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Many linear stability aspects in plasmas are heavily influenced by non-ideal effects beyond
the basic ideal magnetohydrodynamics (MHD) description. Here, the extension of the
modern open-source MHD spectroscopy code Legolas with viscosity and the Hall current
is highlighted and benchmarked on a stringent set of historic and recent findings. The
viscosity extension is demonstrated in a cylindrical set-up featuring Taylor–Couette flow
and in a viscoresistive plasma slab with a tearing mode. For the Hall extension, we show
how the full eigenmode spectrum relates to the analytic dispersion relation in an infinite
homogeneous medium. We quantify the Hall term influence on the resistive tearing mode
in a Harris current sheet, including the effect of compressibility, which is absent in
earlier studies. Furthermore, we illustrate how Legolas mimics the incompressible limit
easily to compare with literature results. Going beyond published findings, we emphasise
the importance of computing the full eigenmode spectrum, and how elements of the
spectrum are modified by compressibility. These extensions allow for future stability
studies with Legolas that are relevant to ongoing dynamo experiments, protoplanetary
disks or magnetic reconnection.
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1. Introduction

The open-source linear magnetohydrodynamics (MHD) spectroscopy code Legolas
was first introduced in Claes, De Jonghe & Keppens (2020, see also https://legolas.
science), and allows for computation of all linear eigenmodes and their eigenfunctions,
for one-dimensionally (1-D) stratified plasmas in a wide range of settings. Such
non-homogeneous 3-D plasma states with 1-D variation are very common, e.g.
in plane-parallel, gravitationally stratified atmospheres, in cylindrical set-ups for
Taylor–Couette experiments or in magnetic flux tubes or loops in the solar atmosphere.
MHD spectroscopy is useful to determine the complete stability properties of a given
force-balanced equilibrium state, and quantifies how this (in)stability is influenced by
specific equilibrium ingredients, such as the magnetic pitch, or the presence of non-trivial
background flows. In the original release (Claes et al. 2020), the linearised set of
compressible MHD equations included the (possibly combined) effects of flow, external
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gravity, resistivity, anisotropic thermal conduction and radiative cooling. The code was
tested and validated against a wide variety of theoretically known plasma stability
results, e.g. those from modern plasma physics textbooks focusing on MHD spectroscopy
(Goedbloed, Keppens & Poedts 2019). A typical application can be found in Claes &
Keppens (2021), where it was shown that especially the effect of radiative cooling in
a realistic, magnetised solar atmosphere model yields MHD eigenspectra dominated by
thermal instabilities and magneto-thermal overstabilities.

Ideal MHD stability aspects have been studied extensively in the plasma physics
literature, in various applications. For fusion devices such as tokamaks, a solid
understanding of instabilities is required to create MHD-stable operation conditions,
whilst in solar physics both stable wavemodes and instabilities are of interest to understand
the observed periodicities, or the evolution of initially stable coronal loops towards
destructive events such as coronal mass ejections. The non-adiabatic effects already
included in Claes et al. (2020) allow for investigation of radiatively driven processes such
as solar coronal rain or prominence formation. Non-ideal effects like resistivity are known
to introduce new paths to instability: the well-known resistive tearing instability (Furth,
Killeen & Rosenbluth 1963) has been the subject of many studies and received renewed
interest due to the role it plays in triggering magnetic reconnection events. However,
physical effects that were previously omitted in Legolas, in particular viscosity and
the Hall current, may influence growth rates or modify stability properties in a
significant way.

For resistive tearing and the resulting reconnection in particular, nonlinear simulations
have shown that the rates at which magnetic field lines reconnect (and convert magnetic
energy into kinetic or thermal energy in the process) can become much higher than
resistivity can account for on its own (see e.g. the review by Yamada, Kulsrud & Ji 2010).
Both viscosity and Hall effects are candidates for modifying the growth rate of the resistive
tearing instability. In fact, it has been known for quite some time that viscosity can act
as a stabilising mechanism (Coppi, Greene & Johnson 1966; Loureiro, Schekochihin &
Uzdensky 2013; Tenerani et al. 2015) whilst the Hall current may introduce destabilising
effects, resulting in faster reconnection rates (Terasawa 1983; Pucci, Velli & Tenerani
2017). Similarly, exploration of the relationship between resistivity and viscosity on tearing
by Dahlburg et al. (1983) revealed more intricacies of the growth rate as a function of
the resistivity and viscosity. More recent work has focused on evaluating the influence
of the Hall effect on the tearing instability in current sheets (Shi et al. 2020). We here
document the extension of Legolas with viscous and Hall terms, and benchmark our
MHD spectroscopy tool on these and some other published results. At the same time,
we show how we can easily extend published findings with full spectral knowledge, or
with quantifications of how incompressible and compressible regimes differ.

Whilst there are many more applications of Hall-MHD, such as the modification of
the magnetorotational instability (MRI) by the Hall current in protoplanetary accretion
discs (see e.g. the lecture notes by Lesur 2021) or the influence of the Hall current on
different instabilities in dynamo experiments (see e.g. Mishra, Mamatsashvili & Stefani
2022), these subjects are not treated in this current report, but are suitable to be investigated
with Legolas in future work. In particular, Legolas’s multirun framework is quite apt to
perform parametric studies exploring stability in function of the magnetic Prandtl number
in viscoresistive set-ups. Such studies could also benefit from the inclusion of ambipolar
diffusion, which we intend to implement in a future release of the code.

To demonstrate Legolas’s new capabilities, this paper is structured as follows. In § 2
we present a brief overview of the compressible MHD equations implemented in Legolas
(contrary to the incompressible equations that are often used for the tearing instability).
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Section 3 contains the main results of this paper, with the presentation of new diagnostic
tools in § 3.1, the viscosity module in § 3.2 and the Hall module in § 3.3. Finally, § 4
concludes the paper with a discussion of the preliminary results using these new Legolas
extensions.

2. Problem description and model equations

As presented in Claes et al. (2020), but extended here with previously ignored physical
effects, Legolas considers the full set of compressible MHD equations

∂ρ

∂t
= −∇ · (ρv), (2.1)

ρ
∂v

∂t
= −∇p − ρv · ∇v + J × B + ρg + F visc, (2.2)

ρ
∂T
∂t

= −ρv · ∇T − (γ − 1)p∇ · v − (γ − 1)ρL + (γ − 1)∇ · (κ · ∇T)

+(γ − 1)ηJ 2 + (γ − 1)Hvisc, (2.3)

∂B
∂t

= ∇ × (v × B) − ∇ × (ηJ ) − ∇ × J Hall, (2.4)

with variables ρ density, v velocity, T temperature, B magnetic field, p = ρT pressure and
J = ∇ × B the current density. We adopt a suitable dimensionalisation, so dimensional
factors like the gas constant or the permeability of vacuum no longer appear. The adiabatic
index is denoted by γ , and taken equal to 5/3 usually. Additionally, g is the (external)
gravitational acceleration, L the heat loss function, defined as energy losses (optically
thin radiation) minus energy gains (e.g. heating), κ the thermal conduction tensor and η
the resistivity. In this follow-up work, we focus on the additional viscous and Hall effects.
The viscous force term F visc in the momentum equation (2.2) and the viscous heating
term Hvisc in the energy equation (2.3) are introduced in § 3.2. The Hall term J Hall in the
induction equation (2.4) is detailed in § 3.3.

These eight nonlinear partial differential equations are linearised around a
one-dimensionally varying equilibrium

ρ0 = ρ0(u1), v0 = v02(u1) u2 + v03(u1)u3,

T0 = T0(u1), B0 = B02(u1) u2 + B03(u1) u3,

}
(2.5)

where in Cartesian coordinates u1 is the x-coordinate, and u2 and u3 are the unit vectors
in the then invariant y- and z-directions, respectively. In cylindrical coordinates, u1
is the radial coordinate, u2 is then a unit vector in the angular direction and u3 is
aligned along the cylinder axis. The dependence of the background equilibrium state
on the u1-coordinate is considered on a bounded domain (e.g. a slab of a plane-parallel
atmosphere of a given vertical extent, or a flux tube of given radius), whilst the other
coordinates are unrestricted (but the u2-coordinate is periodic in the cylindrical case).
The linearisation introduces the perturbations (ρ1, v1, T1, B1), which in principle are fully
three-dimensionally structured, time-dependent functions. Note that the indices 0 and 1
refer to equilibrium and perturbed quantities, respectively.

Subsequently, after adopting a vector potential A1 to describe the perturbed magnetic
field as B1 = ∇ × A1, a 3-D Fourier analysis is applied to all perturbed quantities
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(ρ1, v1, T1, A1) as

f1(r, t) = f̂1(u1) exp [i (k2u2 + k3u3 − ωt)] , (2.6)

introducing the wavevector k = k2 u2 + k3 u3 and the frequency ω (note that in the
cylindrical case, k2 is an integer usually denoted by m, enforcing annular periodicity).
In essence, this reduces the problem to a generalised eigenvalue problem

Ax = ωBx (2.7)

for matrices A and B, and the state vector x = (ρ1, v1, T1, A1)
�. Subsequently, it is

transformed using a finite element method, where the domain is discretised using a
specified number of grid points N and linear combinations of basis functions are
used to approximate all perturbed quantities f̂1(u1) in every subinterval. Note that this
discretisation and the subsequent construction of the matrices A and B means that the
number of output eigenmodes is directly related to the number of grid points N (for
more information, see Claes et al. 2020). The resulting eigenproblem is passed to a
QR solver from the LAPACK library (Anderson et al. 1999). The linearised equations
of this eigenvalue problem are given in Appendix A with the inclusion of the new
viscous and Hall contributions, listed in § 3.2 and § 3.3. The Legolas code then returns
couples of eigenvalues ω and state vectors x = (ρ1, v1, T1, A1)

�, each of which describes a
fundamental linear wave of the system. Any system may have both discrete and continuous
solutions, such that all of these eigenmodes in the spectrum either belong to a continuum,
or correspond to a discrete solution or overtone thereof (see e.g. Goedbloed et al. 2019).

For the boundaries in the u1-direction we consider perfectly conducting walls, i.e.

B · u1 = 0, v · u1 = 0 (2.8a,b)

at the edges (u1 is the normal to the wall). The choice of equilibrium above guarantees that
the equilibrium fields automatically satisfy these boundary conditions. For the perturbed
quantities, these boundary conditions become

v1 = 0, k3A2 − k2A3 = 0, (2.9a,b)

where v1 is the first component of the velocity perturbation v1 = (v1, v2, v3)
�, and A2 and

A3 denote components of the vector potential A1 = (A1, A2, A3)
�. However, instead of this

second equation the more stringent condition A2 = A3 = 0 is imposed if both k2 and k3 are
non-zero. If either wavevector component vanishes, only the corresponding A1-component
is set to zero, i.e. if k2 = 0 (k3 = 0), the constraint reduces to k3A2 = 0 (k2A3 = 0) and only
A2 (A3) is set to zero.

3. Code extensions and validation results

In this section, we present a couple of new features of the publicly available, open-source
Legolas code. The first extension allows for the computation of physically relevant,
derived quantities such as the perturbed magnetic field (as opposed to the auxiliary vector
potential A1) or the entropy perturbation (as opposed to the density or temperature
eigenfunction). These derived eigenfunctions are useful diagnostics, e.g. to evaluate
specific eigenmode changes due to viscosity and Hall extensions. Similar to Claes et al.
(2020), these viscosity and Hall modules were tested against a fair selection of recent to
historic literature results, as will be demonstrated further. However, whilst the effects of
flow, gravity, resistivity, thermal conduction and radiative cooling on full MHD spectra are
relatively well documented, the literature contains many fewer fully reproducible tests on
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the linear effects of viscosity and the Hall current. Also, relevant published results were
originally obtained using the incompressible MHD equations, i.e. satisfying ∇ · v = 0
whilst typically ignoring the energy equation and/or mass conservation equation. Since
the regular Legolas code uses the full set of compressible MHD equations, we want to be
able to approximate the incompressible regime. In theory, this corresponds to the γ → ∞
limit. In practice, we discard all terms in the energy equation’s right-hand side except
for the term −(γ − 1)p0∇ · v1, which relates to the finite pressure perturbation. Then,
the perturbed divergence becomes ∇ · v1 = ωT1/T0(γ − 1), whose real and imaginary
parts clearly go to zero for γ → ∞. Implementation-wise, γ is set to a value of 1012 such
that |∇ · v1| remains very small on the whole domain, usually yielding values smaller
than 10−12 in the region of the spectrum near the origin. The value of |∇ · v1| is indeed
observed to increase for increasingly large eigenvalues.

3.1. Derived eigenfunctions
There are various physical quantities of interest that can be derived from the eight
eigenfunctions (ρ1, v1, v2, v3, T1, A1, A2, A3) that Legolas computes (every eigenfunction
here is now using the changed notation f1 ≡ f̂1(u1) and belonging to a specific set
(k2, k3, ω)). The most evident is the perturbed magnetic field B1, which is a combination
of the Aj-eigenfunctions (j = 1, 2, 3), through

B1 = ∇ × A1 = i
(

k2

ε
A3 − k3A2

)
u1 + (

ik3A1 − A′
3

)
u2 + 1

ε
[(εA2)

′ − ik2A1]u3, (3.1)

where a prime denotes the derivative with respect to u1 from now on. We can similarly
compute its divergence ∇ · B1 to validate that it is numerically zero, and its curl, ∇ × B1,
yielding the perturbed current. Besides these magnetic-field-derived quantities, we can
also determine the divergence of the velocity perturbation ∇ · v1, which serves as a
diagnostic tool when exploiting the incompressible approximation, and the perturbed
vorticity ∇ × v1. Further worth mentioning is the entropy perturbation

S1 = ( pρ−γ )1 = ρ
1−γ

0 T1 + (1 − γ )ρ
−γ

0 T0ρ1, (3.2)

where we used the ideal gas law p = ρT to write the entropy in terms of density and
temperature.

In addition, in the presence of an equilibrium magnetic field B0, all perturbed vector
quantities (B1, ∇ × B1, v1, ∇ × v1) can be expressed in a reference frame consisting of
a component along the equilibrium magnetic field and two perpendicular components.
This is of interest to verify or determine the (theoretically expected) polarisations of
specific eigenmodes. Note that the unit vector u1 is always perpendicular to the equilibrium
magnetic field due to the chosen equilibrium form (2.5).

3.2. Viscosity
In MHD, viscosity appears as a force term F visc in the momentum equation (2.2). In
its most general form, F visc can be written as F visc = −∇ · π , where π denotes the
viscous stress tensor (Braginskii 1965). However, as shown by Erdélyi & Goossens
(1995), where the authors used the full viscous stress tensor, only the shear viscosity
contributes to resonant absorption, and the compressive and perpendicular components
have negligible effects. Hence, for a constant dynamic viscosity μ the viscous force is in
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good approximation equal to (see e.g. Goedbloed et al. 2019)

F visc = μ

[
∇2v + 1

3
∇(∇ · v)

]
. (3.3)

The linearisation of this expression is implemented in Legolas. Sometimes it is assumed
that the kinematic viscosity ν = μ/ρ is constant rather than the dynamic viscosity. This
introduces additional terms in the linearisation, which are not implemented in Legolas.
Note, however, that in a Cartesian set-up with constant ρ0 and v0 the additional terms
introduced by assuming a constant kinematic viscosity, rather than a constant dynamic
viscosity, vanish.

In addition to a contribution in the momentum equation, viscosity also adds a viscous
heating term (γ − 1)Hvisc to the energy equation (2.3). The source term Hvisc is given by
Hvisc = −(π · ∇) · v and is approximately (see e.g. Goedbloed et al. 2019)

Hvisc ≈ μ |∇v|2 . (3.4)

The linearisation of this approximation in Legolas assumes the Frobenius norm, resulting
in the linearised term

Hvisc,1 = 2μ

3∑
i=1

3∑
j=1

(∇v0)ij(∇v1)ij. (3.5)

Note that this contribution vanishes if the equilibrium flow is constant or zero, as is the
case for the set-up of § 3.2.2 whilst it introduces two non-zero terms for the set-up in
§ 3.2.1. However, since both set-ups employ the incompressible approximation, which
eliminates the energy equation, this term is not represented in either test case. Note
further that the background equilibrium flow v0 is always adopted as a stationary, Eulerian
flow, much like one normally computes eigenspectra for an ideal MHD equilibrium with
time-independent B0, even in the presence of a finite resistivity. The viscous terms are thus
omitted in the equilibrium equations.

The inclusion of viscosity also imposes additional no-slip boundary conditions at a rigid
wall. In essence, this implies that the total plasma velocity at the boundary equals the
wall’s velocity. Implementation-wise, we impose that the velocity perturbation v1 at the
boundary is exactly zero,

v1 = v2 = v3 = 0. (3.6)

As a consequence of the no-slip boundary condition, a non-zero equilibrium velocity at
a boundary then simulates a boundary moving at that constant speed. We use this to
study a viscous hydrodynamic Taylor–Couette flow below, which serves as a test case
for cylindrical geometry by comparing with results of Gebhardt & Grossmann (1993).
Additionally, the new viscosity module is tested in an MHD set-up using the results from
Dahlburg et al. (1983), where the authors study the tearing mode in a viscoresistive plasma
slab (i.e. in Cartesian geometry).

3.2.1. Viscous eigenspectra for Taylor–Couette flow
When considering a viscous fluid confined between two concentric cylinders that

both rotate with constant angular velocity, the flow established under no-slip boundary
conditions is called Taylor–Couette flow. A hydrodynamic equilibrium of this form,
studied spectroscopically under incompressible conditions in Gebhardt & Grossmann
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(1993), is given by a uniform density ρ0, and temperature and velocity profiles

T0(r) = 1
2

(
A2r2 + 4AB log(r) − B2

r2

)
+ C, v0(r) =

(
Ar + B

r

)
u2, (3.7a,b)

where C is an arbitrary constant to guarantee that T0 is positive everywhere and

A =
β −

(
R1

R2

)2

α

1 −
(

R1

R2

)2 , B = − R2
1(β − α)

1 −
(

R1

R2

)2 , (3.8a,b)

with α (β) the angular speed of the inner (outer) cylinder at radius R1 (R2). Since this is a
hydrodynamic test case, there is no equilibrium magnetic field B0.

Using the incompressible approximation in Legolas, four representative eigenspectra
from figure 3 in Gebhardt & Grossmann (1993) are recovered in figure 1(a–d). These
spectra feature two different types of modes, as described in Gebhardt & Grossmann
(1993), namely translational modes with v1 = 0 = v2 (with only a non-trivial v3(u1) =
vz(r) variation) and ‘azimuthal’ modes with non-zero v1 and v2 eigenfunctions and
v3 = 0. Admittedly, we recover the azimuthal modes but they do have a non-vanishing
v3 eigenfunction in the test cases with Legolas’s incompressible approximation. However,
we find that the spectra in figure 1(a,d) are almost identical in the compressible case (the
spectrum is more heavily influenced by compressibility for smaller radius-to-thickness
ratios), and the v3 eigenfunction indeed vanishes in the compressible set-up. Hence,
the incompressible approximation results in slightly spurious v3 eigenfunctions for
this case, presumably due to the vanishing of the k3v3 term in ∇ · v because k3 is
zero. The v3 eigenfunction is shown for a translational mode in figure 1(e), and the
v2 and v3 eigenfunctions of an azimuthal mode are shown in figures 1( f ) and 1(g),
respectively. The corresponding modes are marked in figure 1(d). These eigenmodes in
Legolas (ωL) are consistent with those reported by Gebhardt & Grossmann (1993) (ωG),
namely ωL = 1583.50 − 1053.70 i and ωL = 2406.82 − 579.55 i compared with ωG =
1583.56 − 1053.83 i and ωG = 2406.81 − 579.54 i. The Legolas eigenfunctions match
their eigenfunctions up to a complex factor (this represents the freedom to choose a
reference amplitude and phase in a linear eigenvalue problem) when comparing with their
figures 6(b) and 8(b).

Taking the analysis of Taylor–Couette flow one step further using the fully compressible
functionality of the code, we take a look at the entropy perturbation in the compressible
spectrum, motivated by the observation that the azimuthal modes have a non-zero entropy
perturbation whilst the translational modes have no entropy variation. In particular, we
compare the entropy perturbation with and without the inclusion of viscous heating in the
energy equation. Here, we use the set-up of figure 1(a) again, with parameters k2 = 1,
k3 = 0, R1 = 7/3, R2 = 10/3, β = 3 × 103, ρ0 = 1 and μ = 1, but without the
incompressible approximation, i.e. γ = 5/3. The compressible spectrum (without
viscous heating) is shown in figure 2(a). It is extremely similar to the corresponding
incompressible spectrum in figure 1(a) and is hardly influenced by viscous heating. The
entropy perturbations of an azimuthal mode (ω = 2529.12 − 485.63 i without viscous
heating; ω = 2529.66 − 485.80 i with viscous heating; marked by � in figure 2a) are
shown in figure 2(b,c) for the compressible case without and with viscous heating,
respectively. The viscous heating introduces a limited but noticeable change in the entropy
perturbation S.
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(a) (b) (c)

(d) (e) ( f )

(g)

FIGURE 1. Parts of the incompressible (γ → ∞) Taylor–Couette spectrum with an inner
cylinder at rest (α = 0) for k3 = 0, ρ0 = 1, μ = 1 and different parameter choices: (a) k2 = 1,
R1 = 7/3, R2 = 10/3, β = 3 × 103; (b) k2 = 2, R1 = 1, R2 = 2, β = 2.5 × 103; (c) k2 = 2,
R1 = 0.25, R2 = 1.25, β = 2 × 103; and (d) k2 = 3, R1 = 9, R2 = 10, β = 103. The modes
represented by a dot (or � in (d)) are translational modes with v1 and v2 numerically zero whilst
the crosses (and � in (d)) represent azimuthal modes with non-zero v1 or v2 components. (e) The
v3 eigenfunction of the translational (d)-eigenvalue ω = 1583.50 − 1053.70 i (�). ( f,g) The v1
and v2 eigenfunction, respectively, of the azimuthal (d)-eigenvalue ω = 2406.82-579.55 i (�).
Solid lines represent real parts, dotted lines imaginary parts. All runs were performed at 251 grid
points.

(a) (b)

(c)

FIGURE 2. (a) Part of the compressible Taylor–Couette spectrum (3.7a,b), with parameters
k2 = 1, k3 = 0, R1 = 7/3, R2 = 10/3, β = 3 × 103, ρ0 = 1 and μ = 1. Dots represent
translational modes, crosses (and �) are azimuthal modes. (b) Entropy perturbation S of the
azimuthal mode ω = 2529.12 − 485.63 i (�) without the inclusion of viscous heating. (c)
Entropy perturbation S of the azimuthal mode ω = 2529.66 − 485.80 i (�) with the influence
of viscous heating. Solid lines represent real parts, dotted lines imaginary parts. Both runs were
performed at 251 grid points.
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3.2.2. Viscoresistive plasma slab
As an MHD test case, consider the incompressible, viscoresistive stability analysis of

a plane-parallel plasma slab from Dahlburg et al. (1983), with equilibrium magnetic field
profile

B0 =
(

arctan αx − αx
1 + α2

)
u2, (3.9)

with parameter α, uniform density ρ0 and T0 positive and satisfying the constant total
pressure condition ∂(ρ0T0 + 1

2 B2
0)/∂x = 0. Note that the field is not force-free, and induces

a current

J 0 = α

(
1

1 + α2x2
− 1

1 + α2

)
u3, (3.10)

which vanishes at x = ±1, where we introduce perfectly conducting walls with a no-slip
boundary condition. The simultaneous inclusion of resistivity and viscosity in the linear
stability analysis leads to different tearing mode regimes, based on the resistivity η and
dynamic viscosity μ coefficients. The formulation in Dahlburg et al. (1983) actually
uses the kinematic viscosity ν = μ/ρ, but since they assume a uniform density and no
equilibrium flow, our constant μ formulation is equivalent. The relation between the
resistivity η and the kinematic viscosity ν is often expressed in terms of the magnetic
Prandtl number Pm = ν/η = μ/ρ0η. In the remainder of this section, Pm will vary
between 10−4 and 104. Note that ρ0 = 1 in all examples in this section, such that the Prandtl
number reduces to Pm = μ/η.

In Dahlburg et al. (1983), the authors give numerical values for the purely unstable
tearing eigenmode and show the v1x and B1x eigenfunctions of the tearing mode for a few
different values of η and μ as well as the evolution of the tearing mode growth rate as a
function of η, μ and the parallel wavenumber k2. Here, we reproduce these results using
Legolas.

First, we recover the eigenvalues and eigenfunctions for three cases: (a) η = μ = 10−3,
(b) η = 0.1, μ = 10−5 and (c) η = 10−5, μ = 0.1, all with ρ0 = 1, α = 10 and k = u2.
Due to Legolas’s incompressible approximation, the tearing modes from Legolas (ωL)
deviate slightly from those reported in Dahlburg et al. (1983) (ωD), namely (a) ωL =
0.1965 i compared with ωD = 0.19687 i, (b) ωL = 0.4393 i compared with ωD = 0.4397 i
and (c) ωL = 0.002531 i compared with ωD = 0.002537 i. The v1x and B1x eigenfunctions,
defined up to a complex factor and rescaled here for comparison with figure 2(c–e) in
Dahlburg et al. (1983), are shown in figure 3(a–c). The arbitrary complex factor is chosen
for each case such that all shown eigenfunctions are real.

Next, we reproduce the evolution of the tearing mode growth rate (d) as a function of
η−1 for fixed values of μ, (e) as a function of μ−1 for fixed values of η and ( f ) as a function
of k2 for fixed values of η and μ. In figure 3(d–f ) the tearing growth rate is shown for each
configuration of parameters, obtaining the positive growth rates shown in Dahlburg et al.
(1983) in their figures 6(a), 7 and 9, respectively. Once again, they agree very well. Note
that each marker represents a single Legolas run at 201 grid points.

Unlike Dahlburg et al. (1983), Legolas not only computes the tearing mode, but the
entire spectrum. Hence, we can also compare the purely resistive, purely viscous and truly
viscoresistive spectra for the same equilibrium profile (3.9). This is shown in figure 4 for
runs at 251 grid points. In this figure, the left column displays the incompressible limit
and the right column shows the fully compressible spectra. All spectra are supplemented
with the analytical, ideal MHD slow and Alfvén continua, which correspond to singular
solutions of the ordinary differential equation obtained through a reformulation of the
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 3. The v1x and B1x eigenfunctions are shown for the equilibrium (3.9) with ρ0 = 1,
α = 10, k = u2 and (a) η = μ = 10−3, (b) η = 0.1, μ = 10−5 and (c) η = 10−5, μ = 0.1. (d)
Growth rate as a function of η−1 for given values of μ. (e) Growth rate as a function of μ−1 for
given values of η. ( f ) Growth rate as a function of k = k2 u2 for (A) η = 10−2 and μ = 10−2;
(B) η = 10−3 and μ = 10−2; (C) η = 10−2 and μ = 10−3; (D) η = 2 × 10−3 and μ = 2 × 10−3.
All runs were performed at 201 grid points.

ideal MHD equations in terms of the x-component of the Lagrangian displacement field.
It can be shown for homogeneous backgrounds (see e.g. Goedbloed et al. 2019) that in
the presence of resistivity the Alfvén and slow modes trace out semi-circles in the stable
part of the spectrum with infinitely degenerate (collapsed) continua. For inhomogeneous
resistive spectra the ideal continuum ranges will relocate to collections of discrete modes
in the stable half-plane, still resembling the semi-circular curves, as seen in figure 4(a,d),
which will have links to extremal or edge values of the ideal continua. Figure 4(b,e)
now shows that viscosity exerts a similar influence as resistivity. Finally, figure 4(c, f )
represents modified variants of the semi-circle-like curves in the other panels, due to the
combined effects of viscosity and resistivity. Since the ideal slow and Alfvén continua
partially overlap and are symmetric with respect to the imaginary axis, the slow continuum
is only drawn in the left half-plane (red dashed line) and the Alfvén continuum in the right
half-plane (cyan solid line). In the left column, the slow continua are eliminated by the
incompressible assumption.
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 4. Comparison of spectra for equilibrium profile (3.9) for resistive (a,d), viscous
(b,e) and viscoresistive (c, f ) cases. The left column (a–c) represents the incompressible
approximation, the right column (d–f ) the compressible equations. All runs use parameters
k = u2, ρ0 = 1 and α = 10. In case of resistivity (viscosity), the parameter is η = 10−3 (μ =
10−3). The cyan solid and red dashed lines represent the ideal MHD Alfvén and slow continua,
respectively. Both continua are symmetric with respect to the imaginary axis, but only shown in
one half-plane to avoid overlap. All runs were performed at 251 grid points.
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The first row of figure 4(a,d) shows the resistive slab with η = 10−3. This case is well
known and discussed in e.g. Goedbloed et al. (2019). In panel (a), the Alfvén modes form
a semicircle and the slow (magnetoacoustic) modes are eliminated by the incompressible
approximation. In the compressible case of panel (d), the slow modes reappear as the
inner semicircle. Finally, both the compressible and incompressible spectra feature a
resistive tearing mode, as the only purely unstable eigenmode of this system for the chosen
parameters.

The second row of figure 4(b,e) on the other hand shows the viscous case with μ = 10−3.
The result looks surprisingly similar to the resistive case, with both the slow and Alfvén
modes taking on the same semicircular shape of similar magnitude (note that the axes are
scaled identically in panels a,b,d,e). Whilst there are many minute differences with the
resistive case in the first row, the key difference is the absence of a tearing mode in the
viscous spectra.

Ultimately, the third row (panels c, f ) shows the viscoresistive spectrum with η = μ =
10−3. Although resistivity and viscosity exert a similar influence on the slow and Alfvén
modes when they are the only physical effect in consideration, the combination of both
effects reveals new behaviour in both the incompressible (panel c) and compressible case
(panel f ). Whilst the slow and Alfvén branches still originate in the same point on the real
axis, the semicircular structures are replaced by stretched-out curves along the imaginary
axis. The resistive tearing mode is still present, but damped by the viscosity. Therefore,
the changes are most pronounced on the stable and damped parts of the spectrum, whose
physical relevance must also consider the fact that the ideal MHD equilibrium itself will
evolve on a specific diffusive time scale when viscoresistive effects are active.

3.3. Hall-MHD
The induction equation, given by the Maxwell–Faraday equation

∂B
∂t

= −∇ × E, (3.11)

can be extended to include the effects of the Hall current, electron pressure and electron
inertia by expressing the electric field E using the (dimensionless) generalised Ohm’s law

E = −v × B + ηJ + ηH

ρ
(J × B − ∇pe) + ηe

ρ

∂J
∂t

. (3.12)

Here, pe denotes the electron pressure and is related to p through the electron fraction
fe as pe = fep, with fe = ne/(ne + np) = 1/2 for a charge-neutral electron–proton plasma.
Furthermore, ηH and ηe are the normalised Hall and electron inertia coefficients,

ηH = mi

e
VR

LRBR
, ηe = memi

e2

(
VR

LRBR

)2

, (3.13a,b)

respectively. Here, e denotes the fundamental charge, mi and me are the ion and electron
mass, respectively, and VR, LR and BR are the reference velocity, length and magnetic field
strength. Consequently, the electron inertia coefficient ηe is several orders of magnitude
smaller than the Hall coefficient ηH . Therefore, the effect of electron inertia is usually
negligible. Hence, most results in the literature do not include it. Whilst this effect is
implemented in Legolas, the reference tests that follow all set ηe = 0, so its effect is only
quantified for one limit case here. It should also be pointed out that any equilibrium
of the form (2.5) that satisfies the ideal MHD equilibrium conditions, also satisfies the
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Hall-MHD equilibrium conditions (neglecting electron inertia) because the Hall term in
the induction equation (2.4), given by

∇ × J Hall,0 = ∇ ×
[
ηH

ρ0
(J 0 × B0 − ∇pe0)

]
, (3.14)

reduces to zero. For the first term this follows because B0 and J 0 both lie in the u2u3-plane,
such that their vector product is proportional to u1, and since they only depend on u1, this
implies that ∇ × f (u1) u1 = 0. The second term is the curl of a gradient, which is always
zero. Note that whilst there are many similarities between the resistive and Hall terms,
here they differ since the resistive term does not disappear in the induction equation (2.4)
for an equilibrium of the form (2.5). As pointed out in Claes et al. (2020), the resistive
term is neglected in the equilibrium equations by assuming that the time scales on which
magnetic fields decay is much larger than the time scales of resistive modes.

The Hall and electron pressure terms in the induction equation are not implemented
directly in Legolas as written in equation (3.12). Instead, J × B is substituted into this
expression using the momentum equation (2.2) as done in e.g. Ahedo & Ramos (2009)
because it is observed to be more stable numerically. The result is

E = −v × B + ηJ + ηH

{
∂v

∂t
+ v · ∇v − g − μ

ρ

[
∇2v + 1

3
∇(∇ · v)

]
+ ∇pi

ρ

}
+ ηe

ρ

∂J
∂t

. (3.15)

This equation now features the ion pressure pi instead, which is related to the total
pressure as pi = (1 − fe)p. Note that this expression for the electric field now has two time
derivatives on the right-hand side, which will then enter the induction equation. Exploiting
A1 instead of B1, the linearised induction equation becomes ∂A1/∂t = −E1. Hence, we
linearise equation (3.15), allowing for a temperature-dependent Spitzer resistivity η(T),
which gives

E1 = −v1 × B0 − v0 × (∇ × A1) + η0∇ × (∇ × A1) + dη

dT
T1∇ × B0

+ ηH

{
∂v1

∂t
+ v1 · ∇v0 + v0 · ∇v1 − μ

ρ0

[
∇2v1 + 1

3
∇ (∇ · v1)

]
+μ

ρ1

ρ2
0

[
∇2v0 + 1

3
∇ (∇ · v0)

]
+ ∇pi1

ρ0
− ρ1∇pi0

ρ2
0

}
+ ηe

ρ0

∂

∂t
[∇ × (∇ × A1)] − ηe

ρ1

ρ2
0

∂

∂t
(∇ × B0) . (3.16)

This expression can be simplified by observing that the term ∇pi1/ρ0 can be written as

∇pi1

ρ0
= ∇

(
pi1

ρ0

)
+ ∇ρ0

ρ2
0

pi1. (3.17)

Hence, this term is a pure gradient if ρ0 is uniform. Since the electric field is only defined
up to a gradient, we can redefine it as Ẽ1 = E1 − ηH∇( pi1/ρ0) (with E1 expression (3.16))
such that after substituting (3.17) pi1 only appears in Ẽ1 in the term ηHpi1∇ρ0/ρ

2
0 , and thus

only if ρ0 is not uniform. The resulting induction equation ∂A1/∂t = −Ẽ1 is implemented
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in the code. Note that in the generalised eigenvalue problem (2.7) resulting from the
Fourier analysis (2.6) the time derivatives in the Hall and electron inertia terms enter
in the B-matrix and break its former symmetry.

In what follows, we present a series of stringent test cases to validate our Hall-MHD
linear solver.

3.3.1. Hall-MHD waves in a homogeneous plasma slab
For the first test case, consider a homogeneous Cartesian plasma slab confined between

two perfectly conducting walls (perpendicular to the x-axis). The equilibrium is given by

ρ0 = 1, T0 = 1, B0 = u3, (3.18a–c)

and our normalisation is chosen such that ηH = 1. We want to quantify Hall-MHD
eigenmodes of this slab, where we can compare with the analytical result of waves for
an infinite homogeneous plasma in Hameiri, Ishizawa & Ishida (2005), where they give
the dispersion relation (temporarily reintroducing dimensions)(

ω

kvA0

)6

−
(

ω

kvA0

)4 [
1 + γ T0

v2
A0

+ cos2 θ

(
1 + (kηH)2

ρ0

)]
+

(
ω

kvA0

)2

cos2 θ

[
1 + γ T0

v2
A0

(
2 + (kηH)2

ρ0

)]
− γ T0

v2
A0

cos4 θ = 0. (3.19)

Here, k is the magnitude of the wavevector k, θ is the angle between k and B0 and vA0 =
|B0|/√μ0ρ0 is the equilibrium Alfvén speed, where μ0 is the vacuum permeability. The
inclusion of the Hall term introduces a length scale into the previously scale-independent
MHD equations through the ion skin depth di = ηH/

√
ρ0. This makes the Hall-MHD

waves dispersive as seen from the above dispersion relation. To simulate an infinite
medium, we need to ensure that the ratio of the equilibrium ion skin depth to the system
size is sufficiently small. Hence, for the choice of di0 = 1, we solve in the interval
x ∈ [0, 103]. The exact choice of interval size is largely arbitrary, but it should be kept
in mind that when we increase the interval size, we may also be forced to increase the
resolution to ensure that Legolas picks up the Hall modes. This is due to the fact that
the grid resolution can be directly linked to the dimensions of the A and B matrices in the
eigenvalue problem (2.7), and thus also to the number of eigenvalues returned.

Since the medium in Legolas is bounded in the x-direction, each solution of the
dispersion relation (3.19) should approximate the first mode in a sequence in the spectrum,
which can be verified by the number of nodes in the mode’s corresponding eigenfunctions.
For given angles θ , the first mode of each sequence is shown in figure 5(a) alongside
the theoretical curves and a comparison with the ideal MHD dispersion relation. A full
spectrum version is also shown in figure 5(b). As can be seen in (3.19), in the case of
perpendicular propagation the dispersion relation is not influenced by the Hall parameter
(cos θ = 0). There, the highest mode reduces to the regular fast MHD mode and the lower
two modes (slow and Alfvén) vanish, also visible in figure 5(a,b). The spectrum itself
is shown for an angle θ ≈ 0.564 in figure 5(c) alongside the analytical infinite-medium
solutions, each one corresponding to the start of a sequence, indicated by vertical lines.
The sequences themselves, whose modes are much more tightly packed than in the ideal
MHD sequences, are shown in the insets of figure 5(c). The smallest sequence displays
anti-Sturmian behaviour, similar to the ideal MHD slow modes, whilst the two larger
sequences behave in a Sturmian way, like the ideal MHD Alfvén and fast modes.

Furthermore, the (real) ρ1 eigenfunctions of the first three modes in the smallest
sequence of the θ ≈ 1.007 spectrum are given in figure 5(d). Contrary to the slow,
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(a) (c)

(d)

(e)(b)

FIGURE 5. (a) Comparison of the first mode of each sequence (dots) with the theoretical Hall
prediction by Hameiri et al. (2005) (solid lines) and ideal MHD (dashed lines) as a function
of the angle θ between k = π(sin θ u2 + cos θ u3) and B0 = u3 with ρ0 = 1, T0 = 1, ηH = 1
and x ∈ [0, 103]. (b) Comparison of the full spectrum with MHD and Hall-MHD solutions for
the set-up from (a). (The isolated branches are unresolved modes.) (c) Spectrum for an angle
θ ≈ 0.564 with the three (positive) solutions of the dispersion relation (3.19) as vertical (dotted)
lines. (d) The ρ1 eigenfunctions of the first three modes of the smallest solution sequence for
θ ≈ 1.007. (e) Comparison of the full spectrum with ideal and Hall-MHD predictions for varying
wavenumber for k = k (u2/2 + √

3 u3/2), B0 = u3, ρ0 = 1, T0 = 1, ηH = 1 and x ∈ [0, 103].
All runs were performed at 501 grid points.

Alfvén, and fast modes in ideal MHD, the density perturbation vanishes at the edges
here. This behaviour is easily derived from the equations in Appendix A for the
adiabatic homogeneous set-up considered here. Neglecting equilibrium flow, resistivity
and viscosity, and applying the perfectly conducting wall boundary conditions ṽ1 = ã2 =
ã3 = 0 (with the tildes indicating the transformed variables A1) reduces the second
and third components of the induction equation (A7) and (A8) to ṽ2 = 0 and ṽ3 = 0,
respectively, for non-zero frequency. Since these equations vanish altogether for an
adiabatic homogeneous set-up in ideal MHD, these emerging no-slip boundary conditions
are naturally imposed by the Hall current. Using these newfound conditions alongside
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the others in the continuity equation (A2), the third component of the momentum
equation (A5), and the energy equation (A9) reduces these equations to ωρ̃1 = −ρ0ṽ

′
1,

k3(ρ̃1T0 + ρ0T̃1) = 0 and ωT̃1 = −(γ − 1)T0ṽ
′
1, respectively, where we also used that

B02 = 0 in our reference frame (for a different reference frame a linear combination of
(A4) and (A5) gives similar results for any constant B0). Combining all three implies
that ρ̃1 = T̃1 = ṽ′

1 = 0 at the wall boundaries. Since this derivation made no assumptions
about the waves, this behaviour is present for all modes in the adiabatic homogeneous
Hall spectrum. Note, however, that it only holds for oblique angles between k and B0.
If k is parallel to B0 and along the y- or z-axis in a reference frame of choice, either
ã2 = 0 or ã3 = 0 does not hold and therefore the other equations do not reduce in the way
described above. Therefore, for parallel propagation the density perturbation is non-zero
at the boundaries, just like in the ideal MHD case.

Finally, figure 5(e) shows the dispersion of all three sequences by comparing the full
spectrum for different wavenumbers with the theoretical ideal MHD and Hall-MHD
predictions (the dispersive nature of the middle sequence is more subtle). This dispersive
behaviour identifies the largest sequence as the so-called whistler wave, which derives its
name from the property that higher frequencies travel faster such that higher frequencies
reach observers at earlier times than lower frequencies. The smallest sequence is
sometimes called the ion cyclotron wave because its frequency approaches Ωi cos θ
asymptotically for increasing wavenumber, where Ωi = ZeB0/mi is the ion cyclotron
frequency with Z the charge number, e the fundamental charge and mi the ion mass (in
Legolas, the ions are protons). Note that the final (intermediate) mode in this panel, which
is related to the MHD Alfvén wave and two-fluid A mode (De Jonghe & Keppens 2020),
fails to capture the electron cyclotron resonance ω → Ωe cos θ (Ωe = eB0/me, with me
the electron mass) in the short wavelength (large wavenumber) limit, which is present in
the two-fluid description, because ηe (∝ me) was set to zero (Hameiri et al. 2005). It has
been verified that the sequences indeed start at the theoretical Hall-MHD results (up to an
error of 10−5 at 501 grid points and a ratio of 10−3 of ηH to slab thickness), even though
it is somewhat unclear in this image due to the large frequency range and the proximity of
various sequences.

As a quick test of the electron inertia term, it is shown in figure 6 that the inclusion of
this term (ηe �= 0) captures the behaviour near the electron cyclotron resonance for large
wavenumbers.

3.3.2. Resistive Harris sheet: tearing in Hall-MHD
In Shi et al. (2020), the authors investigate the influence of the Hall current on the

resistive tearing mode of a Harris current sheet. The equilibrium profile takes the form

ρ0 = ρ̃0, T0 = B2
0

2ρ̃0
sech2

( x
a

)
, B0 = B0 tanh

( x
a

)
u2 + Bg u3, (3.20a–c)

with ρ̃0 = B0 = a = 1 and Bg a variable guide field parameter. The included physical
effects are a constant resistivity η = 10−4 and a Hall current with coefficient ηH = 1.
As explained earlier, in the vector potential formulation in Legolas we include the Hall
term and the electron pressure term, but in this test we ignore the electron inertia effect
(i.e. ηe = 0). Furthermore, Shi et al. (2020) assume incompressibility, so we also use the
incompressible approximation (large γ ) in Legolas.

Shi et al. (2020) solve for the tearing mode on the interval x ∈ [−15, 15] and assume
exponential decay of the perturbed quantities outside of that interval since the profile
(3.20a–c) is approximately constant there for the chosen parameters. In Legolas, the default
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(a) (b)

FIGURE 6. Comparison with the theoretical Hall-MHD curves from Hameiri et al. (2005,
where ηe = 0) and two-fluid resonances (Ωe cos θ , Ωi cos θ ) of the frequency ω as a function
of wavenumber k in Hall-MHD (a) without electron inertia (ηe = 0) and (b) with electron inertia
(ηe �= 0). The set-up is identical to the one used in figure 5(e). All runs were performed at 501
grid points.

boundary settings are conducting wall boundary conditions at a finite distance, which
may modify the linear MHD spectrum due to e.g. wall stabilisation effects. However, for
a = 1 the interval [−15, 15] seems large enough such that the stabilising influence of the
conducting walls is expected to be negligible. Our results are shown for two different
values of k2 in figure 7, recovering figure 4 in Shi et al. (2020). In this figure, we show
the growth rate Im(ω) and frequency Re(ω) in top and bottom panels, respectively. Each
marker represents the tearing mode in a Legolas run at 501 grid points and a Laplace
distributed grid was used to focus the grid points around the region of strongest change
in equilibrium magnetic field at x = 0. Note that the non-zero Re(ω) values are due to
the inclusion of the Hall terms, which results in spectrum asymmetry with respect to the
imaginary axis here, similar to equilibrium flow. For any guide field value Bg, the growth
rate is influenced by the wavevector, with the maximum growth rate depending on both
wavevector components, k2 and k3. Whilst the real part of the frequency Re(ω) has an
extremum as a function of k3 in the presence of a guide field (Bg �= 0), |Re(ω)| increases
linearly with increasing k3 in the absence of a guide field (Bg = 0), until the tearing mode
is fully damped.

Besides quantifying the tearing mode complex eigenfrequencies, Shi et al. (2020) also
reported on the tearing mode eigenfunctions. Up to a complex factor, the eigenfunctions
obtained by Legolas, shown in figure 8, match the results in the first two rows of figure 7
in Shi et al. (2020). For the cases in figures 8(a,d) and 8(b,e), where Bg = 0, the B1 and v1
eigenfunctions are symmetric and antisymmetric, respectively, with respect to the location
of the Harris sheet (x = 0) whereas the (anti)symmetry is broken with the introduction of
a non-zero guide field Bg (panel c, f ).

Shi et al. (2020) only quantify incompressible linear eigenmodes, which they justify by
stating that the resistive tearing mode has a negligible contribution due to compressibility,
based on the reasoning followed by Furth et al. (1963). We can here easily verify
that assumption, using the full compressible functionality of Legolas. It appears that
the inclusion of Hall terms in the treatment of the tearing mode causes differences in
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(a)

(b)

(c)

(d)

FIGURE 7. The real (b,d) and imaginary (a,c) parts of the tearing mode in a Harris current sheet
(3.20a–c) as a function of k3, with ρ̃ = 1, a = 1, B0 = 1, η = 10−4 and ηH = 1 for different
guide field strengths Bg. (a,b) k2 = 0.155; (c,d) k2 = 0.5. All runs were performed at 501 grid
points.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 8. The incompressible tearing mode’s v1 and B1 eigenfunctions for η = 10−4, ηH = 1
and k2 = 0.5, with different values of k3 and Bg: (a,d) k3 = 0, Bg = 0; (b,e) k3 = 0.06, Bg = 0;
and (c, f ) k3 = 0.06, Bg = 5. Real parts are shown as solid (blue) lines, imaginary parts as dotted
(orange) lines. All runs were performed at 501 grid points.
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incompressible vs compressible plasma settings. The influence of compressibility is shown
in figure 9(a,b), where the compressible growth rate and frequency, respectively, are shown
for k2 = 0.155, to be compared with the incompressible case in figure 7(a,b). Although
Furth et al. (1963) showed that compressibility has a negligible effect on the resistive
tearing mode, which our tests with Legolas also confirm, their treatment did not take
the Hall current into account. When the Hall terms are taken into account, the effect
of compressibility on the resistive tearing mode growth rate is no longer negligible.
In particular, stronger guide fields result in stronger damping of the growth rate, as
evidenced by figure 9. Additionally, new unstable modes appear in the spectrum and
become more unstable than the tearing mode for sufficiently large k3. These are Hall
instabilities, occurring in a Cartesian slab when the magnetic field is sufficiently curved,
i.e. if ∂2B0/∂x2 is non-zero (Rheinhardt & Geppert 2002). The ranges where the largest
Hall instability overtakes the tearing instability as the most unstable mode are indicated in
figure 9(a) with lines on the horizontal axis. The part of a spectrum containing the tearing
mode and the other unstable modes is shown in figure 9(c).

4. Conclusion and outlook

In this paper, the extension of the MHD spectroscopy code Legolas (Claes et al.
2020) with viscosity and the Hall current was presented and verified using test cases
taken from the literature. To validate the implementation of the viscosity module,
we first accurately reproduced the spectrum and eigenfunctions of an incompressible,
hydrodynamic Taylor–Couette flow in a cylindrical set-up, taken from Gebhardt &
Grossmann (1993), with the newly implemented incompressible approximation. As a
second test case, we considered the Cartesian MHD equilibrium with finite resistivity
from Dahlburg et al. (1983), where we reproduced their results concerning the interplay
of viscous and resistive effects on the growth rate of the resistive tearing instability.
As an extension of their results, we showed that the full resistive and viscous spectra
are extremely similar, with the prominent distinction that the viscous spectrum does
not have an unstable tearing mode. The combination of viscous and resistive effects
was mostly seen in the stable part of the spectrum, and its role in further nonlinear
evolutions warrants further exploration. However, since both viscosity test cases used the
incompressible approximation, which eliminates the energy equation, the viscous heating
term did not play a role. For one selected Taylor–Couette case it was shown that the
viscous heating did not significantly alter the spectrum, but had a limited influence on
the entropy perturbation. The flexible Legolas implementation allows for future linear
stability studies with or without viscous heating. Such viscoresistive stability studies of
magnetised Taylor–Couette set-ups can be very important for aiding the interpretation of
dynamo experiments (Willis & Barenghi 2002; Rüdiger et al. 2007), and especially to
determine when the MRI is sufficiently suppressed by viscoresistive effects (Eckhardt &
Herron 2018) to create stable configurations.

To test the implementation of the Hall module, another two cases were considered.
The simplest case considered an ideal, homogeneous, Cartesian plasma slab with a Hall
current. For a small ratio of ion inertial length to plate separation this case is comparable
to the infinite, homogeneous medium, described by the dispersion relation of Hameiri
et al. (2005). The solutions of the infinite medium corresponded to the first modes in
several sequences of modes, as evidenced by the eigenfunctions, which is expected when
going from an infinite medium to a semi-infinite medium that is bounded in one direction.
Whilst the smallest sequence behaves anti-Sturmian, the larger two display Sturmian
behaviour. All three wave sequences become dispersive in Hall-MHD, and the smallest
and largest sequences are known as ion cyclotron and whistler modes respectively. The
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(a) (b)

(c)

FIGURE 9. The real (a) and imaginary (b) parts of the compressible tearing mode in a Harris
current sheet (3.20a–c) as a function of k3, with k2 = 0.155, ρ̃ = 1, a = 1, B0 = 1, η = 10−4

and ηH = 1 for different guide field strengths Bg, to be compared with the incompressible case
in figure 7(a,b). The horizontal lines in (a) indicate the ranges where the tearing mode is not the
most unstable mode in the spectrum. (c) Spectrum from the Bg = 5 series with k3 ≈ 0.015346.
The tearing mode is circled in red. All runs were performed at 501 grid points.

middle sequence fails to capture the electron cyclotron resonance because the electron
mass was set to zero. If the electron inertia term is included as well, the electron cyclotron
resonance is recovered.

The more advanced test case also included resistivity and evaluated Hall effects on
the resistive tearing mode growth rate in a Harris sheet set-up described by Shi et al.
(2020). The reproduction of these results required an incompressible approximation, but a
good match between both the tearing mode and the eigenfunctions was achieved. However,
contrary to the assumption of Shi et al. (2020) that compressibility has a negligible effect
on the resistive tearing mode, which was shown for the purely resistive MHD case by
Furth et al. (1963), a guide field introduces a non-negligible damping effect when both
compressibility and the Hall current are considered.

Our Legolas tool can now be used to combine and explore linear eigenmodes and
full eigenspectra for cases where we have multiple effects at play, such as the influence
of equilibrium flow or non-uniform equilibrium density, the combination of Hall and
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viscosity and the electron inertia term. However, the effect of the latter is likely negligible
in many cases because the electron inertia coefficient ηe is several orders of magnitude
smaller than the Hall coefficient ηH .

The inclusion of viscosity and the Hall current opens up various research avenues, such
as the investigation of the influence of viscosity in resistive set-ups, and in particular
how the introduction of viscosity affects resistive instabilities like the resistive tearing
mode discussed in § 3.2.2. For the Hall current it is now possible to examine its effect on
the previously mentioned MRI in accretion discs (Lesur 2021) or to explore instabilities
requiring a Hall current, such as the Hall-shear instability (Kunz 2008). In the context
of the MRI, a similar future extension of the Legolas code can implement ambipolar
diffusion as a proxy for charge-neutral decoupling effects. This would also introduce the
ambipolar-diffusion-shear instability (Kunz 2008).

Looking ahead, this extension brings Legolas one step closer to describing realistic 1-D
set-ups. We foresee that the tool can even be used to identify the modes responsible for
specific evolutions seen in 2-D and 3-D nonlinear simulations, when we can describe the
instantaneous multidimensional MHD fields with a (e.g. height and azimuthally averaged)
force-balanced 1-D background state, and which physical effects play a relevant role in
observed growth rates. Furthermore, since Legolas captures both fundamental modes and
overtones, it can act as a tool in the analysis of observed waves and overtones in coronal
loop seismology (see e.g. Andries et al. 2009), albeit in the infinite cylinder approximation,
and tokamaks (see e.g. Ochoukov et al. 2018; Spong et al. 2018), although toroidal effects
are lost in the cylinder set-up. In the future, vacuum or vacuum-wall boundary conditions
could be implemented to better model these physical systems.

Supplementary material

The Legolas code is freely available under the GNU General Public License. For more
information, visit https://legolas.science/.
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Appendix A. Linearised equations

As explained originally in Claes et al. (2020), after the Fourier analysis (2.6) the
variables are transformed as

ερ1 → ρ̃1, iεv1 → ṽ1, v2 → ṽ2, εv3 → ṽ3,

εT1 → T̃1, iA1 → ã1, εA2 → ã2, A3 → ã3,

}
(A1)

where ε is a scale parameter equal to 1 in Cartesian set-ups and equal to r in the cylindrical
case. In these new variables (dropping tildes below for notational convenience), the full
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equations, including viscosity and Hall, are implemented in Legolas in the form

ωρ1 = −ρ ′
0v1 − ρ0

(
v′

1 − k2v2 − k3v3
) + ρ1

(
k2

ε
v02 + k3v03
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, (A2)
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}

+ B03

{
−k2

3a2 + k2k3a3 + ε

[
1
ε

(
a′

2 − k2a1
)]′}

+ B′
03

(
a′

2 − k2a1
)

+ (εB02)
′ (k3a1 − a′

3

) − ε′

ε
v2

02ρ1 + ρ0

(
k2

ε
v02 + k3v03

)
v1 − 2ε′ρ0v02v2

− iμ
(

ε′

ε2
+ k2

2

ε2
+ k2

3

)
v1 + iμ

3
ε

(
1
ε
v′

1 − k2

ε
v2 − k3

ε
v3

)′

+ 2
iμε′

ε
k2v2 + iμ

[
ε
(v1

ε

)′]′
, (A3)

ωρ0εv2 = k2

ε
(ρ1T0 + ρ0T1) + B03

[
−

(
k2

2

ε
+ εk2

3

)
a1 + k2

ε
a′

2 + εk3a′
3

]
+ (εB02)

′

ε
(k3a2 − k2a3) − (εv02)

′

ε
ρ0v1 + ρ0 (k2v02 + εk3v03) v2

+ iμ
ε

(
2
ε′

ε
k2v1 + 1

3
k2v

′
1 − 1

3
k2k3v3

)
− iμ

(
ε′

ε
+ 4

3
k2

2

ε
+ εk2

3

)
v2 + iμ

(
εv′

2

)′
, (A4)

ωρ0v3 = k3(ρ1T0 + ρ0T1) + B02

[(
k2

2

ε
+ εk2

3

)
a1 − k2

ε
a′

2 − εk3a′
3

]
+ B′

03 (k3a2 − k2a3) − ρ0v
′
03v1 + ρ0

(
k2

ε
v02 + k3v03

)
v3

+ iμ
3

k3
(
v′

1 − k2v2
) − iμ

(
k2

2

ε2
+ 4

3
k2

3

)
v3 + iμ

[
ε
(v3

ε

)′]′
, (A5)

ω

{
εa1 + ηHv1 + ηe

ρ0

[(
k2

2

ε
+ εk2

3

)
a1 − k2

ε
a′

2 − εk3a′
3

]}
= B02v3 − εB03v2 + (k2v02 + εk3v03) a1 − v02a′

2 − εv03a′
3

− iη0

(
k2

2

ε
+ εk2

3

)
a1 + iη0

k2

ε
a′

2 + iη0εk3a′
3

+ ηH

[(
k2

ε
v02 + k3v03

)
v1 − 2ε′v02v2 + 1 − fe

ρ0

(
ρ ′

0T1 − T ′
0ρ1

)]
+ iμ

ηH

ρ0

{[
ε
(v1

ε

)′]′
−

(
k2

2

ε2
+ k2

3

)
v1 + 2

ε′

ε
k2v2

− ε′

ε2
v1 + ε

3

[
1
ε

(
v′

1 − k2v2 − k3v3
)]′}

, (A6)

https://doi.org/10.1017/S0022377822000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000617


Legolas: MHD spectroscopy with viscosity and Hall current 23
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where a prime denotes derivation with respect to u1 and the notation

F =
(

k2

ε
B02 + k3B03

)
(A10)

was introduced.
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