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1. Introduction. Algebras with linear growth were described by Small et al. [5].
Bergman [2, p. 18] proved that algebras with growth function smaller than f (n) =
n(n+1)

2 have linear growth. This raises the following question: What properties should
algebras with a growth function close to f (n) = n(n+1)

2 satisfy? Examples of primitive
algebras with very small growth functions were constructed by Uzi Vishne using Morse
trajectories [9]. Bartholdi [1] constructed self-similar algebras with very small growth
functions over the field �2 which are graded nil. In fact, all algebras constructed in [1]
are primitive and hence not Jacobson radical (as mentioned in [8]).

In this paper, we will construct an example with growth function bounded above
by n2 + 4n + 3, which is both infinite dimensional and Jacobson radical. It is unclear
whether this algebra is nil. We will also present a way to construct other examples that
are bounded above by the same growth function.

Recall that non-nil Jacobson radical algebras with the Gelfand–Kirillov dimension
two were constructed in [8], and nil algebras with the Gelfand–Kirillov dimension not
exceeding three were constructed in [4]. It is not known if there are nil algebras with
quadratic growth, or more generally with the Gelfand–Kirillov dimension two.

Our main result is as follows:

THEOREM 1.1. Over every countable, algebraically closed field � there exists a
finitely generated � algebra that is Jacobson radical, infinite dimensional, generated by
two elements, graded and has quadratic growth.

In addition, we also propose a new way of constructing examples of algebras with
quadratic growth satisfying special types of relations (see Theorem 6.3).
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2. Notation and proof outline. In what follows, � is a countable field, and A =
�〈x, y〉 is the free �-algebra in two non-commuting indeterminates x and y. The
monomials in this algebra will be the products of the form x1 · · · xn, with each xi ∈ {x, y}
(whereas the monomials with coefficient will be of the form kx1 · · · xn with k ∈ �). The
degree of a monomial is the length of this product. For any n ≥ 0, H(n) will denote the
homogeneous subspace of degree n: the �-space generated by the degree-n monomials.
Finally, Ā = ∑∞

n=1 H(n) will be the �-space of polynomials with no constant term.
Proof outline for Theorem 1.1 is as follows:

� In Section 6, an increasing sequence of natural numbers Ni is fixed and subspaces
Fi ⊆ H(2Ni ) are constructed such that for every element f ∈ Ā there is g ∈ Ā such
that f + g − fg ∈ E(Fi) for some i. The set E(Fi) is defined in Section 5.

� In Section 3, for fixed subspaces Fi, subspaces U(2n), V (2n) ⊆ H(2n) are constructed
inductively for n = 1, 2, . . . This part bears resemblance to results from [3].
Properties that the V (2n) spaces exhibit include V (2n) ⊆ V (2n−1)2 and dim V (2n) =
2, the latter being instrumental in establishing quadratic growth. Our conditions
guarantee that each set Fi is in U(2Ni ).

� In Section 4, we introduce the ideal E, whose construction uses the sets U(2n) and
V (2n) in order to arrive at our desired quotient, A/E. Note that the ideal E is defined
differently than defined in [3]. We then find an upper bound of the growth of A/E.

� In Sections 5 and 6 we show that the algebra A/E is Jacobson radical.
� The proof of Theorem 1.1 is concluded in Section 6.

3. Constructing sets U(2n) and V (2n). Suppose we have a strictly increasing
sequence of natural numbers

{Ni}∞i=0

with N0 = 1, and a sequence of homogeneous subspaces {Fi}∞i=0 with each

Fi ⊆ H
(
2Ni

)

and F0 = (0).
In this section we will show that, for every i ≥ 0, there exists a subspace Ui ⊂ H(2i)

and two monomials (with non-zero coefficient) vi,1, vi,2 ∈ H(2i) such that for each i ≥ 0:

1. Ui ⊕ �vi,1 ⊕ �vi,2 = H(2i).
2. There exists v ∈ �vi,1 + �vi,2 such that Ui+1 = H(2i)Ui + UiH(2i) + vH(2i).
3. Fi ⊆ UNi .

We will eventually set Vi = �vi,1 + �vi,2 so that Ui ⊕ Vi = H(2i).
We shall attack the problem with induction. For the base case, set U0 as an

arbitrary subspace of H(1) with dim U0 = dim H(1) − 2, and set v0,1, v0,2 as two linearly
independent monomials such that U0 + �v0,1 + �v0,2 = H(1).

For the inductive step, assume the existence of UNi , vNi,1, vNi,2 for some i ≥ 0, and
find possible Uk, vk,1, vk,2 for all Ni < k ≤ Ni+1.

Let

W ∼= �2(Ni+1−Ni)

https://doi.org/10.1017/S0017089513000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000554


JACOBSON RADICAL ALGEBRAS WITH QUADRATIC GROWTH 137

be a �-space with indices {xk,1, xk,2}Ni+1−1
k=Ni

, Wk be the subspace of all elements where
(xk,1, xk,2) = (0, 0) and

W = W\
Ni+1−1⋃
k=Ni

Wk.

Given some vector w ∈ W , define a subspace Uk( w) and elements vk,1( w), vk,2( w)
in H(2k) recursively for each Ni ≤ k ≤ Ni+1 as follows: First, set UNi ( w) = UNi ,
vNi,1( w) = vNi,1, vNi,2( w) = vNi,2. Then, assuming Uk( w), vk,1( w), vk,2( w) are defined
for some Ni ≤ k < Ni+1:

Uk+1( w) = H(2k)Uk( w) + Uk( w)H(2k) + (xk,2( w)vk,1( w) − xk,1( w)vk,2( w))H(2k).

If xk,1( w) �= 0, set:

vk+1,1( w) = xk,1( w)−1v2
k,1( w),

vk+1,2( w) = xk,1( w)−1vk,1( w)vk,2( w),

and if xk,1( w) = 0, then xk,2( w) �= 0, so set:

vk+1,1( w) = xk,2( w)−1vk,2( w)vk,1( w),

vk+1,2( w) = xk,2( w)−1v2
k,2( w).

For any w ∈ W , this clearly satisfies conditions (1) and (2).

LEMMA 3.1. Let k ∈ � and i ∈ � such that Ni ≤ k < Ni+1. If a, b ∈ {1, 2} and
w ∈ W, then:

vk,a( w)vk,b( w) ∈ xk,a( w)vk+1,b( w) + Uk+1( w).

Proof. If xk,1( w) �= 0 and a = 1, vk,a( w)vk,b( w) = xk,a( w)vk+1,b( w).
Similarly, if xk,1( w) �= 0 and a = 2, then vk,a( w)vk,b( w) = xk,a( w)vk+1,b( w) −
xk,1( w)−1(xk,2( w)vk,1( w) − xk,1( w)vk,2( w))vk,b( w). If xk,1( w) = 0 and a = 1, then
vk,a( w)vk,b( w) = xk,2( w)−1(xk,2( w)vk,1( w) − xk,1( w)vk,2( w))vk,b( w). If xk,1( w) = 0 and
a = 2, vk,a( w)vk,b( w) = xk,2( w)vk+1,b( w). �

Let

P = �[xk,1, xk,2]Ni+1−1
k=Ni

,

i.e. the (commutative) algebra of polynomial functions W → �. Let

Q =
Ni+1−1∏
k=Ni

(�xk,1 + �xk,2)2Ni+1−k−1

be a homogenous subspace of P.
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THEOREM 3.2. For any sequence {sk}2Ni+1−Ni

k=1 taking values in {1, 2}, there exists some
ps ∈ Q such that for any w ∈ W,

2Ni+1−Ni∏
k=1

vNi,sk ∈ ps( w)vNi+1,s2Ni+1−Ni ( w) + UNi+1 ( w).

Proof. We will use induction to show that, for any 0 ≤ h ≤ Ni+1 − Ni and any
sequence {sk}2h

k=1 taking values in {1, 2},
2h∏

k=1

vNi,sk ∈
⎛
⎝h−1∏

j=0

2h−j−1∏
k=1

xNi+j,s2j (2k−1)
( w)

⎞
⎠ vNi+h,s2h ( w) + UNi+h( w),

with the end result of the theorem proven when h = Ni+1 − Ni.
The base case is simply vNi,s1 ∈ vNi,s1 ( w) + UNi ( w).
For the inductive step, let {sk}2h+1

k=1 be a sequence taking values in {1, 2} and assume
the inductive statement is true for {sk}2h

k=1 and {sk}2h+1

k=2h+1. Lemma 3.1 shows that:

vNi+h,s2h ( w)vNi+h,s2h+1 ( w) ∈ xNi+h,s2h ( w)vNi+h+1,s2h+1 ( w) + UNi+h+1( w).

Therefore,

2h+1∏
k=1

vNi,sk ∈
⎛
⎝

⎛
⎝h−1∏

j=0

2h−j−1∏
k=1

xNi+j,s2j (2k−1)
( w)

⎞
⎠ vNi+h,s2h ( w) + UNi+h( w)

⎞
⎠ ·

⎛
⎝

⎛
⎝h−1∏

j=0

2h−j−1∏
k=1

xNi+j,s2j (2k−1)+2h ( w)

⎞
⎠ vNi+h,s2h+1 ( w) + UNi+h( w)

⎞
⎠

⊆
⎛
⎝h−1∏

j=0

2h−j∏
k=1

xNi+j,s2j (2k−1)
( w)

⎞
⎠ xNi+h,s2h ( w)vNi+h+1,s2h+1 ( w) + UNi+h+1( w)

=
⎛
⎝ h∏

j=0

2h−j∏
k=1

xNi+j,s2j (2k−1)
( w)

⎞
⎠ vNi+h+1,s2h+1 ( w) + UNi+h+1( w).

�
COROLLARY 3.3. For any f ∈ H(2Ni+1 ), there exist p, q ∈ Q such that, for all w ∈ W,

f ∈ p( w)vNi+1,1( w) + q( w)vNi+1,2( w) + UNi+1 ( w).

Proof. First, note that:

H(2Ni+1 ) = (UNi + �vNi,1 + �vNi,2)2Ni+1−Ni

= (�vNi,1 + �vNi,2)2Ni+1−Ni +
2Ni+1−Ni∑

k=1

H((k − 1)2Ni )UNi H
(
2Ni+1 − k2Ni

)

and that for each f ∈ H(2Ni+1 ) there exists f ′ ∈ (�vNi,1 + �vNi,2)2Ni+1−Ni
such that for

any w ∈ W , f ∈ f ′ + UNi+1 ( w).
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Since f ′ can be written as a linear combination of the elements of the form∏2Ni+1

k=1 vNi,sk , it is sufficient to prove that the corollary holds when f is one of these
elements, which is done in Theorem 3.2. �

Let

d = dim Fi+1

and {fk}d
k=1 be elements that generate Fi+1 and let

{pk, qk} ⊆ Q

be such that, for all w ∈ W ,

fk ∈ pk( w)vNi+1,1( w) + qk( w)vNi+1,2( w) + UNi+1 ( w),

as detailed in Corollary 3.3. If there exists a w ∈ W such that each pk( w) = qk( w) = 0,
then we can set (Uk, vk,1, vk,2) = (Uk( w), vk,1( w), vk,2( w)), and Condition (3) can be
satisfied.

Let

G =
d∑

k=1

�pk + �qk ⊆ Q

be the vector space generated by {pk, qk}. Our remaining goal is to show that there
exists w ∈ W such that G( w) = (0).

Let R be the algebra generated by Q, i.e.

R =
∞∑

k=1

Qk.

LEMMA 3.4. If G, P are defined as above, then:

R ∩ GP ⊆ G + GR.

Proof. Let M be the set of all monomials of P (without coefficient). Let MQ be the
monomials that generate Q, MR = ⋃∞

j=1 Mj
Q be the monomials that generate R and

M′
R = M\(MR ∪ {1}). P can be decomposed: P = � ⊕ R ⊕ �M′

R.
Note that for any m ∈ MQ and any m′ ∈ M′

R, mm′ ∈ M′
R. As R is generated by

monomials, R ∩ QM′
R = (0).

Let g ∈ G, and let p ∈ P have the decomposition p = k + r + s, with k ∈ �,
r ∈ R and s ∈ �M′

R. Suppose that gp ∈ R. Since gk + gr ∈ R, gs ∈ R ∩ QM′
R = (0).

Therefore, gp ∈ �g + gR, and R ∩ GP ⊆ G + GR. �
THEOREM 3.5. If { w ∈ W : G( w) = (0)} ⊆ W\W = ⋃Ni+1−1

k=Ni
Wk, then d ≥

1
2 (Ni+1 − Ni + 1).

Proof. Given an ideal I of P, we define Z(I) = { w ∈ W : I( w) = (0)}. This is
an affine subvariety of W . It is our goal to show that if Z(GP) ⊆ ⋃Ni+1−1

k=Ni
Wk, then

d ≥ 1
2 (Ni+1 − Ni + 1).
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Since Q annihilates each Wk, it must annihilate Z(GP) as well. Hilbert’s
Nullstellensatz states that since � is algebraically closed, for each q ∈ Q, there must be
an exponent qπ ∈ GP.

Using Lemma 3.4, qπ ∈ R ∩ GP ⊆ G + GR, and so the quotient algebra R/(G +
GR) is nil. Since G2 ⊆ GR, R/GR is nil as well. All finitely generated commutative
nil algebras are finite-dimensional, so applying Lemma 4.2 in [7] several times gives
2d ≥ GKdim R. Recall that Lemma 4.2 [7] says that if R is a commutative finitely
generated graded algebra of Gelfand–Kirillov dimension t, and I is a principal ideal
generated by a homogeneous element, then R/I has the Gelfand–Kirillov dimension
at least t − 1.

Recall that for any j ≥ 0, Qj = ∏Ni−1−1
k=Ni

(�xk,1 + �xk,2)j2Ni+1−k−1
, and that:

dim Qj =
Ni+1−1∏
k=Ni

(j2Ni+1−k−1 + 1) ≥ 2
1
2 (Ni+1−Ni−1)(Ni+1−Ni)jNi+1−Ni .

Therefore, GKdim R ≥ Ni+1 − Ni + 1. �
We can thus conclude that, as long as dim Fi+1 < 1

2 (Ni+1 − Ni + 1), there is a
w ∈ W such that G( w) = 0, and we have appropriate spaces {Uk} and monomials
{vk,1, vk,2} for all k ≤ Ni+1. If this holds for all i ≥ 0, the induction can proceed.

4. Constructing the ideal E. For any i ≥ 0, let Vi = �vi,1 + �vi,2 (where vi,1,
v1,2 are as in Property (1), Section 3), let vi ∈ Vi be such that Ui+1 = H(2i)Ui +
UiH(2i) + viH(2i) and let Qi = Ui + �vi (vi exists by Property (2), Section 3). If
vi,1 /∈ �vi, let Wi = �vi,1, otherwise Wi = �vi,2. This way Qi ⊕ Wi = H(2i), Ui+1 =
H(2i)Ui + QiH(2i) and Vi+1 = WiVi.

PROPOSITION 4.1. For any j > i and any k ≤ 2j−i − 1,

H(k2i)UiH(2j − (k + 1)2i) ⊆ Uj.

Proof. Apply induction on the value of j by using H(2i)Ui + UiH(2i) ⊆ Ui+1. �
For any n > 0, let m ≥ 0 be maximal such that 2m ≤ n, and define:

R(n) = {x ∈ H(n) : xH(2m+1 − n) ⊆ Um+1},

L(n) = {x ∈ H(n) : H(2m+1 − n)x ⊆ Um+1}.
Also, set R(0) = L(0) = (0).

PROPOSITION 4.2. For any n > 0 and any M such that 2M > n,

R(n)H(2M − n) ⊆ UM,

H(2M − n)L(n) ⊆ UM .

Proof. Apply induction on M, using the fact that H(2M)UM + UMH(2M) ⊆
UM+1. �
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PROPOSITION 4.3. For any n > 0, R(n)H(1) ⊆ R(n + 1) and H(1)L(n) ⊆ L(n + 1).

Proof. Let m ≥ 0 be maximal such that 2m ≤ n. If 2m+1 − 1 < n then:

R(n)H(1) · H(2m+1 − n − 1) = R(n)H(2m+1 − n) ⊆ Um+1,

and R(n)H(1) ⊆ R(n + 1).
If 2m+1 − 1 = n, then:

R(n)H(1) · H(2m+2 − n − 1) ⊆ Um+1H(2m+1) ⊆ Um+2,

and R(n)H(1) ⊆ R(n + 1).
By symmetry, H(1)L(n) ⊆ L(n + 1). �
Define the space R′(n) ⊆ H(n) recursively: if n = 0, set R(0) = �, and otherwise

let m be maximal such that 2m ≤ n and set:

R′(n) = WmR′(n − 2m).

Note that dim R′(n) = 1.

PROPOSITION 4.4. For any n ≥ 0, R(n) ⊕ R′(n) = H(n).

Proof. Use induction on n. The base case n = 0 is trivial.
For the inductive step, n ≥ 0, let m be maximal such that 2m ≤ n, and assume that

R(n − 2m) ⊕ R′(n − 2m) = H(n − 2m). Proposition 4.2 can be used to confirm that:

QmH(n − 2m) · H(2m+1 − n) = QmH(2m) ⊆ Um+1,

H(2m)R(n − 2m) · H(2m+1 − n) ⊆ H(2m)Um ⊆ Um+1,

R(n) + R′(n) ⊇ QmH(n − 2m) + H(2m)R(n − 2m) + WmR′(n − 2m) = H(n).

Since dim R′(n) = 1, either R(n) ⊕ R′(n) = H(n) or R′(n) ⊆ R(n). However, the
latter option implies R(n) = H(n) and that H(n) · H(2m+1 − n) ⊆ Um+1, a clear
contradiction. Therefore, R(n) ⊕ R′(n) = H(n). �

PROPOSITION 4.5. For any n ≥ 0,

0 < dim H(n)/L(n) ≤ 2.

Proof. Let m be maximal such that 2m ≤ n.
If H(n)/L(n) were zero, then L(n) = H(n) and H(2m+1 − n)H(n) ⊆ Um+1, a

contradiction.
Using Proposition 4.2, R(2m+1 − n)H(n) ⊆ Um+1. By Proposition 4.4,

L(n) = {x ∈ H(n) : R′(2m+1 − n)x ∈ Um+1}.
Let p ∈ H(2m+1 − n) be an element that generates R′(2m+1 − n), and let φ : H(n) →
H(2m+1)/Um+1 be the �-linear transformation:

φ : x �→ px/Um+1

so that L(n) = ker φ. The image of φ has at most dimension 2, and so dim H(n)/L(n)
≤ 2. �
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Let L′(n) ⊆ H(n) be a space such that L(n) ⊕ L′(n) = H(n). Proposition 4.5 shows
that dim L′(n) is either 1 or 2.

Define the space E(n) ⊆ H(n) as:

E(n) =
n⋂

i=0

L(i)H(n − i) + H(i)R(n − i).

LEMMA 4.1. For any n > 0, E(n)H(1) + H(1)E(n) ⊆ E(n + 1).

Proof. Using Proposition 4.3,

E(n)H(1) =
n⋂

i=0

L(i)H(n − i) · H(1) + H(i)R(n − i)H(1)

⊆
n⋂

i=0

L(i)H(n + 1 − i) + H(i)R(n + 1 − i).

It remains to show that E(n)H(1) ⊆ L(n + 1)H(0) + H(n + 1)R(0) = L(n + 1).
Let m ≥ 0 be maximal such that 2m ≤ n + 1.

H(2m+1 − n − 1)E(n)H(1)

⊆ H(2m+1 − n − 1)L(n − 2m + 1)H(2m) + H(2m)R(2m − 1)H(1)

⊆ UmH(2m) + H(2m)Um ⊆ Um+1.

Therefore, by definition, E(n)H(1) ⊆ L(n + 1).
We can prove H(1)E(n) ⊆ E(n + 1) by symmetry. �
Let E = ∑∞

n=1 E(n).

THEOREM 4.2. E is an ideal of A.

Proof. Apply Lemma 4.1 to the definition of E. �
PROPOSITION 4.6. A/E is infinite dimensional.

Proof.

dim A/E =
∞∑

n=1

dim H(n)/E(n) >

∞∑
n=1

dim H(n)/R(n) =
∞∑

n=1

dim R′(n) = ∞.

�
PROPOSITION 4.7. A/E has quadratic or linear growth.

Proof. Using the fact that (L(i)H(n − i) + H(i)R(n − i)) ⊕ L′(i)R′(n − i) = H(n),
and recalling Proposition 4.5,

dim H(n)/E(n) ≤
n∑

i=0

dim L′(i)R′(n − i) ≤
n∑

i=0

2 = 2(n + 1),

n∑
i=0

dim H(i)/E(i) ≤ n2 + 3n + 1.
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Proposition 4.6 shows that the algebra A/E is not finite-dimensional. Bergman’s
Gap Theorem [2] proves that the only types of growth strictly slower than quadratic
are linear and finite, so A/E must have quadratic or linear growth. �

5. E ⊇ E(Fi). In this section we introduce the set E(F) and prove that E(F) is an
ideal in Ā (and in A). We also show that E(F) ⊆ E. We start with the following result:

THEOREM 5.1. For any n > 0, let m be maximal such that 2m ≤ n, the following
holds:

2m+1−n⋂
i=0

{x ∈ H(n) : H(i)xH(2m+1 − n − i) ⊆ UmH(2m) + H(2m)Um} ⊆ E(n).

Proof. It is sufficient to show that for any 0 ≤ i ≤ 2m+1 − n and any x ∈ H(n) such
that x /∈ L(2m − i)H(n − 2m + i) + H(2m − i)R(n − 2m + i),

H(i)xH(2m+1 − n − i) � UmH(2m) + H(2m)Um.

We can uniquely decompose x into x1 + xLxR with:

x1 ⊆ L(2m − i)H(n − 2m + i) + H(2m − i)R(n − 2m + i),

xL ⊆ L′(2m − i), xR ∈ R′(n − 2m + i).

Under our assumption, xLxR �= 0. However,

H(i)x1H(2m+1 − n − i)

∈ H(i)L(2m − i)H(2m) + H(2m)R(n − 2m + i)H(2m+1 − n − i)

⊆ UmH(2m) + H(2m)Um.

Therefore, it is sufficient to show there exist y ∈ H(i) and z ∈ H(2m+1 − n − i) such
that yxLxRz /∈ UmH(2m) + H(2m)Um.

As xL /∈ L(2m − i), there must exist a y ∈ H(i) such that yxL /∈ Um. Let yxL =
xLU + xLV , with xLU ∈ Um and 0 �= xLV ∈ Vm. Symmetrically, there is a z ∈ H(2m+1 −
n − i) with xR = xRU + xRV , xRU ∈ Um and 0 �= xRV ∈ Vm. We see that

yxLxRz = xLU xRz + xLV xRU + xLV xRV /∈ UmH(2m) + H(2m)Um.

�
For any non-zero homogeneous space F ⊆ H(n), let E(F) denote the space:

E(F) =
n−1⋂
j=0

∞∑
k=0

H(kn + j)FA.

PROPOSITION 5.1. For any non-zero homogeneous space F ⊆ H(n), E(F) is an ideal
in Ā.

https://doi.org/10.1017/S0017089513000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000554


144 AGATA SMOKTUNOWICZ AND ALEXANDER A. YOUNG

Proof. By the definition, it is clear that E(F) is right ideal. To prove that it is a left
ideal, it is sufficient to show that H(1)E(F) ⊆ E(F).

H(1)E(F) =
n−1⋂
j=0

∞∑
k=0

H(kn + j + 1)FA

=
n−1⋂
j=1

∞∑
k=0

H(kn + j)FA ∩
∞∑

k=0

H(kn + n)FA

=
n−1⋂
j=1

∞∑
k=0

H(kn + j)FA ∩
∞∑

k=1

H(kn)FA ⊆
n−1⋂
j=0

∞∑
k=0

H(kn + j)FA = E(F).

�
COROLLARY 5.2. For any i ≥ 0, E(Fi) ⊆ E.

Proof. Since it is graded, E(Fi) can decompose into homogeneous subspaces. If
n < 2Ni , E(Fi) ∩ H(n) = (0), and if n ≥ 2Ni ,

E(Fi) ∩ H(n) =
n−1⋂
j=0

�(n−j)2−Ni −1�∑
k=0

H(k2Ni + j)FiH(n − (k + 1)2Ni − j).

Let n ≥ 2Ni and m be maximal such that 2m ≤ n. For any 0 ≤ j ≤ 2m+1 − n,

H(j)(E(Fi) ∩ H(n))H(2m+1 − n − j)

⊆
�(n+j)2−Ni −1�∑

k=1

H(k2Ni )FiH(2m+1 − (k + 1)2Ni )

⊆ H(k2Ni )UNi H(2m+1 − (k + 1)2Ni ).

Using Proposition 4.1, this is contained in Um+1, and so by Theorem 5.1, E(Fi) ∩
H(n) ⊆ E(n). �

6. Enumerating elements. To construct a Jacobson radical algebra using the
above method, we use an approach very similar to that used in Theorem 9 in [6],
but adapted for our constraints. First, we require that the field � be countable so that
we can enumerate the polynomials of Ā. For each such f ∈ Ā, we will find a g ∈ Ā and
a sufficiently ‘small’ F such that f + g − fg ∈ E(F).

Let f ⊆ Ā be any polynomial with no constant term, and let d be minimal such
that f ∈ ∑d

n=1 H(n). We can decompose f into f(1) + · · · + f(d) with each f(i) ∈ H(i), and
recursively define the spaces s(n) ⊆ H(n) for each n ≥ 0 with:
� s(0) = 1,
� s(n) = ∑min{n,d}

i=1 f(i)s(n − i) for n > 0.
This way,

s(n) =
n∑

k=0

∑
1≤i1,...,ik≤d,i1+···+ik=n

f(i1) · · · f(ik).
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Lemma 8 from [8] can be used to prove the following simple property:

LEMMA 6.1. For any m1, m2 ≥ 0 and any n ≥ m1 + m2 + 2d,

s(n) ⊆
d∑

a,b=1

H(m1 + a)s(n − m1 − m2 − a − b + 1)H(m2 + b − 1).

Using s, we can build our subspace F . Recall that |X | is the number of generators
of A.

THEOREM 6.2. For any N ≥ 2d, there exists a homogeneous subspace F ⊆ H(N)
with dim F ≤ ( |X |d−1

|X |−1 )2 and a polynomial g ∈ Ā such that f + g − fg ∈ E(F).

Proof. Let g = −∑2N+d
n=1 s(n), and let P be the two-sided ideal generated by {s(2N +

i)}d
i=1. By the recursive construction of s,

g = −
2N+d∑
n=1

s(n) = −
2N+d∑
n=1

min{n,d}∑
i=1

f(i)s(n − i)

= −
d∑

n=1

f(n) −
2N+d∑
n=1

min{n−1,d}∑
i=1

f(i)s(n − i) = −f −
d∑

i=1

2N+d∑
n=i+1

f(i)s(n − i)

= −f −
d∑

i=1

2N∑
n=1

f(i)s(n) −
d∑

i=1

2N+d−i∑
n=2N+1

f(i)s(n) ∈ −f + fg + P.

Now set F = ∑d−1
a,b=0 H(a)s(N − a − b)H(b). It is our goal to show that P ⊆ E(F).

Thanks to Proposition 5.1, it is sufficient to show that for any 1 ≤ i ≤ d, s(2N + i) ∈
E(F). Consequently, it is sufficient to show that for any 0 ≤ j < N,

s(2N + i) ∈ H(j)FH(N + i − j) =
d−1∑

a,b=0

H(j + a)s(N − a − b)H(N + i + b − j),

which can be extracted easily from Lemma 6.1.
Finally, recall that dim H(n) = |X |n, where |X | is the number of generators of A,

dim F ≤
d−1∑

a,b=0

dim H(a)s(N − a − b)H(b) =
d−1∑

a,b=0

|X |a+b =
( |X |d − 1

|X | − 1

)2

.

�
Proof of Theorem 1.1. In order to make our quotient algebra Ā/E Jacobson

radical, for every f ∈ Ā there needs to be a g ∈ Ā such that f + g − fg ∈ E. As Ā is
countable, we can make an enumeration f1, f2, ... For each fm, let dm be minimal such
that fm ∈ ∑dm

n=1 H(n). For any Nm ≥ 1 + log2 dm, Theorem 6.2 can give us a gm ∈ Ā and
an Fm ⊆ H(2Nm ) such that fm + gm − fmgm ∈ E(Fm) and dim Fm ≤ ( |X |dm −1

|X |−1 )2.

If each dim Fm < 1
2 (Nm − Nm−1 + 1), then we can construct sets U(2n) and V (2n)

as in Section 3 (see last four lines of Section 3), and hence we can construct the ideal
E as detailed in Section 4. The algebra A/E is infinite-dimensional (Proposition 4.6),
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has quadratic growth (because affine algebras with linear growth are PI by Small–
Stafford–Warfield Theorem [5]) with each dim H(n)/E(n) ≤ 2(n + 1) (Proposition 4.7)
and contains each E(Fm) (Corollary 5.2). Fortunately, each Nm can be set arbitrarily
high in relation to Nm−1. The needed upper bound of dimension of Fm depends on dm,
|X |, Nm and Nm−1, so if each Nm is set to �sup{1 + log2 dm, 2( |X |dm −1

|X |−1 )2 + Nm−1}�, each
Fm will be ‘small enough’ for the construction of E.

In other words, there is a graded ideal E � A such that
⋃

i∈� E(Fi) ⊆ E and A/E
is infinite-dimensional, Jacobson radical and has quadratic growth. Specifically, 1 ≤
H(n)/(E ∩ H(n)) ≤ 2n + 2 for each n ≥ 1.

The following more general theorem can be proved in a similar way.

THEOREM 6.3. Let � be an algebraically closed field. Let A = �〈x, y〉 be the free
non-commutative algebra generated (in degree one) by the elements x, y. Let H(n) ⊂ A
be the homogeneous subspace of degree n ≥ 0. Finally, for any F ⊆ H(n), let:

E(F) =
n−1⋂
j=0

∞∑
k=0

H(kn + j)FA.

For any sequence {Ni}i∈� of strictly increasing natural numbers, and any sequence
{Fi}i∈� of homogeneous subspaces such that Fi ⊆ H(2Ni ) and dim Fi < 1

2 (Ni − Ni−1 + 1),
the quotient algebra A/〈E(Fi)〉i∈� can be mapped homomorphically onto an infinite-
dimensional graded algebra B of linear or quadratic growth; moreover, the dimension of
Bn, in other words the homogeneous subspace of degree n elements of B, is at most 2n + 2
for each n.

Proof. By assumption, dim Fm < 1
2 (Nm − Nm−1 + 1), hence we can construct

sets U(2n), V (2n) as in Section 3 (see last four lines of Section 3), and hence we can
construct the ideal E as detailed in Section 4. The algebra A/E is infinite-dimensional
(Proposition 4.6), has at most quadratic growth with each dim H(n)/E(n) ≤ 2(n + 1)
(Proposition 4.7) and contains each E(Fm) (Corollary 5.2).
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