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DNA sequence comparison among homologous genes sampled at random from one or
two populations allows one to estimate the ultimate amount of genetic variation
maintained in a population and to construct the gene genealogy within and between
populations. Moreover, if we use the finding of the molecular clock (Zuckerkandl &
Pauling, 1965), it is also possible to estimate the divergence time of populations
examined. Such an estimated divergence time is, however, intricately affected by samples
and stochastic forces occurring in the course of evolution.

The net nucleotide differences, d, defined by Nei & Li (1979) is one of the most popular
quantities in analysing DNA sequences and constructing the genealogy. To estimate the
accuracy of the method of using d, Takahata & Nei (1985) studied the variance of d when
an arbitrary number of genes are sampled from each of two populations. Their study
shows that increasing the sample size generally reduces V(d), but the extent of which
depends greatly on the levels of polymorphism: the more polymorphic, the more samples
are required to reduce V(d). In addition, multiple samples take effect when closely related
species are compared, but otherwise they do not make much difference to the accuracy
of the method. There is an inevitable stochastic variance which cannot be removed by
increasing the sample size, and they concluded that the only way to avoid this difficulty
and obtain a reliable estimate of species divergence time is to use many independent
(unlinked) genes.

In this note, we are concerned with two homologous genes sampled at random each
from a population. The results for a single population are included as a special case of
the analysis described below. We here extend the previous work to the case where back
and parallel mutations at a single site are incorporated. This mutation model makes clear
the relationship among various models including the infinite-site model (Kimura, 1971)
and the infinite allele model (Kimura & Crow, 1964). We study the distribution of
nucleotide differences and the accuracy of estimates of population divergence time when
two genes are involved.

1. MUTATION MODEL

The model we use here is that of Golding & Strobeck (1982) and Takahata (1982), in
which a gene consists of n completely linked nucleotide sites and each site is occupied
by one of K different nucleotides. In reality, K = 4, but we may be interested in the case
of large K when we refer site to amino acid site or locus. Tajima (1983) on the intuitive
ground presents the probability that two genes which have their latest common ancestor
s generations ago differ exactly at k sites. We denote the probability by b(k, s). The
assumptions made here are that at every generation, each nucleotide occupying a site
mutates to one of the remaining K— 1 nucleotides at the rate of/t and that this occurs
independently of site, the total mutation rate per gene being v = n/i. Also, it is implicitly
assumed that /i is so small that we can approximate the mutational process by a time
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continuous birth-and-death process. A birth-and-death process similar to the above is
found in Feller (1968, pp. 467) and we see that the probability is given by a binomial
distribution:

(n\
I I is a bi

(1)

(n\
where I I is a binomial coefficient and

(£§
2. WAITING TIME OF COALESCENCE

In (1), we assumed that the divergence time of genes, s, is given. However, if we are
concerned with genes sampled from a diploid population of effective size 2V, we do not
know when they are descended from the latest common ancestral gene. What we know
is the probabilistic law of gene divergence. Kingman (1982) derived the formula for the
(backward) waiting time s at which m genes are descended from m— 1 ancestral genes.
It follows a geometric or exponential distribution (see also Hudson, 1983a; Tajima, 1983;
Watterson, 1984; Tavare, 1984; Takahata & Nei, 1985). Kingman (1982) and Tavare
(1984) discuss the robustness of the formula under various reproduction models (see also
Felsenstein, 1971). The continuous time version is given by

w h e r e am = %m(m — l ) .
Equations (1) and (3) provide the necessary tools of the following analysis. For

convenience, we change the time scale from one generation to 22V generations and
introduce the parameters

8 KM
T = 2N' M = 4Nv a n d * = ( ] r = l K (4)

Then (1), (2) and (3) are rewritten as

= (, |Z(T)*[1-Z(T)1»-*
(5)

and fm(T) = OLme-«^. (6)

3. DISTRIBUTION OF THE NUMBER OF NUCLEOTIDE DIFFERENCES
BETWEEN TWO GENES SAMPLED FROM ISOLATED POPULATIONS

We consider two populations which were derived from an ancestral population t
generations ago and have been reproductively isolated since then. We sample one
homologous gene from each. Our concern here is with the number of nucleotide differences
between the two genes. We note that the divergence of these genes must have occurred
prior to the population splitting, i.e. in the ancestral population. Let N be the effective
size of the ancestral population. The size of the descendant populations is irrelevant so
long as we consider only one gene in each descendant population. We scale the time in
units of 22V generations and therefore T = t/(2N) is the time of population splitting
in this time scale.
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Now we consider the divergence time of the two genes in the ancestral population. We
designate it by T+T. T is a random variable which follows the probability density
/2(T) = e~T in (6). The distribution of the number of nucleotide differences between these
genes, denoted by Dk(T), is calculated by

-f
Jo

Dk(T)=\ b(k,T+T)e~TdT (7)
Jo

in which the integral interval taken is due to the assumption that the ancestral
population is in steady state. Substituting (5) with T+j instead of r for (7), we obtain

D0(T) in (8) is the probability that two genes are identical at all n sites, which is given

The same quantity as (9) was derived in Takahata (1982), using a diffusion approximation.
The formula (28) in that paper is identical to (9). Furthermore, when T = 0, i.e. the
ancestral population has not split and therefore two genes are sampled from the same
population, D0(0) is the expected homozygosity in a stationary population and equivalent
to (23) in Takahata (1982) (see also Golding & Strobeck, 1982).

When the ancestral population is monomorphic, we can ignore the denominator in (8)
and get a formula analogous to (5):

=0Dk(T) = l \z{T)k[l-z(T)]n-k. (10)

A special case of k = 0 is also derived in Takahata (1982), which is given by

If we define the evolutionary distance 8 = 2/it = {(K—l)/K)0T, i.e. the expected
number of nucleotide differences per site accumulated since the population split, (11)
yields

"" ~ " " (12)

Equation (12) is slightly different from (9) in Nei & Li (1979) because they assumed
\/{D0(T)) = D0(T/2) which does not exactly hold when back and parallel mutations
occur. The formula of Jukes & Cantor (1969) is given by (12) with K = 4 and n = 1, and
that for amino acid substitutions of Nei (1975) is given by (12) with K = oo and n = 1.

The mean and variance of k can be computed from (8) or more easily from directly
using (5) and (6). They become

respectively. When T = 0, (13a) and (136) reduce to (15) and (16) in Tajima (1983).
Recently, Hudson & Golding (1984) pointed out that V(k) is always larger than the
binomial expectation [the second term in the bracket in (136)] unless 0 = 0. The excess
of the variance is given by the first term in (136) and is clearly of the order of M2e-2dT.

We are often interested in the limit of w.-*oo, /f->0, but keeping M constant. It is

https://doi.org/10.1017/S0016672300022503 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300022503


110 NAOYUKI TAKAHATA

biologically meaningful because /i is as small as 10~8 and a typical gene consists of so
many nucleotides, of the order of 102 or more. Taking this limit of (8) and (13) leads to
the well-known results based on the infinite site model,

Afk P-MT k 1
£^(l*W (14a)

(146)

(14c)
(Li, 1977). Watterson (1975) derived (14a) with T = 0.

We may also be interested in the limiting form of (8) when K increases, corresponding
to the situation in the absence of back and parallel mutations. Then, the only terms that
remain in (8) are

in particular D0(T) = j^e~MT (156)

and furthermore Do(0) is the homozygosity expected from the infinite allele model
(Kimura & Crow, 1964).

4. ESTIMATING DIVERGENCE TIME

We apply (13) for estimating the divergence time of populations and its standard error.
The sampling error included in this estimate should be maximum because we have chosen
only one gene from a population. Takahata & Nei (1985) studied to what extent sampling
errors can be diminished by increasing samples, and found that multiple samples are
statistically significant only when the divergence time is relatively small. In comparison
of distantly related populations, most of genes sampled from each population are likely
to have diverged after the population splitting so that they hardly increase information
about gene divergence in the ancestral population. Thus two gene analysis provides a
conservative criterion on the reliability of the method used for estimating divergence time
of populations.

In actual data analysis, the number of sites, n, per gene varies from gene to gene. The
proportion of nucleotide differences per site, p = k/n, is therefore more fundamental than
k, allowing comparison of different genes on the same ground. The mean and variance
of p can be obtained by using (13),

E(p)=-E{k) and V(p)=\v(k). (16)

The relationship between E(p) and D0(T) can be seen from (13a) and (9). In terms
of E(p), the expected number of nucleotide differences per site, S, in (12) can be
expressed as

(17a)

(176)and it becomes S=— ( llogjl— ff(p)>

if 6 <g 1. The assumption 6 <§ 1 is reasonable because /i is usually extremely small. As
we will see, the typical value is of the order of 10~2. Equation (176) is identical to (12)
ifE(p) = l-D0(Tyln. In fact, we see from (11) for d « 1 that D0(T) = {l-E(p)}n holds.

An estimate S is usually obtained by replacing E(p) in (176) by an observed value, p.
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Kimura & Ohta (1972) presented a formula for estimated variance of 8 (see also Nei &
Li, 1979). In the present notation, it is given by

[i-w-Dr ( 1 8 a )

Substituting (136) for (18a), we have

V(S) = ̂ i-^N^+^l-p^l-^Y (186)

approximately. Thus if/* is known, t is estimated from (176) as

and the standard error from (186) as

iMH^T\ (20)
Equation (19) gives the standard formula of Jukes & Cantor (1969) for K = 4 and that
of Nei (1975) for K = oo. On the other hand, (20) is different from Kimura & Ohta's (1972)
in that there is intrinsic error even when DNA sequences of infinite length are compared.
This error appears in the first term of the right side in (20) and is of the order of 2iV.
The result could have been anticipated from the fact that the expected divergence time
of two genes is the time of population splitting plus 2N generations (Littler, 1975;
Griffiths, 1980).

Recently Gillespie (1984) took a serious look at the elevated variances observed in
amino acid substitutions from the viewpoint of the neutral hypothesis and criticized the
mutation models which assume that each mutation event is treated independently, or
more precisely as a poisson process. Gillespie & Langley (1979) considered the ratio K
based on the infinite site model and showed

K = V(Nt)/E(Nt)

= l+M/(l+T) (21a)

where Nt is the number of amino acid substitutions, K approaches 1 as t increases. If we
instead use the finite site model (but with K = oo), the above ratio becomes

(216)
(l-p)log(l-p)

approximately. In this case, K increases indefinitely as p approaches 1, although for more
realistic and moderate values of p it is not much larger than 1 unless AN/i and n are
unrealistically large. We also note that K is reduced under the constant-rate model if
intragenic recombination can occur, as pointed out by Hudson (19836). This prediction
contradicts observed values of K which are 2-5 on the average (Gillespie, 1984 and
references therein). This is why Gillespie (1984) invoked some sort of selection to account
for the elevated variances.

However, the elevated variances alone may not be so powerful to reject the neutral
hypothesis (Kimura, 1983 for review). A number of causes are conceivable even within
the framework of the hypothesis among which different mutation rates in different
lineages (Li, Luo & Wu, 1985) and some interaction among mutations in a gene may be
of importance (Kimura, 1985).

Finally, we demonstrate that a large value of K is expected where closely related species
are examined. Stephens & Xei (1985) analysed DNA sequences of alcohol dehydrogenase
gene from D. melanogaster and its sibling species. Their estimate of p between
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D. melanogaster and D. simulans was 0-024 and 42V/t was 0-0076. If we substitute them
and n = 818 (the number of homologous sites that could be compared) for (216), we
obtain K ~ 2-9 under the assumption of no recombination. Setting K = 4 did not change
this value much. Thus this value of K is about three times larger than the Poisson
expectation which ignores the levels of polymorphism in an ancestral population. D.
melanogaster and D. simulans are estimated to have diverged some 2 million years ago
(Stephens & Nei, 1985). The above example shows that polymorphism cannot be ignored
in DNA sequence analysis between two species at least with divergence time of this order.

I thank Mrs Yumiko S. Morino for her excellent assistance in these 5 years. Thanks are due
to an anonymous reviewer who pointed out an incorrect statement following equation (216) in an
earlier version of this paper. This paper is contribution no. 1617 from the National Institute of
Genetics, Japan.
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