,1,ϕψv,w)

= (ϕw(ψv),1,ϕw(ψv),w)
Lv(ψ1ψ

−1
2 ,λ2)

Lv(ψ1ψ
−1
2 ,q−1λ2)

⎛⎝ (1−q−1
v )μλ2degv

1−q−1
v μλ2degv

1−μλ2degv

1−q−1
v μλ2degv

q−1
v (1−μλ2degv)

1−q−1
v μλ2degv

1−q−1
v

1−q−1
v μλ2degv

⎞⎠.
In particular,

det(Mv(w,λ)) =−q−1
v

1− qvμλ
2degv

1− q−1
v μλ2degv

(
Lv(ψ1ψ

−1
2 ,λ2)

Lv(ψ1ψ
−1
2 ,q−1λ2)

)2

and

Tr(Mv(w,λ)) =
Lv(ψ1ψ

−1
2 ,λ2)

Lv(ψ1ψ
−1
2 ,q−1λ2)

(1− q−1
v )(1+μλ2degv)

1− q−1
v μλ2degv

.

4.7.6. Continuous terms. Now we come to the calculations of contributions from
continuous spectrum using the previous preparations.

We are going to consider J1
ψ(f) for ψ ∈ Acont. We first we observe that if ψ = (ψ1,ψ2),

then by definition, ψ1 and ψ2 are unitary. The same applies to their local components.
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Recall that for each place v ∈ Su, we have set in Proposition 4.2.1 that

fv =

(
1

vol(Iv)
1Iv

(x)−21Kv
(x)

)
θv(detx

−1).

We have

J1
ψ(f) =

∑
S0⊆Su

(−1)|S0|2|S0|J1
ψ(fS0

),

where

fS0
=⊗vfS0,v ∈ C∞

c (G(A))

is the function that fS0,v = fv for all places v outside Su and is equal to x �→
1Kv

(x)θv(detx
−1) if v ∈ S0 and is equal to 1

vol(Iv)
1Iv

(x)θv(detx
−1) for v ∈ S1 = Su−S0.

We need a lemma for our calculations.

Lemma 4.7.3. Let V be a finite-dimensional C-linear space. Let m be a meromorphic

function over C with values in GL(V ). Suppose that m is holomorphic at any point in

the unit circle. We use Z|λ|<1(h) for the integer defined to be the number of zeros (with
multiplicity) minus the number of poles (with multiplicity) in the region |λ| < 1 of a

meromorphic function h over C. Then∫
ImXG

T

lim
μ→1

TrV

(
1

μ−1−μ
m(λ)

−1 ◦m(λ/μ)− 1

μ−1−μ
Id

)
dλ=

1

2
Z|λ|<1(det(m(λ))).

Proof. We have

lim
μ→1

TrV

(
1

μ−1−μ
m(λ)

−1 ◦m(λ/μ)− 1

μ−1−μ
Id

)
=

λ

2
TrV (m(λ)−1 ◦m′(λ)),

where m(λ) is the C-linear endomorphism V defined to be the derivative of m(λ). We

use Jacobi’s formula:

TrV (m(λ)−1 ◦m′(λ)) =
d
dλ det(m(λ))

det(m(λ))
.

Finally since the volume of ImXG
T is normalized to be 1, by definition of contour

integration and argument principle, the integral∫
ImXG

T

d
dλ det(m(λ))

det(m(λ))
λdλ

equals Z|λ|<1(det(m(λ))).

We are going to apply this result to intertwining operators. Although, the operator

M(w,λ) is a morphism from AB,ψ to AB,w(ψ), the representation structures of AB,ψ and
AB,w(ψ) are the same. Let V be the parabolic induction of ψ from B(A) to G(A). We fix

a G(A)-equivariant isomorphism: ι1 :AB,ψ −→ V and ι2 :AB,w(ψ) −→ V . Then

TrAB,ψ

((
− 1

μ−1−μ
M(w,λ)−1 ◦M(w,λ/μ)+

1

μ−1−μ

)
◦R(fS0

)

)
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equals

TrV

((
− 1

μ−1−μ
(ι2M(w,λ)ι−1

1 )−1 ◦ ι2M(w,λ/μ)ι−1
1 +

1

μ−1−μ

)
◦ ι1R(fS0

)ι−1
1

)
.

We apply Lemma 4.7.3. Note that given a finite family of complex vector spaces Vi of

dimension ni and endomorphisms φi ∈ End(Vi), we have

det(⊗iφi) =
∏
i

det(φi)
∏

j �=ini .

By Eulerian expansion in 4.7.2, and local calculations in 4.7.3, 4.7.4, 4.7.5, we deduce
that the integral∫

ImXG
T

lim
μ−→1

TrAB,ψ

((
− 1

μ−1−μ
M(w,λ)−1 ◦M(w,λ/μ)+

1

μ−1−μ

)
◦R(fS0

)

)
dλ

equals

2|S1|

2
Z|λ|<1

(
L(ψ1ψ

−1
2 ,λ2)

L(ψ1ψ
−1
2 ,q−1λ2)

)
+

2|S1|−1

2
(2
∑
v∈S1

degv). (4.7.4)

Let ψ ∈ Acont be regular with the correct ramification. By Proposition 4.7.2, (4.7.4)

equals

2|S1|(2g−2+degSr)+(2|S1|−1)degS1.

We have

J1
ψ(f) =

∑
S0⊆Su

(−1)|S0|2|S0|
(
2|S1|(2g−2+degSr)+(2|S1|−1)degS1

)
. (4.7.5)

If ψ ∈Acont is non-regular, then ψ cannot have correct ramification if Sr is non-empty.
Suppose that Sr = ∅ and ψ has correct ramification. Then by Proposition 4.7.2, J1

ψ(f) is

the sum of

1

2

∑
S0⊆Su

(−1)|S0|2|S0|
(
2|S1|(2g−1)+(2|S1|−1)degS1

)
(4.7.6)

with

1

8

∑
S0⊆Su

(−1)|S0|2|S0|
( ∑

λG∈{±1}

∑
λw∈ImXG

T

λ2
w=λ−1

G

λGTrAB,ψ
(M(w,w−1(λw))◦R(fS0

))

)
. (4.7.7)

Next, we need a lemma for the sum over S0 ⊆ Su in (4.7.5), (4.7.6) and (4.7.7).

Lemma 4.7.4. Let S be a finite set of places of F. We have∑
I⊆S

(−1)|I| =

{
1, if S = ∅;
0, if S 
= ∅.
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We also have

∑
I⊆S

(−1)|S|−|I|degI =

⎧⎪⎨⎪⎩
0, if |S|� 2;

degv, if S = {v};
0, if S = ∅.

Proof. The first equality is nothing else than the evaluating of xα = 1 (α ∈ S) in the

expansion of the expression
∏

α∈S(1−xα). Let us prove the second equality by induction.
We may suppose |S|� 1; otherwise, the equality is trivial. Let v ∈ S. We have∑

I⊆S

(−1)|S|−|I|degI =
∑

I⊆S−{v}
(−1)|S|−|I|degI+

∑
v∈I⊆S

(−1)|S|−|I|degI

=
∑

I⊆S−{v}
(−1)|S|−|I|(−degv).

Therefore, the result follows from the first equality.

After this lemma, the expression J1
ψ(f) given by (4.7.5) vanishes if |Su| � 2. When

Su = {v}, it equals degv. When Su = ∅, it equals 2g−2+degSr.

The expression (4.7.6) vanishes if |Su| � 2. When Su = {v}, it equals 1
2 degv. When

Su = ∅, it equals 1
2 (2g−1).

Let ψ ∈ Acont be non-regular. We are going to consider the following expression that
appears in (4.7.7):

1

8

∑
λG∈{±1}

∑
λw∈ImXG

T

λ2
w=λ−1

G

λGTrAB,ψ
(M(w,w−1(λw))◦R(fS0

)). (4.7.8)

Note that in this case, L(ψ1ψ
−1
2 ,z) = ζX(z), where ζX is the zeta function of the curve

X. From the local calculations in 4.7.3 and 4.7.5, we know that

TrAB,ψ
(M(w,w−1(λw))◦R(fS0

)) = q1−g ζX(λ−2
w )

ζX(q−1λ−2
w )

∏
v∈S1

(1− q−1
v )(λ−2degv

w +1)

1− q−1
v λ−2degv

w

.

Here, we should regard ζX(z)
ζX(q−1z) as a rational function so that the pole at z = 1 of the

denominator and numerator are canceled. For each λG ∈ {±1}, there are two λw such
that λ2

w = λ−1
G . The expression (4.7.8) equals

∑
λG∈{±1}

1

4
q1−gλG

ζX(λG)

ζX(q−1λG)

∏
v∈S1

(1− q−1
v )(λdegv

G +1)

1− q−1
v λdegv

G

. (4.7.9)

There is a polynomial P (z) of degree 2g such that

ζX(z)/ζX(zq−1) =
P (z)(1− q−1z)

P (zq−1)(1− qz)
.
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By functional equation of zeta function, we have

P (1)(1− q−1)

P (q−1)(1− q)
=−qg−1

and

P (−1)(1+ q−1)

P (−q−1)(1+ q)
= qg−1.

The corresponding summand for λG = 1 in the expression (4.7.9) equals

1

4
q1−g2|S1|P (1)(1− q−1)

P (q−1)(1− q)
=−2|S1|−2.

If there is a place of odd degree in S1, then the corresponding summand for λG = −1

in the expression (4.7.9) vanishes. If all the places in S1 are of even degree, then the

corresponding summand for λG =−1 in the expression (4.7.9) equals

1

4
q1−g(−1)

P (−1)(1+ q−1)

P (−q−1)(1+ q)
2|S1| =−2|S1|−2.

We decompose Su as the union of the set of places of odd degree and those of even
degree:

Su = Su,odd∪Su,even.

Following the above discussions, the expression (4.7.7) equals∑
S0⊆Su

(−1)|S0|2|S0|(−2|S1|−2)+
∑

Su,odd⊆S0⊆Su

(−1)|S0|2|S0|
(
−2|S1|−2

)
+
∑
S0∈S

0, (4.7.10)

where S = {S0|S0 ⊆ Su}−{S0|Su,odd ⊆ S0 ⊆ Su}. The first sum in (4.7.10) is − 1
4 if Su =

∅ and is 0 if Su 
= ∅. The second sum in (4.7.10) equals 0 if Su,even 
= ∅, and equals
(−1)|Su|+12|Su|−2 if Su,even = ∅.
In conclusion, if Su = ∅, then the expression (4.7.7) equals − 1

2 . If Su 
= ∅ but Su,even = ∅,
then (4.7.7) equals (−1)|Su|+12|Su|−2. If Su,even 
= ∅, (4.7.7) equals 0.
If Sr 
= ∅, then J1

ψ(f) 
= 0 implies that ψ is regular. In this case, there are

cR(1)

2
Pic(1)2

equivalent classes of ψ such that J1
ψ(f) can be non-zero. If Sr = ∅, then there are

cR(1)
1

2
Pic(1)(Pic(1)−1)

regular classes of ψ such that J1
ψ(f) can be non-zero, and

cR(1)Pic(1)

non-regular such classes.

To complete the proof of Proposition 4.7.1, we summarize that if Sr 
= ∅, then there

is no non-regular ψ with correct ramification, and J1
cont(f) is equal to cR(1)

2 Pic(1)2
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times (4.7.5); if Sr = ∅, J1
cont(f) is equal to cR(1) 12Pic(1)(Pic(1)− 1) times (4.7.5) plus

cR(1)Pic(1) times ((4.7.6)+(4.7.7)).

5. Geometric side of the trace formula and Hitchin moduli spaces

In this section, we treat the geometric side of the trace formula J1
geom(f) for the function f

introduced in Proposition 4.2.1. The goal is to prove Theorem 5.5.1. We need to introduce

a Lie algebra analog of the trace formula that helps us to treat J1
geom(f).

5.1. Moduli of parabolic Hitchin bundles over Fq

Now we introduce the coarse moduli space of semistable Hitchin bundles with parabolic

structures. It is constructed by Yokogawa ([34]) using GIT theory. Let V ⊂ |X| be a finite

set of closed points. We are interested in moduli of Hitchin bundles with flag structures
at V. If we can identify V with a subset of X(Fq) (i.e., every place in V has degree 1),

then Yokogawa’s construction perfectly suits our needs. Otherwise, we meet a problem

since a point in V can be split into several points over an algebraically closed field, and

we have to make extra arguments about how to treat with (semi)-stability. To remedy it,
we work over an algebraically closed field or a large enough extension of Fq where we can

apply Yokogawa’s construction to obtain a moduli space. Then we define an Fq-structure

on it.
Let D be a divisor over X and V be a set of closed points of X. We identify V :=

V ×Spec(Fq) Spec(Fq) with a subset of X(Fq) and view D also as a divisor over X.

A parabolic Hitchin triple (or parabolic Hitchin bundle) over X is a triple

(E,ϕ,(Lx)x∈V ),

where (E,ϕ) is a Hitchin pair for the divisor D, that is, a vector bundle E together with

a bundle morphism, called the Higgs field,

ϕ : E −→ E(D) := E ⊗OX(D),

and for each point x ∈ V , Lx is a line in the Fq-vector space Ex, the fiber over x of the

bundle E , such that

ϕx(Ex)⊆ Lx

and

ϕx(Lx) = 0,

where we view Lx also as a line in E(D)x.

We select a canonical divisor KX on X, which is a divisor that corresponds to the

canonical bundle. If D =KX +
∑

v∈V v, we will call them parabolic Higgs bundles.
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For each x∈ V , let ξx := (ξx,1,ξx,2)∈Q2 such that ξx,1 � ξx,2 � ξx,1−1. Let ξ=(ξx)x∈V .

Let (E,ϕ,(Lx)x∈V ) be a parabolic Hitchin bundle over X. Let L be a sub-line bundle of
E . We define the parabolic degree p-deg(L) by

p-deg(L) := deg(L)+
∑
x∈V

{
ξx,1, if Lx = Lx;

ξx,2, if Lx 
= Lx.

We say that (E,ϕ,(Lx)x∈V ) is ξ-semistable if for any sub-line bundle L of E satisfying

ϕ(L)⊆ L(D), we have

p-deg(L)�
degE+

∑
x∈V (ξx,1+ ξx,2)

2
.

It is said to be ξ-stable if the strict inequality always holds. Note that if

deg(E)+
∑
x∈V

±(ξx,1− ξx,2) /∈ 2Z,

then the equality can never be achieved and ξ-semistablity coincides with ξ-stability. We
say that such cases are in general position.

In [35], Yokogawa has constructed a coarse moduli space, which he shows to be a variety

defined over Fq, that classifies isomorphism classes of ξ-stable parabolic Hitchin bundles

(E,ϕ,(Lx)x∈V ) with E being of rank 2 and degree e. We denote the variety by

Me,ξ

V
(D).

In this article, we will only be interested in the case where D=KX +
∑

v∈R v for a subset

R of S (R can be empty).

Remark 5.1.1. Yokogawa’s results apply under the assumption (under our terminology)
that ξx,1 > ξx,2 > ξx,1 − 1. In particular, it does not include the case that ξx,1 = ξx,2.

However, as long as ξ stays in general position, this is not an issue because when ξx,1 and

ξx,2 are close enough, semistability of parabolic Hitchin bundles coincides with the case

that ξx,1 = ξx,2.

5.2. Fq-points

Suppose that n is a divisible enough integer such that every closed point in V totally

splits over Fqn (i.e., the residue field of a place in V can be embedded in Fqn). Yokogawa’s
construction works if the curve is X ⊗Fqn and the parabolic structures are imposed at

each point of V ⊗Fqn , and in this way, Me,ξ

V
(D) has an Fqn -structure. In the following,

we are going to endow Me,ξ

V
(D) with an Fq-structure when ξx are the same for points

x ∈ V ⊗Fqn lying over each v ∈ V .

For a variety Y defined over Fqn , let FY/Fqn
be the arithemetic Frobenius morphism

of Y ⊗Fqn
Fq. Recall that it is the morphism of schemes Y ⊗Fqn

Fq that is identity on Y

and is x �→ xqn over Spec(Fq). In particular, it is not a morphism of Fqn -schemes.
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The pullback by FX/Fq
defines an action on the set of isomorphism classes of Hitchin

bundles. To define an action on the parabolic structure, we need to use an equivalent

definition that identifies vector bundles with locally free sheaves. Suppose (E,ϕ,(Lx)x∈V )

is a parabolic Hitchin bundle over X, For each x∈ V , Lx defines a unique rank 2 coherent
sub-sheaf Ex of E such that E/Ex is a skyscraper sheaf of degree 1 supported in {x} and

the inclusion Ex −→E defines a morphism of their fibers at x with image Lx in Ex. Then
F ∗
X/Fq

Ex defines a parabolic structure of F ∗
X/Fq

E at Frob(x).

Proposition-Definition 5.2.1. Suppose that the family (ξv)v∈V ∈ (Q2)V satisfies that

for any v ∈ V ,

0� ξv,1− ξv,2 � [κv : Fq].

Let

ξx =
1

[κv : Fq]
ξv,

for any point x ∈ V lying over v ∈ V .
Let σ be the Frobenius element in Gal(Fq/Fq). We define an action of Gal(Fq/Fq) on

Me,ξ

V
(D)(Fq) so that σ sends a parabolic Higgs bundle (E,ϕ,(Lx)x∈V ) over X to

F ∗
X/Fq

(E,ϕ,(Lx)x∈V ).

There is a variety defined over Fq whose Fqk -points are exactly those in Me,ξ

V
(D)(Fq) fixed

by σk and whose base change to Fq is isomorphic to Me,ξ

V
(D). We denote the variety by

Me,ξ
V (D).

Proof. Let M =Me,ξ

V
(D) in this proof.

First, we show that the action is well-defined. As F ∗
X/Fq

sends the set of Hitchin bundles

with parabolic structures in V to itself. It is sufficient to show that ξ-stable parabolic

Hitchin bundles is sent to a ξ-stable one. Note that for any sub-line bundle L of E such
that ϕ(L) ⊆ L(D), the parabolic degree of F ∗

X/Fq
L (as a subbundle of F ∗

X/Fq
E) equals

that of L. Moreover, any subline bundle of F ∗
X/Fq

E can be written as F ∗
X/Fq

L for some

subline bundle L ⊆ E because FX/Fq
is an automorphism.

Let U be an Fq-scheme and E a family of parabolic Hitchin bundles over XU . Since
X is defined over Fq, we have (XU )

(q) ∼=XU . Applying the functor (·)(q), E(q) is still a

family over XU . By above arguments, [35, Theorem 4.6, (4.6.5)] shows that we have an

isomorphism φ : M → M that induces σ. By definition, it makes the following diagram
commutative:

M
φ−−−−→ M⏐⏐� ⏐⏐�

Fq
x �→xq

−−−−→ Fq

.
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Note that for n divisible enough so that V ⊗Fqn totally split (i.e., n divides the degree

of every v ∈ V ), M has an Fqn -structure and φn = Id. By [5, Example B, p.139] and the

fact that M is quasi-projective, this defines an Fq-structure on M.

Next, we are going to study Me,ξ
V (D)(Fq), the fixed points of σ on Me,ξ

V
(D)(Fq). We

define a rank 2 parabolic Hitchin bundle as a tuple (E,ϕ,(Lv)v∈V ) over X consisting of

a vector bundle E over X, a bundle morphism ϕ : E −→ E(D) and for each v ∈ V a 1

dimensional κv sub-vector space Lv of Ev such that ϕv(Ev) ⊆ Lv and ϕv(Lv) = 0. Let
(e,ξ) ∈ Z× (Q2)V . Let L be a sub-line bundle of E such that ϕ(L)⊆L(D). We define the

parabolic degree L by

p-deg(L) := deg(L)+
∑
v∈V

{
ξv,1, if Lv = Lv;

ξv,2, if Lv 
= Lv.

The parabolic Higgs bundle (E,ϕ,(Lv)v∈V ) is semistable if for all such L, we have

p-deg(L)�
degE+

∑
v∈V (ξv,1+ ξv,2)

2
.

Proposition 5.2.2. Under the hypothesis of Proposition-Definition 5.2.1, the set of

(isomorphism classes of) ξ-stable parabolic Higgs bundles (E,ϕ,(Lx)x∈V ) over X that
are fixed by F ∗

X/Fq
is in bijection with the set of ξ-stable parabolic Higgs bundles

(E0,ϕ0,(Lv)v∈V ) over X.

Proof. Let σ be the Frobenius element that generates Gal(Fq/Fq). By Galois descent

(see [5, Example B. p.139]), the category of vector bundles over X is equivalent to the

category of Gal(Fq/Fq)-equivariant vector bundles over X, that is, the category of vector
bundles E over X together with an isomorphism for each i� 1,

φσi : (E,ϕ,(Lx)x∈V )−→ F ∗i
X/Fq

(E,ϕ,(Lx)x∈V ),

such that σi �→ φσi satisfies the cocycle condition:

σi(φσj )◦φσi = φσi+j,

and for some d ∈ N∗, φσd is the identity. Note that the category of vector bundles is

equivalent to the category of locally free sheaves; hence, every vector bundle defined over

X is automatically defined over X⊗Fqn for some n ∈ N∗, and the requirement that φσd

is the identity map makes sense when d is divisible by n.
By Galois descent for morphisms of quasi-coherent sheaves ([5, Proposition 1, p.130]

and [5, Example B. p.139]), the above equivalence extends to an equivalence between

the category of parabolic Hitchin bundles over X is equivalent to the category of
Gal(Fq/Fq)-equivariant parabolic Hitchin bundles over X. Indeed, the parabolic structure

is determined by a sub-sheaf F ⊆ E such that E/F is a skyscraper sheaf supported in V

and that the inclusion F → E defines a morphism Fx →Ex of their fibers at each point x
with image Lx in Ex. If both F and E come from X (i.e., F = F0|X and E = E0|X), then

F0 ⊆ E0 is a subsheaf such that the quotient E0/F0 is a skyscraper sheaf supported in V,

and the map of the fibers Fv →Ev has a 1-dimensional image as κv-vector space.
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By our assumption, there is an isomorphism

φσ : (E,ϕ,(Lx)x∈V )−→ F ∗
X/Fq

(E,ϕ,(Lx)x∈V ).

We can define simply for every i� 1,

φσi := σi−1(φσ)◦ · · · ◦σ(φσ)◦φσ.

Note that by cocycle condition, this is the unique possible way to extend φσ to a 1-cocycle.

We will prove that we can choose φσ so that for some n, the isomorphism φσn defined

above is the identity. Suppose that (E,ϕ,(Lx)x∈V ) is defined over X⊗Fqn . Then

F ∗n
X/Fq

(E,ϕ,(Lx)x∈V ) = (E,ϕ,(Lx)x∈V ).

Any φσn is an automorphism of (E,ϕ,(Lx)x∈V ) which must be a scalar multiplication

because (E,ϕ,(Lx)x∈V ) is stable. Hence, there is a λ′ ∈ F
×
q such that

φσn = λ′.id(E,ϕ,(Lx)x∈V ).

Suppose λ′ ∈ F×
qm for some m� 1. We deduce that φσnm = λ.id(E,ϕ,(Lx)x∈V ) with

λ= (λ′)1+qn+···+qn(m−1) ∈ F×
qm ⊆ F×

qnm .

Note that this implies that

σnm−1(φσ)◦ · · · ◦σ(φσ)◦φσ = λ.id(E,ϕ,(Lx)x∈V ). (5.2.1)

Applying σ to both sides, we obtain that

σnm(φσ)◦ · · · ◦σ2(φσ)◦σ(φσ) = σ(λ).idF∗
X/Fq

(E,ϕ,(Lx)x∈V ). (5.2.2)

Since σnm(φσ) = φσ, we deduce that σ(λ) = λ, and hence, λ∈ F×
q . As the norm map from

Fqnm to Fq is surjective, we conclude that by modifying φσ by a scalar, we can get a φσ

such that λ= 1.

It is easy to see that such descent data are unique up to isomorphism. In fact, any two
isomorphisms φσ and φ′

σ are differed by a scalar because these are the only automorphisms

of (E,ϕ,(Lx)x∈V ). As the map λ �→ λ/σ(λ) from Fq to Fq is surjective (Hilbert’s Theorem

90), we conclude that the cocycle given by φσ is isomorphic to that of φ′
σ.

It remains to prove that the parabolic Hitchin bundle (E0,ϕ0,(Lv)v∈V ) determined by
a descent datum attached to (E,ϕ,(Lx)x∈V ) is stable, and reversely, if (E0,ϕ0,(Lv)v∈V )

is stable, then the parabolic Hitchin bundle (E,ϕ,(Lx)x∈V ) over X is stable. The first

statement is trivial. For the second statement, we need to use the fact that semistability
coincides with stability since the parameter ξ is in general position. We can argue

by contradiction. Suppose (E,ϕ,(Lx)x∈V ) is not semistable. Then it admits a maximal

destabilizing sub line bundle over X preserved by ϕ. Such a line bundle over X is unique,
and hence is fixed by Galois action. It then descends to a line bundle over X. By our

definition of parabolic degree, it is again destabilizing. This contradicts the fact that

(E0,ϕ0,(Lv)v∈V ) is semistable.
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5.3. Residue morphism

Next, we are going to define and study a residue morphism. We will be interested in the

case that V is a subset of Su and R= V ∪Scr. We suppose that

DR =KX +
∑
v∈R

v.

Let us denote

M1
V (DR) :=M1,0

V (DR),

the moduli space of strictly parabolic Hitchin bundles with parabolic structures in V

where we set parabolic weights to be trivial.
Let (E,ϕ) be a Hitchin bundle. The morphism ϕ is equivalent to a morphism

OX −→ End(E)(DR).

Its characteristic polynomial t2+at+ b gives a section (a,b) in

H0(X,OX(DR))⊕H0(X,OX(2DR)).

Let AR be the affine space H0(X,OX(DR))⊕H0(X,OX(2DR)) defined over Fq. Let

RR =
∏
v∈R

Rv,

where Rv =OX(DR)v⊕OX(2DR)v, the fiber of OX(DR)⊕OX(2DR) in v. The space Rv

is viewed as an Fq-vector space by forgetting its κv-vector space structure. Note that we

have

Rv(Fq)∼= {t2+at+ b|a,b ∈ κv}.

We have a morphism

AR −→RR,

sending (a,b) to ((av,bv))v∈R.

Proposition 5.3.1. Suppose that degR= |R⊗Fq
Fq|> 2−2g. The morphism AR −→RR

is linear of codimension 1. The image consists of elements (t2+avt+ bv)v∈R such that∑
v∈R

Trκv|Fq
(av) = 0. (5.3.1)

Let R1
R be the linear sub-scheme of RR of elements satisfying the residue condition (5.3.1).

Proof. By the Riemann-Roch theorem, it is easy to verify that when degS > 2−2g, we
have

H0(X,OX(2D))−→
∏
v∈R

OX(2D)v
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is surjective. The kernel of the map

H0(X,OX(D))−→
∏
v∈R

OX(D)v

is H0(X,ωX). Therefore, for dimension reasons, the image is a linear subspace of

codimension 1. The last thing to observe is that the condition (5.3.1) is necessary due to

the residue theorem.

Remark 5.3.2. If p 
= 2, there exists b1,b2 ∈ Fq such that the polynomial t2 − b1 is
irreducible and the polynomial t2− b2 is split with distinct roots. In fact, if p 
= 2, this is

trivial because then the group endomorphism x �→ x2 of F×
q is not surjective.

The Hitchin fibration is the morphism that sends a Hitchin bundle to the characteristic

polynomial of the Higgs field which gives us a morphism of Fq-schemes

M1
V (DR)−→AR.

We define the residue morphism as the composition of the natural morphism AR −→R1
R

with Hitchin fibration:

resR :M1
V (DR)−→AR −→R1

R.

It sends a triple (E,ϕ,(Lv)v∈R) to the family of characteristic polnomial of ϕv, v ∈ R.
Now suppose R= Scr ∪V and let

R1
Scr

be the linear subspace of R1
R whose components in V are zero. As the fiber map is

nilpotent at v ∈ V , the residue morphism factors through the morphism

resScr
:M1

V (DR)−→R1
Scr.

Given a point oScr
∈R1

Scr
(Fq), we will denote

M1
V (o) := res−1

Scr
(oScr

).

5.4. Geometric side of trace formula

We introduce a variant of the trace formulas with an extra parameter ξ ∈ (Q2)R.

Let HB :B(A)−→Q2 be the function defined by

HB

((
a b

0 d

))
= (dega, degd).

The Harish-Chandra’s map is the extension of HB to the whole G(A) by Iwasawa

decomposition (i.e., if x = bk ∈ G(A) with b ∈ B(A) and k ∈ G(O), we have HB(x) =
HB(b)).

Let τ̂B be the characteristic function over Q2 of the subset

{(x,y) ∈Q2|x > y}.
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For any x ∈ G(A), let x = bk be its Iwasawa decomposition with b ∈ B(A) and k =

(kv)v∈|X| ∈G(O). For every v ∈R, we define sx,v to be the identity if kv ∈ Iv and to be

the non-trivial permutation in S2 otherwise. Therefore, given (ξ1,ξ2) ∈Q2, we have

sx,v(ξ1,ξ2) =

{
(ξ1,ξ2), if kv ∈ Iv;
(ξ2,ξ1), if kv /∈ Iv.

Let f ∈ C∞
c (g(A)), and ξ = (ξx)x∈|S| ∈ (Q2)R. The ξ-variant of truncated trace for Lie

algebra is defined by the integral

Jg,e,ξ(f) :=

∫
G(F )\G(A)e

kg,ξ(x)dx,

where kg,ξ(x) equals∑
γ∈g(F )

f(ad(x)−1γ)

−
∑

δ∈B(F )\G(F )

τ̂B

(
HB(δx)+

∑
v∈R

sδx,vξv

) ∑
γ∈t(F )

∫
n(A)

f(ad(δx)−1(γ+U))dU.

Let

Eg = {t2+at+ b ∈ F [t]}

be the set of rank 2 unitary polynomials. Let

EG = {t2+at+ b ∈ F [t]|b 
= 0}

be the subset of Eg consisting of polynomials whose constant term is non-zero.

For any element γ ∈ g(F ), we define χγ ∈ Eg to be the characteristic polynomial of γ.

Given χ ∈ Eg, we define kg,ξχ (x) for x ∈G(A) by∑
γ∈g(F ),χγ=χ

f(ad(x)−1γ)

−
∑

δ∈B(F )\G(F )

τ̂B

(
HB(δx)+

∑
v∈R

sδx,vξv

) ∑
γ∈t(F ),χγ=χ

∫
n(A)

f(ad(δx)−1(γ+U))dU.

We define

Jg,e,ξ
χ (f) :=

∫
G(F )\G(A)e

kg,ξχ (x)dx.

We have proved in [36, Section 5] that the integrals converge, and it is non-zero for only

finitely many χ ∈ Eg. Therefore, we have

Jg,e,ξ(f) =
∑
χ∈Eg

Jg,e,ξ
χ (f).

If we set ξ = 0, we will omit ξ from the notation.
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We also have the group version. Let χ ∈ EG and f ∈ C∞
c (G(A)). Then we define

kG,ξ
χ (x) =

∑
γ∈G(F ),χγ=χ

∑
i∈Z

f(x−1γaix)

−
∑

δ∈B(F )\G(F )

τ̂B

(
HB(δx)+

∑
v∈R

sδx,vξv

) ∑
γ∈T (F ),χγ=χ

∑
i∈Z

∫
N(A)

f((δx)−1(γn)aiδx)dn,

where a ∈A× is a fixed degree 1 idèle. Note that if the support of f is contained in G(A)0

(for example, in G(O)), then only i = 0 in the sum over i ∈ Z contributes. We define

kG,ξ(x) to be the sum of kG,ξ
χ (x) over χ ∈ EG. We define JG,e,ξ

χ (f) (resp. JG,e,ξ(f)) to be

the integral of kG,ξ
χ (x) (resp. kG,ξ(x)) over x ∈G(F )\G(A)e. We have then, by definition,

JG,e,ξ(f) =
∑
χ∈EG

JG,e,ξ
χ (f).

The sum is again a finite sum. If we take e = 1 and ξ = 0, we get the geometric side of
the trace formula, which is Arthur’s original definition adapted to a function field:

J1
geom(f) = JG,1,0(f). (5.4.1)

Remark 5.4.1. We call JG,e,ξ(f) the truncated trace since the main term in the

integrand of JG,e,ξ(f) ∑
γ∈G(F )aZ

f(x−1γx)

is the diagonal evaluation of the kernel function of the regular action R(f) on
L2(G(F )\G(A)/aZ). The extra term truncates the following function in x :∑

γ∈T (F )aZ

∫
N(A)

f(x−1(γn)x)dn,

which is the diagonal evaluation of the regular action R(f) on L2(T (F )N(A)\G(A)/aZ).

5.5. A geometric interpretation of J1
geom(f)

Suppose that f is the function constructed in Proposition 4.2.1. We have the following

result.

Theorem 5.5.1. Let oScr
∈R1

Scr
(Fq) so that every polynomial ov has distinct roots and

is split over κv if v ∈ Sr, and is irreducible if v ∈ Sc. Then we have

J1
geom(f) =

∑
V⊆Su

(−1)|Su−V |2|Su−V |q−(4g−3+|R|)|M1
V (oScr

)(Fq)|.

Proof. The main new ingredient of the proof compared to [38] is the treatment of the

local components for v ∈ Su.
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Since J1
geom is a linear in C∞

c (G(A)), we have

J1
geom(f) =

∑
V⊆Su

(−1)|Su−V |2|Su−V |J1
geom(fV ),

where fV =⊗fV
v is the tensor product of functions fV

v ∈ C∞
c (Gv) such that

fV
v = fv

at a place v /∈ Su, for v ∈ Su−V , it is defined so that for x ∈Gv,

fV
v (x) = 1Kv

(x)θv(detx),

and for v ∈ V , it is defined so that for x ∈Gv,

fV
v (x) =

1

vol(Iv)
1Iv

(x)θv(detx).

We apply [7, Th. 6.2.1]. It says that, as the support of fV ∈ C∞
c (G(A)) is contained in

G(O), we have

J1
χ(f

V ) = 0,

except if χ= (t−a)2 with a ∈ F×
q . Therefore, for any V ⊆ Su, we have

J1
geom(fV ) =

∑
χ=(t−α)2,α∈F

×
q

J1
χ(f

V ).

Since the eigenvalues of ramifications R satisfy∏
x∈S

εx,1εx,2 = 1,

by our construction of f, it implies that (see [38, Proposition 2.4.2])

fV (zx) = fV (x), ∀x ∈G(A),z ∈ Z(Fq).

In particular, we may use the identity to z = α, and we obtain

J1
(t−α)2(f

V ) = J1
(t−1)2(f

V ).

Therefore,

J1
geom(f) = (q−1)

∑
V⊆Su

(−1)|Su−V |2|Su−V |J1
unip(f

V ), (5.5.1)

where we denote J1
unip(f

V ) = J1
(t−1)2(f

V ) because the elements whose characteristic

polynomial is (t−1)2 are exactly those unipotent elements.

We are going to pass to the Lie algebra version. For every V ⊆ Su, we will define a

function

ϕV =⊗v∈|X|ϕ
V
v ∈ C∞

c (g(A)),
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whose support is in g(O), and that the map x �→ x+1 from nilpotent elements in g(F )

to unipotent elements in G(F ) induces an identity

Jg,1
nilp(ϕ

V ) = J1
unip(f

V ).

Indeed, our main emphasis lies in the Fourier transform of ϕV . We need the following

proposition 5.5.2, obtained by direct calculations except Springer’s hypothesis proved by
Kazhdan, to construct this ϕV.

Let

KX =
∑
v

dvv.

We have

A/(F +
∏
v

℘−dv
v )∼=H1(X,Ω1

X)∼=H0(X,OX)∗ ∼= Fq,

by Serre duality and the fact that X is geometrically connected. We fix a non-trivial

additive character ψ of Fq. Via the above isomorphisms, ψ can be viewed as a character

of A/F . We use this ψ in the definition of Fourier transform on g(A), and we use its local
component ψv in the definition of Fourier transform on gv for every v ∈ |X|. Let 〈,〉 be

the bilinear form on g defined for any two x,y ∈ g by 〈x,y〉 := Tr(xy), where the product

is the product of matrices. Then 〈,〉 is non-degenerate and G-adjoint invariant. We define
the Fourier transform of any ϕ ∈ C∞

c (g(A)) by

ϕ̂(x) :=

∫
g(A)

f(y)ψ(〈x,y〉)dy.

Based on the Poisson summation formula, we have an identity ([36, Theorem 5.7])

Jg,e,ξ(ϕ) = q4−4gJg,e,ξ(ϕ̂). (5.5.2)

Proposition 5.5.2. ([38, Prop. 5.3.1]) We have the following results on Fourier

transformation.

(1) For any place v, the Fourier transform of the characteristic function of g(Ov) can

be calculated by the following formula:

1̂g(Ov) = 1℘−dv
v g(Ov)

.

(2) Let Iv be the Iwahori subalgebra of gv consisting of matrices in

(
Ov Ov

℘v Ov

)
and

Iv+ its open subset consisting of matrices in

(
℘v Ov

℘v ℘v

)
. Then we have

1̂Iv
= q−1

v 1℘−dv
v Iv+

.

(3) (Springer’s hypothesis [17][18].) Let U be a maximal torus of Gκv
and θ any

character of U(κv), t a regular element in uv(κv) and ρ= εRG
Uθ the Deligne-Lusztig
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virtual representation of G(κv) induced from (Tv,θ), where ε=1 if U = T and ε=−1

if U is not split. Let

eρ :=

{
Tr(ρ(x−1)), x ∈ Kv;

0, x /∈ Kv,

where x denotes the image of x under the map Kv −→ G(κv). Let Ωt ⊆ g(κv) the

Ad(G(κv))-orbits of t and Ωt ⊆ g(Ov) be the preimage of Ωt of the map g(Ov)−→
g(κv).

Then for any unipotent element u ∈ Kv ∩Gv,unip, we have

eρ(u) = q−(4dv+1)
v 1̂℘−dv

v Ωt
(u−1).

Now we come to the construction of ϕV =⊗vϕ
V
v . The local components ϕV

v are defined

so that with the notation of Proposition 5.5.2, we have the following:

• If v /∈ Scr ∪V ,

ϕV
v = 1g(Ov);

• If v ∈ Scr,

ϕ̂V
v = q−1

v 1̂℘−dv
v Ωtv

;

here, tv ∈ T (κv) for v ∈ Sr and tv ∈ U(κv) for v ∈ Sc is a regular element;
• If v ∈ V ,

ϕ̂V
v =

1

vol(Iv)
q−1
v 1℘−dv

v Iv+
.

For the Fourier transform, we havê̂
fv(X) = q4dv

v fv(−X).

It is then direct to see that

Jg,1
unip(f

V ) = Jg,1
nilp(ϕ

V ). (5.5.3)

We require that ∑
v∈Scr

Trκv|Fq
Tr(tv) = 0.

This ensures that

ϕV (z+x) = ϕV (x)

for any x ∈ g(A) and z ∈ zG(Fq). Note that the support of ϕ is contained in g(O). We

deduce by [7, Th. 6.2.1] that

Jg,1(ϕV ) = qJg,1
nilp(ϕ

V ).
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Combining with the trace formula for Lie algebra (5.5.2) and (5.5.3), we have

J1(fV ) = (q−1)q3−4g−degV−degScr

(∏
v∈V

vol(Iv)−1

)
Jg,1(ϕ̂V ). (5.5.4)

The result is then deduced by a geometric interpretation of Jg,1(ϕ̂V ) using Weil’s

dictionary. We refer the reader to [38, Theorem 5.2.1] for details (here, the parameter
ξ is set to be zero).

Theorem 5.5.3. Suppose Sc = ∅. For V ⊆ Su, let DSr∪V =KX +
∑

v∈Sr∪V v. Then

J1
geom(f) =

∑
V⊆Su

(−1)|Su−V |2|Su−V |q−(4g−3+|R|)|M1
V ∪Sr

(DSr∪V )(Fq)|.

In particular, for any oSr
∈R1

Sr
(Fq) so that every ov (v ∈ Sr) has distinct roots, we have

|M1
V (oSr

)(Fq)|= |M1
V ∪Sr

(DSr∪V )(Fq)|.

Proof. Let v ∈ Sr and χv be the character defined in Theorem 3.1.2. Let

f̃v(x) =

{
vol(Iv)−1χv(x

−1), x ∈ Iv;
0 x /∈ Iv.

Then for any x ∈Gv, by the formula for induced character, we have∫
Kv

f̃v(k
−1xk)dk = fv(x).

Here, the function fv (v ∈ Sr) is the function we defined in Proposition 4.2.1. Therefore,

J1
geom(f) = J1

geom(f̃).

Now the same proof of Theorem 5.5.1 applies.

5.6. Independence of parabolic weights

The results in this section will only be needed only in the proof of the Theorem 1.2.1. We

suggest that the reader reads this part only when referred to.

We come back to assumptions in Section 5.3 that V ⊆ Su, R = V ∪ Scr and DR =
KX +

∑
v∈R v. We consider the case that the parameter ξ = (ξv)v∈R of parabolic weights

is not necessarily trivial. Recall that we use ξ = (ξx)x∈R to denote the family such that

ξx = 1
[κv :Fq]

ξv for any point x ∈R lying over v ∈R.

Theorem 5.6.1. Suppose that e is an odd integer or there exists a place v ∈R such that
degv is odd. Suppose that Fq 
= F2. Varying the parabolic weights (e,ξ) but remaining in

general position and

ξv,1 � ξv,2 � ξv,1−degv

for any v ∈R, the cardinality of the set Me,ξ
R (DR)(Fq) remains the same.

Proof. We will need the following lemma, which is a slight variant of [38, Theorem 3.4.3].
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Lemma 5.6.2 [38]. Suppose that f ∈C∞
c (g(A)). Suppose that the support of f is contained

in g(OR)
∏

v∈RIv (where OR =
∏

v/∈ROv) and (e,ξ) is in general position in the sense

that

e+
∑
v∈R

εv(ξv,1− ξv,2) /∈ 2Z,

for any (εv)v∈R ∈ {1,−1}R. If moreover, e is odd or degv is odd for at least one v ∈ R,

we have

Jg,e,ξ(f) =
∑
a∈Fq

Jg,e,ξ
(t−a)2(f).

Proof. The situation is slightly different than [38, Theorem 3.4.3] where we set degv = 1

for every v ∈R. The same proof implies that either

Jg,e,ξ
χ (f) = 0 (5.6.1)

or χ is the characteristic polynomial of a semisimple element σ ∈ g(Fq) such that ZGσ
/ZG

is anisotropic, where Gσ is the adjoint centralizer of σ. The last case happens when either
σ is a central element or the characteristic polynomial of σ is irreducible. When e is odd

and σ ∈ g(Fq) has an irreducible characteristic polynomial, there is no x ∈ G(A)e such

that Ad(x−1)(σ) ∈ g(O) since Gσ(A)G(O)∩G(A)e = ∅. If there exists some v ∈R of odd
degree, then the characteristic polynomial of σ cannot be irreducible in Fq[t]. In fact, σ

is conjugate to an element in B(Fqv ); hence, its characteristic polynomial splits in Fqv [t],

and hence, it must be split in Fq[t] as it is of degree 2.

Recall that we have fixed a divisor

DR =KX +
∑
v∈R

v =
∑
v

nvv

on the curve X. Let 1R be the function defined to be the tensor product⊗
v/∈R

1℘−nvg(Ov)⊗
⊗
v∈R

(
1

vol(Iv)
1℘−nv

v Iv+

)
,

where Iv+ consists of elements in g(Ov) whose reduction modd-℘v belongs to n(κv). We

have shown in [38, Theorem 5.2.1] that if ξv,1 � ξv,2 � ξv,1− [κv : Fq] and (e,ξ) is in general

position (hence semistability coincides with stability), we have

Jg,e,ξ(1R) =
1

q−1
|Me,ξ

R (DR)(Fq)|. (5.6.2)

The factor 1
q−1 comes from the fact that there are q−1 automorphisms for stable parabolic

Hitchin bundles.
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We need a lemma first.

Lemma 5.6.3. Suppose that Fq 
= F2. There exists a family of characters (χv)v∈R, χv :

T (κv)→ C×, so that ∏
v∈R

χv|Z(Fq) = 1,

and the following properties are satisfied. Let ρ be the representation of
∏

v Iv obtained

by the tensor product of the representations Iv −→ Tv(κv)
χv−−→ C×. For any automorphic

representation π of G(A), if π contains ρ (i.e., the ρ-isotypic part πρ 
= 0), then π is
cuspidal. Moreover, for any such π and any character λ of G(A) that factors through

deg◦det, we have

π⊗λ∼= π =⇒ λ= 1.

Proof. Let v0 ∈ R. Let χ1 be a primitive character of κ×
v0

−→ C× (i.e., an injective

homomorphism). Since Fq 
= F2, the character χ1 is non-trivial on F×
q . We set χv = 1 for

any v 
= v0, and χv0
= (χ1,χ

−1
1 ).

We prove that the family (χv)v∈R satisfies all the properties we need.
We have clearly ∏

v∈R

χv|F×
q
= 1.

Given an automorphic representation π, it is either cuspidal or it is a sub-quotient of

a parabolic induction Ind
G(A)
B(A)μ, for a Hecke character μ = (μ1,μ2) of T (A)/T (F ). The

latter case is impossible. In fact, the condition πρ 
= 0 implies (Ind
G(A)
B(A)μ)ρ 
= 0. This, in

turn, implies that μ is unramified outside {v0} and

HomT (Ov0
)(χv0

,μ|T (Ov0
)) 
= 0, or HomT (Ov0

)(χ
w
v0
,μ|T (Ov0

)) 
= 0.

Here, we review χv0
as a character of T (Ov0

), and χw
v0

= (χ−1
1 ,χ1). In particular,

μ1|F×
q
= χ1|F×

q
, or μ1|F×

q
= χ−1

1 |
F
×
q
.

This implies that μ1|F×
q

= 1. It contradicts the fact that μ1 is a Hecke character: it must

be trivial on F×.
For the last assertion of the lemma, we use Langlands correspondence to prove it.

Suppose that (σ,i : σ
∼−→ F ∗

X/Fq
σ) is the Weil sheaf that corresponds to the cuspidal

automorphic representation π. The sheaf σ has a rank 2 and is smooth over (X−{v0})⊗
Fq. The local monodromies of σ over punctured discs X

(∗)
x (defined in the Introduction)

centered at points x in {v0}⊗ Fq are semisimple tame local systems so that a tame

generator has as eigenvalues (ζq
i

,ζ−qi)i=1,2,...,dv0
, where ζ is a (qdv0 −1)th primitive root

of unity. If the assertion is not correct, then σ = σ1⊕σ2 and the Frobenius action F ∗
X/Fq

exchanges isomorphism classes of σ1 and σ2. Hence, σ1 is fixed by F ∗2
X/Fq

. Note that the

ramifications of σ1 at points in {v0}⊗Fq must be multiplication by (ζεiq
i

)i=1,2,...,dv0
,

https://doi.org/10.1017/S1474748024000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000562


Rank 2 l-adic local systems and Higgs bundles over a curve 945

where εi ∈ {1,−1}. If dv0
is odd, then {v0}⊗Fq is cyclically permuted by F ∗2

X/Fq
; hence,

εi has the same sign, and their product is

ζ±(qdv0−1/q−1) 
= 1,

which is impossible. If dv0
is even, then ε2i (resp. ε2i+1) have the same sign. This is

also not possible because the product of eigenvalues of ramifications of σ1 is one of the

following:

ζ(q
dv0−1/q−1),ζ−(qdv0 −1/q−1),ζ(q

dv0−1/q+1),ζ−(qdv0 −1/q+1).

This is again not possible because none of them is 1.

We choose a family of characters (χv)v∈R as in the Lemma 5.6.3. Let h be the function

1G(OR)⊗
⊗
v∈R

(
1

vol(Iv)
1Iv

χv

)
.

Since the support of h is contained in G(OR)
∏

v Iv, we have

JG,e,ξ
χ (h) = 0,

except if χ= (t−a)2 ∈ EG. Since ∏
v∈R

χv|Z(Fq) = 1,

we deduce, similar to the Lie algebra case that

JG,e,ξ(h) = (q−1)JG,e,ξ
unip (h),

where JG,e,ξ
unip (h) = JG,e,ξ

(t−1)2(h). It is direct to see that the map X �→ 1+X from the set of

nilpotent elements in g(F ) to that of unipotent elements gives us an identity

JG,e,ξ
unip (h) = q−degRJg,e,ξ

nilp (1̂R).

Therefore, we have

JG,e,ξ(h) = q−degR+3−4g|Me,ξ
R (DR)(Fq)|. (5.6.3)

Recall that a ∈ A× is a degree 1 idèle, viewed as a scalar matrix. By Lemma 5.6.3, we

know that the regular action R(h) on L2(G(F )\G(A)/aZ) is a projection whose image

lies inside the space of cuspidal automorphic forms, and the regular action R(h) on
L2(T (F )N(A)\G(A)/aZ) is zero. It shows that for any x ∈G(A),

0 =
∑

γ∈T (F )

∑
i∈Z

∫
N(A)

h((δx)−1(γn)δaix)dn,

and hence,

JG,e,ξ(h) =
1

2
(Tr(R(h)|L2

cusp(G(F )\G(A)/aZ))+(−1)eTr(R(h)ε|L2
cusp(G(F )\G(A)/aZ)))

=
1

2
(Tr(R(h)|L2

cusp(G(F )\G(A)/aZ)),

https://doi.org/10.1017/S1474748024000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000562


946 H. Yu

which is independent of (e,ξ). Recall that ε is the sign character on G(A) that factors

through deg◦det. By (5.6.3), this finishes the proof.

6. Proof of the main theorems

We will prove our main result Theorem 1.1.1. The main ingredient of the proof is

Theorem 4.2.2 and Theorem 5.5.1. These two results give an expression for |E2(R)Frob
∗ |.

It remains to apply this result to the curve X⊗Fqk over Fqk and study how |E2(R)Frob
∗ |

varies for k ∈ N∗.

6.1. Functions of Lefschetz type

We continue to use our notation in the introduction. Let us prove first the following
proposition.

Proposition 6.1.1. Let A be a set with a permutation τ acting on it. We use O(τ |A) to
denote the number of orbits of τ acting on A. It will be applied to the case that A = Su

with Frobenius element acting on it.

(1) Let k �→ αA(k) be the function that αA(k) = |A| if τk is a cyclic permutation on A

and αA(k) = 0 otherwise. It is of Lefschetz type.

(2) We define βA(k) by βA(k) = 0 if τk has an orbit of even length, βA(k) = 2O(τk|A)−1

if all orbits are of odd length. It is of Lefschetz type.

(3) We define γA(k) by

γA(k) = (−1)O(τk|A).

It is of Lefschetz type.

(4) We define ωA = 1
2 (αA+(−1)|A|βA). It is of Lefschetz type.

(5) If Scr 
= ∅, then cR/2+ bR/2 is of Lefscehtz type.

(6) The function bR is of Lefschetz type.

(7) If Scr 
= ∅, then the functions

k �→ cR(k)αSu
(k)/2+ bR(k)βSu

(k)/2

are of Lefschetz type.

Proof. (1) If τ is not a cyclic permutation on A, then neither is τk for every k � 1. In

this case, αA is constantly 0, and the assertion is trivial.

We suppose in the following that τ is a cyclic permutation.
Let |A|= pa1

1 · · ·pas
s be a prime decomposition of n with pi being different prime numbers

and ai > 0. Let ζpi
be a primitive pi-th roots of unity. Then

αA(k) = |A|,

if pi � k for all pi, otherwise

αA(k) = 0.
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It is direct to verify that we have the following identity:

αA(k) =
∏
i

⎛⎝pai
i −pai−1

i

pi∑
j=1

ζjkpi

⎞⎠. (6.1.1)

Since roots of unity are q-Weil integers of weight 0, the statement follows.

(2) Let n be an odd integer. We first prove the following assertion by induction on the

number of prime divisors of n (counting multiplicities).

(∗) For any odd integer m such that (m,n) = 1, the function

k �→ 1

m
(2φ(m)(n,k)−1−1)

is a function of Lefschetz type.

We only need the case that m = 1 of the assertion (∗), but this stronger assertion is

easier to prove by induction. The case that n= 1 is trivial since the function is constant
in k, and it is an integer by Fermat’s little theorem.

Let l be any prime number, not dividing nm. Let β ∈N. Suppose by induction that the

assertion (∗) holds for n, nl, . . ., nlβ−1. Note that we have the following identity:

1

m
(2φ(m)(nlβ,k)−1−1)− 1

m
(2φ(m)(n,k)−1−1)

=

β∑
j=1

1

m
(2φ(m)(nlj,k)−1−2φ(m)(nlj−1,k)−1)

=

β∑
j=1

2φ(m)(nlj−1,k)−1

m
(2φ(m)((nlj,k)−(nlj−1,k))−1)

=

β∑
j=1

2φ(m)(nlj−1,k)−1

mlj
(2φ(mlj)(n,k)−1)

lj∑
s=1

ζsklj .

In the last equality, we have used the fact if lj � k, then (nlj,k)−(nlj−1,k) = 0, and if lj | k,
then (nlj,k)−(nlj−1,k) = (n,k)φ(lj). We have also used the fact that φ(m)φ(lj) = φ(mlj)
since l �m. Since the product of Lefschetz type functions and integral multiple of Lefschetz-

type functions are of Lefschetz type, we deduce that the assertion (∗) is correct for nlβ

as well. By induction, we obtain the result needed.
To prove that βA is of Lefschetz type, it is sufficient to prove that τ is a cyclic

permutation on A by multiplicativity on orbits and the fact that the integral multiple of

the function of Lefschetz type is again of Lefschetz type. Suppose that |A| = 2al with l
being an odd integer. If a= 0, then βA is the function

k �→ 2(|A|,k)−1,

which is of Lefschetz type by the above result (by setting m= 1). Suppose a� 1. In this

case, we have

βA(k) =

{
22

a(l,k)−1, 2a | k;
0, 2a � k.
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Since a� 2a−1, the function βA is of Lefschetz type because we have

βA(k) = 22
a−a−1(2(l,k)−1)2

a
2a∑
j=1

ζk2a . (6.1.2)

We have shown that k �→ 2(l,k)−1 is of Lefschetz type; therefore, so is βA.

(3) Since the product of Lefschetz-type function is still of Lefschetz type, it suffices
to consider the case that τ is a cyclic permutation of A. If A has odd cardinality,

then (−1)O(τk|A) = −1. Suppose that |A| = 2am with m being m odd and a � 1. Then

O(τk|A) = (2am,k), and

(−1)O(τk|A) =

{
−1, 2 � k;

1, 2 | k.

Therefore in this case,

(−1)O(τk|A) = (−1)k.

This is a function of Lefschetz type, and we have proved the assertion.
(4) Let us consider ωA. If τ is not a cyclic permutation on A, then αA = 0. Let A =

A1∪A2 be a partition of A into non-empty τ -stable subsets. Then

ωA = (−1)|A|βA1
βA2

.

Therefore, ωA is of Lefschetz type.

In the following, we suppose that τ is a cyclic permutation. It is sufficient to consider
αA−βA

2 .

Let f : N∗ −→ Z be a periodic function of period n. Then we have

f(k) =

n∑
i=1

∑n
j=1 f(j)ζ

−ij
n

n
ζkin .

Therefore, f is of Lefschetz type if and only if∑n
j=1 f(j)ζ

−ij
n

n
∈ Z (6.1.3)

for i= 1, . . . ,n. We will use this criterion to prove that ωA is of Lefschetz type.

If n := |A| is an odd integer. By (6.1.3) and the fact that βA is of Lefschetz type, we
know that for any i, the number

n∑
j=1

2(n,j)−1ζ−ij
n

is an integer that is divisible by n. Moreover,

n∑
j=1

αA(k)ζ
−ij
n = ncn(i),
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where cn(i) is the sum ith power of primitive nth roots of unity (i.e., the Ramanujan’s
function). The function i �→ cn(i) takes an integral value (since αA is of Lefschetz type).

We need to prove that the number

2
n∑

j=1

ωA(j)ζ
−ij
n =−

n∑
j=1

2(n,j)−1ζ−ij
n +ncn(i) (6.1.4)

is divisible by 2n. Since we are in the case that n is an odd number, and (6.1.4) is divisible
by n, we need to show that it is divisible by 2. Note that we have

n∑
j=1

2(n,j)−1ζ−ij
n =

∑
d|n

2d−1cn/d(i).

Modulo 2, the expression (6.1.4) equals (n−1)cn(i). Since n is odd, this is 0 modulo 2.

We are done.

Now suppose that n = |A| is an even integer. If 4 | n, then clearly both 1
2αA(k) and

1
2βA(k) are of Lefschetz type. We can see it from equations (6.1.1) and (6.1.2).
If 4 � n, we need to prove that for any i,

2
n∑

j=1

ωA(j)ζ
−ij
n = ncn(i)−

n/2∑
j=1

2(n,2j)−1ζ−2ij
n

is divisible by 2n. As we have shown before, it is divisible by n. Therefore, it remains to

show that it is divisible by 4. Note that

n/2∑
j=1

2(n,2j)−1ζ−2ij
n =

∑
d|n2

22d−1cn/2d(i).

Modulo 4, we need to prove that 2cn(i)−2cn/2(i) is divisible by 4. By Möbius inversion

formula, we have

cn(i) =
∑

d|(n,i)
μ(n/d)d,

where μ is the Möbius function. Note that if the divisor d of n is odd, we have

μ(n/d) =−μ(n/2d).

Therefore, if i is odd, then

cn(i) =−cn/2(i).

If i is even, we have

cn(i)− cn/2(i) =
∑

d|(n,i)
μ(n/d)d−

∑
d|(n/2,i)

μ(n/2d)d.

https://doi.org/10.1017/S1474748024000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000562


950 H. Yu

The sum over d | (n,i) can be decomposed into two parts following d is odd or d is even.

We deduce that for i being even,

cn(i) =
∑

d|(n/2,i)
μ(n/d)d+

∑
d|(n/2,i)

μ(n/2d)2d

=−
∑

d|(n/2,i)
μ(n/2d)d+

∑
d|(n/2,i)

μ(n/2d)2d

= cn/2(i).

We conclude that in either case, the number 2cn(i)−2cn/2(i) is divisible by 4.

(5) Let PR/S2 be the quotient of PR by the action of S2 = {1,σ}. Since Scr is non-

empty, every point in PR/S2 has a preimage of cardinality 2 in PR. The action of Frob∗

defines an action of PR/S2 since it commutes with σ. For any e= (a,σ(a)) ∈ PR/S2, if

Frob∗k(e) = e,

then we have either Frob∗k(a) = a or we have Frob∗k(a) = σ(a). Therefore,

cR(k)+ bR(k) = 2|(PR/S2)
Frob∗k |, ∀k � 1.

This proves the result.
(6) If Scr = ∅, then bR(k) = |PR| is either 1 or 0. If Scr 
= ∅, then it follows from (5)

because bR = 2 cR+bR
2 − cR.

(7) The function under consideration equals

cR+ bR
2

αSu
− bR

αSu
−βSu

2
.

It results from (4), (5) and (6) that this is a function of Lefschetz type.

6.2. HiggR is of Lefschetz type.

Theorem 6.2.1. Let o = (ov)v∈Scr
∈ R1

Scr
(Fq) so that every polynomial ov has distinct

roots and is split over κv if v ∈ Sr, and is irreducible if v ∈ Sc.

(1) The function over N∗:

HiggR(k) =
∑

V⊆Su⊗F
qk

(−1)|Su⊗F
qk

−V |2|V |q−k(4g−3+|V |+|Scr|)|M1
V (o)(Fqk)|

is of Lefschetz type in k.

(2) The number HiggR(k) is divisible by Pic(k) and the quotient function

k �→HiggR(k)/Pic(k)

is still of Lefschetz type.

Proof. (1) Let Fq : a �→ a1/q be the geometric Frobenius element in Gal(Fq/Fq). We use

the notation

U (1/q) := U ×Spec(Fq),Fq
Spec(Fq).
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Let us prove a lemma first.

Lemma 6.2.2. Let V ⊆ Su⊗Fqk . We know that

M1
Frob(V )

(o)∼=M1
V
(o)(1/q).

In particular, the relative Frobenius morphism induces a linear map:

F ∗
V :H∗

c (M
1
V
(o),Q�)−→H∗

c (M
1
Frob(V )

(o),Q�).

Let d be the least positive integer such that Frobd(V ) = V . Then the d-times composition

of F ∗
V coincides with the action of geometric Frobenius element Fqd ∈Gal(Fq/Fqd) (recall

that M1
V
(o) has an Fqd-structure).

Proof. Let R= (Scr⊗Fqd)∪V , and R= Scr ∪V , where V = V ⊗F
qd

Fq.

Note that the functor (·)(q) induces an equivalence of categories from (Sch/Fqd), the
category of schemes over Fqd , to itself. Its d -fold iterate is the identity functor. Suppose

that (E,ϕ,(Lx)x∈V ) is a parabolic Hitchin bundle over X. Then E(1/q) is again a vector

bundle over X, but the parabolic structures are imposed at points in Frob(V ). The map
E �→ E(1/q) is a bijection between M1

Frob(V )
(Frob(DR))(Fq) and M1

V
(DR)

(1/q)(Fq). With

this bijection θ, we can apply [34, Th. 4.6]. In fact, let T be a scheme defined over Fq and

(E,ϕ,(Lx)x∈Frob(V ))T be a flat family of parabolic Hitchin bundle over XT with parabolic

structures in Frob(V ). The associated parabolic Hitchin bundle (E,ϕ,(Lx)x∈Frob(V ))
(q)
T is

a flat family over XT (q) with parabolic structures in V . By [34, Th. 4.6, (4.6.4)], we obtain

a morphism T (q) →M1
V
(DR). Applying the functor (·)(1/q), we obtain T →M1

V
(DR)

(1/q).

Then [34, Th. 4.6, (4.6.5)] implies that M1
Frob(V )

(Frob(DR))
∼=M1

V
(DR)

(1/q).

It is clear that (R1
R
)(1/q) ∼=R1

Frob(R)
. We have the relative Frobenius morphism

(R1
R
)(1/q) −→ (R1

R
).

The scheme R1
Scr

is defined over Fq, and the relative Frobenius induces an identity on its

Fq-points. Since o ∈R1
Scr

(Fq), its embedding in R1
R
(Fq) is sent to o itself via the relative

Frobenius morphism (R1
R
)(1/q) −→ (R1

R
). These imply the first assertion.

We still denote the induced relative Frobenius morphism by FV :

FV :M1
Frob(V )

(o)−→M1
V
(o).

Note that by definition, the composition

FV ◦FFrob(V ) ◦ · · · ◦FFrobd−1(V )

coincides with the Frobenius endomorphism (i.e., the base change to Fq of the qd-
Frobenius morphism of M1

V (o)). On étale cohomology, its action coincides with the

geometric Frobenius element Fqd of the Galois group Gal(Fq/Fqd). The last assertion

hence follows.
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Let us choose a total order on Su. Note that Frob acts on Su. For any V ⊆ Su, let

inv(Frob|V )

be the inversion number of Frob on V (i.e., the number of pairs (x1,x2) of points in V
such that x1 < x2 and Frob(x1)> Frob(x2)).

For any subset V of Su, let us consider H∗(P1,Q�)
⊗V , where the tensor product

is understood as the tensor product of graded vector space. Let α be a generator in
H0(P1,Q�) and β be a generator in H2(P1,Q�).

We set

τ :H∗(P1,Q�)
⊗V −→H∗(P1,Q�)

⊗Frob(V )

as the map of graded vector spaces that sends an element in H∗(P1,Q�)
⊗V represented

by (axαx+ bxβ)x∈V to (axαFrob(x)+ bxβFrob(x))x∈Frob(V ):

τ((axαx+ bxβx)x∈V ) = (axαFrob(x)+ bxβFrob(x))x∈Frob(V ).

Let

H∗
V :=H∗

c (M
1
V
(o),Q�)⊗H∗(P1,Q�)

⊗V .

Let ς be a linear endomorphism

ς :
⊕

V⊆Su

Hi
V −→

⊕
V⊆Su

Hi
V

defined by

ς =⊕V (−1)inv(Frob|V )q3−4g−|V |−|Scr|F ∗
V ⊗ τ.

We will show that

(*) the eigenvalues of ς are q-Weil integers.
(**)

HiggR(k) =
∑
i

(−1)iTr

⎛⎝ςk| ⊕
V⊆Su

Hi
V

⎞⎠.
These two properties suffice to prove the theorem.
Let us prove (∗). It is sufficient to prove that for k divisible enough, the eigenvalues of

ςk are q-Weil integers. Let V ⊆ Su. Let dV � 1 be the smallest positive integer such that

V is defined over FqdV . Since the eigenvalues of Frobenius action on �-adic cohomology

are q-Weil integers, the only non-trivial point is to show that the eigenvalues of F ∗dV

V are

divisible by

qdV (4g−3+|V |+|Scr|).

This is a corollary of [38, Theorem 5.4.1] and Grothendieck-Lefschetz fixed point formula.

Now we prove (∗∗). Note that for any k, only those V fixed by ςk will contribute a non-

trivial trace. These are exactly those coming from subsets of Su⊗Fqk . The alternative
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trace
∑

i(−1)iTr(ςk|Hi
V ) equals

(−1)O(Frobk|V )−|V |q3−4g−|V |−|Scr|

times ∑
i

(−1)iTr(F
∗k/dV

qdV
|Hi

c(M
1
V
(o),Q�))

∑
i

(−1)iTr(τk|H∗(P1,Q�)
⊗V ).

Here, O(Frobk|V ) means the number of orbits of Frobk on V and Lemma 6.2.2 is used.

We have ∑
i

(−1)iTr(F
∗k/dV

qdV
|Hi

c(M
1
V (o)Fq

,Q�)) = |M1
V (o)(Fqk)|.

It reduces to prove that∑
i

(−1)iTr(τk|H∗(P1,Q�)
⊗V ) = 2O(Frobk|V ).

By multiplicativity on the orbits of Frobk of the two sides, it suffices to consider the case

that Frobk has only one orbit in V, in which case we can do the calculation by choosing

a basis (δxα+(1− δx)β)x∈I , where (δx)x∈I ∈ {0,1}I . It is clear that in this basis, τk is a
permutation matrix, and there are exactly two elements in the basis fixed by τk: those

given by δx = δx′ for all x,x′ ∈ I. Therefore, the left-hand side is 2 as well.

(2) The second assertion is a corollary of [38, Theorem 5.4.1] and the above arguments.

6.3. Proof of Theorem 1.1.1

The proof is based on Theorem 4.2.2 where we have computed the number of cuspidal
automorphic representations that correspond to elements in E2(R)Frob

∗
(Theorem 3.2.1).

We need to have an expression for E2(R)Frob
∗k

for k � 1. Since

X⊗Fq
Fq

∼= (X⊗Fq
Fqk)⊗F

qk
Fq,

and the Frobenius endomorphism of X obtained from X⊗Fq
Fqk is the kth power of the

Frobenius obtained from X, we can apply this theorem to the function field F ⊗Fq
Fqk . The

only difficulty remains that the ramification type on the automorphic side may change
when k varies. For example, a place can split into several places, and a supercuspidal

representation can become non-supercuspidal after base change.

Let us explain how ramification types on the automorphic side change when k varies.
First, a place v ∈ S of degree n corresponds to an orbit of length n of Frobenius

endomorphism on S. A place of F of degree n splits into (n,k)-points of degree n/(n,k)

of F ⊗Fq
Fqk for k � 1. For ramification types, suppose that

S⊗Fq
Fqk = Sr(k)

∐
Sc(k)

∐
Ss(k)

∐
Su(k)
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is a decomposition following the ramification type furnished by Theorem 3.1.2. Then we
have

Su(k) = Su(1)⊗Fq
Fqk

and

Ss(k) = Ss(1)⊗Fq
Fqk .

The sets Sr(k) and Sc(k) behave differently. If k is an odd number, we have

Sr(k) = Sr(1)⊗Fq
Fqk

and

Sc(k) = Sc(1)⊗Fq
Fqk .

However, if k is an even number, we have

Sr(k) = (Sr(1)⊗Fq
Fqk)∪ (Sc(1)⊗Fq

Fqk),

and

Sc(k) = ∅.

We obtain the cardinality |E2(R)Frob
∗ | by comparing Theorem 4.2.2 and Theorem 5.5.1

by the trace formula:

J1
spec(f) = J1

geom(f).

The theorem is then just a reformulation of the results using definitions of the functions

HiggR, αSu
, βSu

, ηSu
and ωSu

in Proposition 6.1.1 and the vanishing on cR and bR in

Lemma 4.5.1. Note that we have

S2Pic0X(Fq) =
1

2

(
|Pic0X(Fq2)|+ |Pic0X(Fq)|2

)
.

It is tedious but direct to verify. Let us be satisfied to explain how to verify the most

complicated case that Scr 
= ∅ and Su 
= ∅. It should be divided into some sub-cases. If
Sc = ∅, then |E2(R)Frob

∗k | is given by Higg(k) minus the error terms in one of the cases

(13), (14), (15), (16) of Theorem 4.2.2. If Sc 
= ∅, then for k odd, |E2(R)Frob
∗k | is given

by Higg(k) minus the error terms in one of the cases (1), (2), (4), (5) of Theorem 4.2.2,
but for k even, it is given by Higg(k) minus the error terms in one of the cases (13), (14),

(15), (16). We use the definition of αSu
and βSu

to write the result in a uniform formula.

One needs to note that by Lemma 4.5.1, bR(2k) = 0 if degSc is odd and cR(2k+1) = 0
if Sc 
= ∅.

7. The case g = 0

7.1. The case g = 0

We are going to give another expression for HiggR(k) when g = 0. Let R = Scr ∪Su and

DR =KX +
∑

v∈R v.
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Suppose that (e,ξ) ∈ Z× (Q2)R is in general position. We have a Gm-action on Me,ξ
R =

Me,ξ
R (DR) given by dilation on the Higgs field. We have a modular description for the

Gm-fixed points due to Hitchin and Simpson.
Suppose that (E,θ,(Lx)x∈R) is a parabolic Higgs bundle fixed by Gm-action. Then

(E,θ)∼= (E,tθ) for any t ∈Gm. By arguments of [30, Lemma 4.1], either (1)θ = 0 and the

underlying parabolic bundle (E,(Lx)x∈R) is ξ-semistable; or (2) θ 
= 0, E is decomposed

as a direct sum of line bundles

E = L1⊕L2,

and θ equals the composition

θ : E projection−−−−−−→L2 −→L1

⎛⎝KX +
∑
x∈R

x

⎞⎠ ↪→E

⎛⎝KX +
∑
x∈R

x

⎞⎠.
Note that if g = 0, the first case does not happen as there are no semistable parabolic

Higgs bundles of rank 2 when the (e,ξ) is in general position as defined by (1.2.1). Let

f : (E,θ,(Lx)x∈R)
∼−→ (E,tθ,(Lx)x∈R) be an isomorphism of parabolic Higgs bundles. Then

f has constant coefficient in Fq. Then we have{
fθ = tθf ;

f(Lx) = Lx, ∀x ∈R.

Let λ be an eigenvalue of f. Then Eλ := ker(f −λ)2 is a subbundle of E and θ sends Eλ
to Etλ. If θ is non-zero, then Eλ and Etλ are non-zero, and therefore, E = Eλ⊕Etλ. In this

case, either

Lx = Eλ,x
or

Lx = Etλ,x.

Therefore, (Me,ξ
R )Gm consists of so-called graded parabolic Higgs bundles, which we will

denote by grMe,ξ
R .

Theorem 7.1.1. Suppose that Fq 
= F2, ξv,1 = ξv,2 for v ∈ Su, (e,ξ) is in general position

defined by (1.2.1). Let grMe,ξ
R (Su) be the open subvariety of grMe,ξ

R = (Me,ξ
R )Gm consisting

of those graded semistable parabolic Higgs bundles (E,θ,(Lx)x∈R) such that θx 
= 0 for any

x lying over points in Su. Suppose g = 0, and Sc = ∅.
If either e is an odd integer or there is a place of odd degree in R, then we have

|grMe,ξ
R (Su)(Fqk)|=HiggR(k), ∀k � 1.

Proof. From Theorem 5.5.3, for any k � 1, the expression HiggR(k) is given by

HiggR(k) =
∑

V⊆Su⊗F
qk

(−1)|Su⊗F
qk

−V |2|V ||grMe,ξ
V ∪(Sr⊗F

qk
)(Fqk)|.

It suffices to verify the Theorem for the case k = 1.
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Let (E,θ,(Lx)x∈R) be a graded parabolic Higgs bundles. For each x ∈R, the fiber map

θx : Ex −→ E

⎛⎝KX +
∑
x∈R

x

⎞⎠
x

preserves the parabolic structure. It means that Imθx ⊆Lx and θx(Lx) = 0. Suppose that
θx is zero. Then it is possible that Lx = L1,x or Lx = L2,x. If θx is non-zero, then we can

only have Lx = L1,x. We obtain a stratification for any T ⊆ Su and x ∈ Su−T ,

grMe,ξ

R
(T ) =N(1x)∪N(2x)∪ grMe,ξ

R
(T ∪{x}),

where N(ix) consists of those (E,θ,(Lx)x∈R) in grMe,ξ

R
(T ) such that θx = 0 and Lx =

Li,x. Let v ∈ Su−T be a closed point in Su. Repeat the procedure above. We obtain a

decomposition of grMe,ξ

R
(T ) as a disjoint union by locally closed subvarieties:

grMe,ξ

R
(T ∪{v})∪

⋃
(ax)x∈{v}∈{1,2}{v}

N((ax)x∈{v}),

where N((ax)x∈{v}) consists of those (E,θ,(Lx)x∈R) in
grMe,ξ

R
(T ) such that so that θx = 0

for all x ∈ {v} and Lx = Lax,x.

Now we must consider how to descend to Fq. Since for an Fq-sub-variety Z defined

over Fq of grMe,ξ

R
= (grMe,ξ

R )
Fq
, it comes from a variety defined over Fq if it is fixed

by Frobenius, that is, Z(q) = Z as sub-varieties of grMe,ξ

R
where Z(q) is defined by the

Cartesian diagram:

Z(q) −−−−→ Z⏐⏐� ⏐⏐�
Spec(Fq)

x �→xq

−−−−→ Spec(Fq)

.

Here, it is important that Z(q) = Z instead of just isomorphism; otherwise, we do not

have a descent datum. The equality here is another way to express the commutativity of

the following diagram:

(Me,ξ

R
)(q)

∼−−−−→ (Me,ξ

R
)!⏐⏐ !⏐⏐

Z(q) ∼−−−−→ Z

.

We have

N((ax)x∈{v}) =N((aFrob(x))x∈{v})
(q).
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Therefore, we see that N((1x)x∈{v}) and N((2x)x∈{v}) are defined over Fq. The variety⋃
(ax)x∈{v}∈{1,2}{v}−{(1x)x∈{v},(2x)x∈{v}}

N((ax)x∈{v})

is defined over Fq, which has no Fq-points since Frobenius permutes its components
without any fixed component. Since ξv,1 = ξv,2 for v ∈ Su, as varieties, we have

N((1x)x∈{v})
∼= grMe,ξ′

R−{v}(T )

and

N((1x)x∈{v})
∼= grMe,ξ′

R−{v}(T ),

where ξ′ = (ξv)v∈R−{v} ∈ (Q2)R−{v} (it is still in general position because of our

assumption). Here, we remove the overline in the notation to indicate they are varieties

over Fq.
We deduce that for any T ⊆ Su and v ∈ Su−T ,

|grMe,ξ
R (T )(Fq)|= |grMe,ξ

R (T ∪{v})(Fq)|+2|grMe,ξ
R−{v}(T )(Fq)|.

By repeating this equality, we obtain the desired identity.

7.2. An example

Let us consider an example that X = P1 = P1
Fq
. Note that in this case, Ω1

P1
∼=OP1(−2).

Suppose S = {x1, . . . ,xn} ⊆ P1 is a finite set of closed points of degree 1. Namely, we
can identify S with a subset of P1(Fq). Let us consider those �-adic local systems over

P
1−S fixed by Frob∗ whose local monodromies around xi (i < n) are tame and are at

most unipotent, that is, they are either trivial at xi or are unipotent with one Jordan

block at xi, and they are at most quasi-unipotent with eigenvalues −1 at xn. We can
deduce either from Theorem 1.2.1 or from its proof directly that they are in bijection

with equivalent classes of semistable graded parabolic Higgs bundles composed of the

following data (simply because they have the same number):

E =OP1(m)⊕OP1(1−m),

θ : E −→OP1(m)−→OP1(−m+n−1)−→ E(n−2),

and parabolic structures

Lxi
=OP1(1−m)xi

, 1� i� n.

We choose parabolic weights to be zero. Then the semistability says that m is an integer

such that

m> 1−m.
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Note that θ exists if and only if

m�−m+n−1,

and when such a θ exists, the pair (E,θ) is semistable if and only if θ is non-zero. Therefore,

we have

1�m�
[
n−1

2

]
,

where [n−1
2 ] is the largest integer smaller or equal to n−1

2 .

Two graded parabolic Higgs bundles are isomorphic if and only if m is the same and θ
are differed by a non-zero scalar. In fact, two isomorphic graded parabolic Higgs bundles

have isomorphic underlying vector bundles. Therefore, m should be the same. Suppose

that (E,θ1) and (E,θ2) are graded parabolic Higgs bundles with E =OP1(m)⊕OP1(1−m).
It is clear that θ1 and θ2 are differed by a constant if and only if there is a ϕ ∈ Aut(E)
such that

(ϕ⊗ idΩ1
P1
)◦θ1 ◦ϕ−1 = θ2

(i.e., (E,θ1) and (E,θ2) are isomorphic).

We conclude from the above discussion that the moduli space of semistable graded

parabolic Higgs bundles of rank 2, degree 1, and for the zero parabolic weight is

∐
m

PHom(OP1(m),OP1(−m+n−1))∼=
[n−1

2 ]∐
m=1

Pn−1−2m.

In particular, the number of its Fq-points equals

n∑
i=3

[
i−1

2

]
qn−i. (7.2.1)

This number is also the number of �-adic local systems over P1
Fq
−S fixed by Frob∗ whose

local monodromies around xi (i < n) are tame and are at most unipotent, that is, they
are either trivial at xi or are unipotent with one Jordan block at xi, and they are at most

quasi-unipotent with eigenvalues −1 at xn. We cannot provide a natural bijection between

these objects from our method, but I get to know from Kang Zuo that in his work under
preparation joint with Jinbang Yang, when n= 4, they can construct a natural injective

map from graded parabolic Higgs bundles to �-adic local systems, which then is bijective.
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