JACOBSON RADICAL ALGEBRAS WITH QUADRATIC GROWTH

AGATA SMOKTUNOWICZ

Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, United Kingdom e-mail: A.Smoktunowicz@ed.ac.uk

and ALEXANDER A. YOUNG

Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA e-mail: aayoung@math.ucsd.edu

Abstract. We show that over every countable algebraically closed field \mathbb{K} there exists a finitely generated \mathbb{K} -algebra that is Jacobson radical, infinite-dimensional, generated by two elements, graded and has quadratic growth. We also propose a way of constructing examples of algebras with quadratic growth that satisfy special types of relations.

2010 Mathematics Subject Classification. 16N40, 16P90.

1. Introduction. Algebras with linear growth were described by Small et al. [5]. Bergman [2, p. 18] proved that algebras with growth function smaller than $f(n) = \frac{n(n+1)}{2}$ have linear growth. This raises the following question: What properties should algebras with a growth function close to $f(n) = \frac{n(n+1)}{2}$ satisfy? Examples of primitive algebras with very small growth functions were constructed by Uzi Vishne using Morse trajectories [9]. Bartholdi [1] constructed self-similar algebras with very small growth functions over the field \mathbb{F}_2 which are graded nil. In fact, all algebras constructed in [1] are primitive and hence not Jacobson radical (as mentioned in [8]).

In this paper, we will construct an example with growth function bounded above by $n^2 + 4n + 3$, which is both infinite dimensional and Jacobson radical. It is unclear whether this algebra is nil. We will also present a way to construct other examples that are bounded above by the same growth function.

Recall that non-nil Jacobson radical algebras with the Gelfand–Kirillov dimension two were constructed in [8], and nil algebras with the Gelfand–Kirillov dimension not exceeding three were constructed in [4]. It is not known if there are nil algebras with quadratic growth, or more generally with the Gelfand–Kirillov dimension two.

Our main result is as follows:

THEOREM 1.1. Over every countable, algebraically closed field \mathbb{K} there exists a finitely generated \mathbb{K} algebra that is Jacobson radical, infinite dimensional, generated by two elements, graded and has quadratic growth.

In addition, we also propose a new way of constructing examples of algebras with quadratic growth satisfying special types of relations (see Theorem 6.3).

136 AGATA SMOKTUNOWICZ AND ALEXANDER A. YOUNG

2. Notation and proof outline. In what follows, \mathbb{K} is a countable field, and $A = \mathbb{K}\langle x, y \rangle$ is the free \mathbb{K} -algebra in two non-commuting indeterminates x and y. The monomials in this algebra will be the products of the form $x_1 \cdots x_n$, with each $x_i \in \{x, y\}$ (whereas the monomials *with coefficient* will be of the form $kx_1 \cdots x_n$ with $k \in \mathbb{K}$). The degree of a monomial is the length of this product. For any $n \ge 0$, H(n) will denote the homogeneous subspace of degree n: the \mathbb{K} -space generated by the degree-n monomials. Finally, $\overline{A} = \sum_{n=1}^{\infty} H(n)$ will be the \mathbb{K} -space of polynomials with no constant term.

Proof outline for Theorem 1.1 is as follows:

- In Section 6, an increasing sequence of natural numbers N_i is fixed and subspaces
 F_i ⊆ H(2^{N_i}) are constructed such that for every element f ∈ Ā there is g ∈ Ā such
 that f + g − fg ∈ E(F_i) for some i. The set E(F_i) is defined in Section 5.
- In Section 3, for fixed subspaces F_i, subspaces U(2ⁿ), V(2ⁿ) ⊆ H(2ⁿ) are constructed inductively for n = 1, 2, ... This part bears resemblance to results from [3]. Properties that the V(2ⁿ) spaces exhibit include V(2ⁿ) ⊆ V(2ⁿ⁻¹)² and dim V(2ⁿ) = 2, the latter being instrumental in establishing quadratic growth. Our conditions guarantee that each set F_i is in U(2^N).
- In Section 4, we introduce the ideal E, whose construction uses the sets U(2ⁿ) and V(2ⁿ) in order to arrive at our desired quotient, A/E. Note that the ideal E is defined differently than defined in [3]. We then find an upper bound of the growth of A/E.
- In Sections 5 and 6 we show that the algebra A/E is Jacobson radical.
- The proof of Theorem 1.1 is concluded in Section 6.

3. Constructing sets $U(2^n)$ and $V(2^n)$. Suppose we have a strictly increasing sequence of natural numbers

 $\{N_i\}_{i=0}^{\infty}$

with $N_0 = 1$, and a sequence of homogeneous subspaces $\{F_i\}_{i=0}^{\infty}$ with each

$$F_i \subseteq H(2^{N_i})$$

and $F_0 = (0)$.

In this section we will show that, for every $i \ge 0$, there exists a subspace $U_i \subset H(2^i)$ and two monomials (with non-zero coefficient) $v_{i,1}, v_{i,2} \in H(2^i)$ such that for each $i \ge 0$:

- 1. $U_i \oplus \mathbb{K} v_{i,1} \oplus \mathbb{K} v_{i,2} = H(2^i).$
- 2. There exists $v \in \mathbb{K}v_{i,1} + \mathbb{K}v_{i,2}$ such that $U_{i+1} = H(2^i)U_i + U_iH(2^i) + vH(2^i)$.
- 3. $F_i \subseteq U_{N_i}$.

We will eventually set $V_i = \mathbb{K}v_{i,1} + \mathbb{K}v_{i,2}$ so that $U_i \oplus V_i = H(2^i)$.

We shall attack the problem with induction. For the base case, set U_0 as an arbitrary subspace of H(1) with dim $U_0 = \dim H(1) - 2$, and set $v_{0,1}$, $v_{0,2}$ as two linearly independent monomials such that $U_0 + \mathbb{K}v_{0,1} + \mathbb{K}v_{0,2} = H(1)$.

For the inductive step, assume the existence of U_{N_i} , $v_{N_i,1}$, $v_{N_i,2}$ for some $i \ge 0$, and find possible U_k , $v_{k,1}$, $v_{k,2}$ for all $N_i < k \le N_{i+1}$.

Let

$$W \cong \mathbb{K}^{2(N_{i+1}-N_i)}$$

be a K-space with indices $\{x_{k,1}, x_{k,2}\}_{k=N_i}^{N_{i+1}-1}$, W_k be the subspace of all elements where $(x_{k,1}, x_{k,2}) = (0, 0)$ and

$$\overline{W} = W \setminus \bigcup_{k=N_i}^{N_{i+1}-1} W_k.$$

Given some vector $\vec{w} \in \overline{W}$, define a subspace $U_k(\vec{w})$ and elements $v_{k,1}(\vec{w})$, $v_{k,2}(\vec{w})$ in $H(2^k)$ recursively for each $N_i \le k \le N_{i+1}$ as follows: First, set $U_{N_i}(\vec{w}) = U_{N_i}$, $v_{N_i,1}(\vec{w}) = v_{N_i,1}$, $v_{N_i,2}(\vec{w}) = v_{N_i,2}$. Then, assuming $U_k(\vec{w})$, $v_{k,1}(\vec{w})$, $v_{k,2}(\vec{w})$ are defined for some $N_i \le k < N_{i+1}$:

$$U_{k+1}(\vec{w}) = H(2^k)U_k(\vec{w}) + U_k(\vec{w})H(2^k) + (x_{k,2}(\vec{w})v_{k,1}(\vec{w}) - x_{k,1}(\vec{w})v_{k,2}(\vec{w}))H(2^k).$$

If $x_{k,1}(\vec{w}) \neq 0$, set:

$$v_{k+1,1}(\vec{w}) = x_{k,1}(\vec{w})^{-1} v_{k,1}^2(\vec{w}),$$

$$v_{k+1,2}(\vec{w}) = x_{k,1}(\vec{w})^{-1} v_{k,1}(\vec{w}) v_{k,2}(\vec{w}),$$

and if $x_{k,1}(\vec{w}) = 0$, then $x_{k,2}(\vec{w}) \neq 0$, so set:

$$v_{k+1,1}(\vec{w}) = x_{k,2}(\vec{w})^{-1}v_{k,2}(\vec{w})v_{k,1}(\vec{w}),$$

$$v_{k+1,2}(\vec{w}) = x_{k,2}(\vec{w})^{-1}v_{k,2}^{2}(\vec{w}).$$

For any $\vec{w} \in \overline{W}$, this clearly satisfies conditions (1) and (2).

LEMMA 3.1. Let $k \in \mathbb{N}$ and $i \in \mathbb{N}$ such that $N_i \leq k < N_{i+1}$. If $a, b \in \{1, 2\}$ and $\vec{w} \in \overline{W}$, then:

$$v_{k,a}(\vec{w})v_{k,b}(\vec{w}) \in x_{k,a}(\vec{w})v_{k+1,b}(\vec{w}) + U_{k+1}(\vec{w}).$$

Proof. If $x_{k,1}(\vec{w}) \neq 0$ and a = 1, $v_{k,a}(\vec{w})v_{k,b}(\vec{w}) = x_{k,a}(\vec{w})v_{k+1,b}(\vec{w})$. Similarly, if $x_{k,1}(\vec{w}) \neq 0$ and a = 2, then $v_{k,a}(\vec{w})v_{k,b}(\vec{w}) = x_{k,a}(\vec{w})v_{k+1,b}(\vec{w}) - x_{k,1}(\vec{w})^{-1}(x_{k,2}(\vec{w})v_{k,1}(\vec{w}) - x_{k,1}(\vec{w})v_{k,b}(\vec{w})$. If $x_{k,1}(\vec{w}) = 0$ and a = 1, then $v_{k,a}(\vec{w})v_{k,b}(\vec{w}) = x_{k,2}(\vec{w})^{-1}(x_{k,2}(\vec{w})v_{k,1}(\vec{w}) - x_{k,1}(\vec{w})v_{k,2}(\vec{w}))v_{k,b}(\vec{w})$. If $x_{k,1}(\vec{w}) = 0$ and a = 2, $v_{k,a}(\vec{w})v_{k,b}(\vec{w}) = x_{k,2}(\vec{w})v_{k+1,b}(\vec{w})$.

Let

$$P = \mathbb{K}[x_{k,1}, x_{k,2}]_{k=N_i}^{N_{i+1}-1},$$

i.e. the (commutative) algebra of polynomial functions $W \to \mathbb{K}$. Let

$$Q = \prod_{k=N_i}^{N_{i+1}-1} (\mathbb{K}x_{k,1} + \mathbb{K}x_{k,2})^{2^{N_{i+1}-k-1}}$$

be a homogenous subspace of P.

THEOREM 3.2. For any sequence $\{s_k\}_{k=1}^{2^{N_{i+1}-N_i}}$ taking values in $\{1, 2\}$, there exists some $p_s \in Q$ such that for any $\vec{w} \in \overline{W}$,

$$\prod_{k=1}^{2^{N_{i+1}-N_i}} v_{N_i,s_k} \in p_{s}(\vec{w}) v_{N_{i+1},s_{2^{N_{i+1}-N_i}}}(\vec{w}) + U_{N_{i+1}}(\vec{w}).$$

Proof. We will use induction to show that, for any $0 \le h \le N_{i+1} - N_i$ and any sequence $\{s_k\}_{k=1}^{2^h}$ taking values in $\{1, 2\}$,

$$\prod_{k=1}^{2^{h}} v_{N_{i},s_{k}} \in \left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_{i}+j,s_{2^{j}(2k-1)}}(\vec{w})\right) v_{N_{i}+h,s_{2^{h}}}(\vec{w}) + U_{N_{i}+h}(\vec{w}),$$

with the end result of the theorem proven when $h = N_{i+1} - N_i$.

The base case is simply $v_{N_i,s_1} \in v_{N_i,s_1}(\vec{w}) + U_{N_i}(\vec{w})$. For the inductive step, let $\{s_k\}_{k=1}^{2^{h+1}}$ be a sequence taking values in $\{1, 2\}$ and assume the inductive statement is true for $\{s_k\}_{k=1}^{2^h}$ and $\{s_k\}_{k=2^{h+1}}^{2^{h+1}}$. Lemma 3.1 shows that:

$$v_{N_i+h,s_{2^h}}(\vec{w})v_{N_i+h,s_{2^{h+1}}}(\vec{w}) \in x_{N_i+h,s_{2^h}}(\vec{w})v_{N_i+h+1,s_{2^{h+1}}}(\vec{w}) + U_{N_i+h+1}(\vec{w}).$$

Therefore,

$$\prod_{k=1}^{2^{h+1}} v_{N_i,s_k} \in \left(\left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_i+j,s_{2^j(2^{k-1})}}(\vec{w}) \right) v_{N_i+h,s_{2^h}}(\vec{w}) + U_{N_i+h}(\vec{w}) \right) \cdot \\ \left(\left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_i+j,s_{2^j(2^{k-1})+2^h}}(\vec{w}) \right) v_{N_i+h,s_{2^{h+1}}}(\vec{w}) + U_{N_i+h}(\vec{w}) \right) \\ \subseteq \left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j}} x_{N_i+j,s_{2^j(2^{k-1})}}(\vec{w}) \right) x_{N_i+h,s_{2^h}}(\vec{w}) v_{N_i+h+1,s_{2^{h+1}}}(\vec{w}) + U_{N_i+h+1}(\vec{w}) \\ = \left(\prod_{j=0}^{h} \prod_{k=1}^{2^{h-j}} x_{N_i+j,s_{2^j(2^{k-1})}}(\vec{w}) \right) v_{N_i+h+1,s_{2^{h+1}}}(\vec{w}) + U_{N_i+h+1}(\vec{w}).$$

COROLLARY 3.3. For any $f \in H(2^{N_{i+1}})$, there exist $p, q \in Q$ such that, for all $\vec{w} \in \overline{W}$, $f \in p(\vec{w})v_{N_{i+1},1}(\vec{w}) + q(\vec{w})v_{N_{i+1},2}(\vec{w}) + U_{N_{i+1}}(\vec{w}).$

Proof. First, note that:

$$H(2^{N_{i+1}}) = (U_{N_i} + \mathbb{K}v_{N_i,1} + \mathbb{K}v_{N_i,2})^{2^{N_{i+1}-N_i}}$$

= $(\mathbb{K}v_{N_i,1} + \mathbb{K}v_{N_i,2})^{2^{N_{i+1}-N_i}} + \sum_{k=1}^{2^{N_{i+1}-N_i}} H((k-1)2^{N_i})U_{N_i}H(2^{N_{i+1}} - k2^{N_i})$

and that for each $f \in H(2^{N_{i+1}})$ there exists $f' \in (\mathbb{K}v_{N_{i,1}} + \mathbb{K}v_{N_{i,2}})^{2^{N_{i+1}-N_i}}$ such that for any $\vec{w} \in \overline{W}, f \in f' + U_{N_{i+1}}(\vec{w}).$

Since f' can be written as a linear combination of the elements of the form $\prod_{k=1}^{2^{N_{i+1}}} v_{N_i,s_k}$, it is sufficient to prove that the corollary holds when f is one of these elements, which is done in Theorem 3.2.

Let

$$d = \dim F_{i+1}$$

and $\{f_k\}_{k=1}^d$ be elements that generate F_{i+1} and let

$$\{p_k, q_k\} \subseteq Q$$

be such that, for all $\vec{w} \in \overline{W}$,

$$f_k \in p_k(\vec{w})v_{N_{i+1},1}(\vec{w}) + q_k(\vec{w})v_{N_{i+1},2}(\vec{w}) + U_{N_{i+1}}(\vec{w})$$

as detailed in Corollary 3.3. If there exists a $\vec{w} \in \overline{W}$ such that each $p_k(\vec{w}) = q_k(\vec{w}) = 0$, then we can set $(U_k, v_{k,1}, v_{k,2}) = (U_k(\vec{w}), v_{k,1}(\vec{w}), v_{k,2}(\vec{w}))$, and Condition (3) can be satisfied.

Let

$$G = \sum_{k=1}^{d} \mathbb{K} p_k + \mathbb{K} q_k \subseteq Q$$

be the vector space generated by $\{p_k, q_k\}$. Our remaining goal is to show that there exists $\vec{w} \in \overline{W}$ such that $G(\vec{w}) = (0)$.

Let R be the algebra generated by Q, i.e.

$$R=\sum_{k=1}^{\infty}Q^k.$$

LEMMA 3.4. If G, P are defined as above, then:

$$R \cap GP \subseteq G + GR.$$

Proof. Let M be the set of all monomials of P (without coefficient). Let M_Q be the monomials that generate Q, $M_R = \bigcup_{j=1}^{\infty} M_Q^j$ be the monomials that generate R and $M'_R = M \setminus (M_R \cup \{1\})$. P can be decomposed: $P = \mathbb{K} \oplus R \oplus \mathbb{K}M'_R$.

Note that for any $m \in M_Q$ and any $m' \in M'_R$, $mm' \in M'_R$. As R is generated by monomials, $R \cap QM'_R = (0)$.

Let $g \in G$, and let $p \in P$ have the decomposition p = k + r + s, with $k \in \mathbb{K}$, $r \in R$ and $s \in \mathbb{K}M'_R$. Suppose that $gp \in R$. Since $gk + gr \in R$, $gs \in R \cap QM'_R = (0)$. Therefore, $gp \in \mathbb{K}g + gR$, and $R \cap GP \subseteq G + GR$.

THEOREM 3.5. If $\{\vec{w} \in W : G(\vec{w}) = (0)\} \subseteq W \setminus \overline{W} = \bigcup_{k=N_i}^{N_{i+1}-1} W_k$, then $d \ge \frac{1}{2}(N_{i+1} - N_i + 1)$.

Proof. Given an ideal I of P, we define $Z(I) = \{\vec{w} \in W : I(\vec{w}) = \{0\}\}$. This is an affine subvariety of W. It is our goal to show that if $Z(GP) \subseteq \bigcup_{k=N_i}^{N_{i+1}-1} W_k$, then $d \ge \frac{1}{2}(N_{i+1} - N_i + 1)$.

Since Q annihilates each W_k , it must annihilate Z(GP) as well. Hilbert's Nullstellensatz states that since \mathbb{K} is algebraically closed, for each $q \in Q$, there must be an exponent $q^{\pi} \in GP$.

Using Lemma 3.4, $q^{\pi} \in R \cap GP \subseteq G + GR$, and so the quotient algebra R/(G + GR) is nil. Since $G^2 \subseteq GR$, R/GR is nil as well. All finitely generated commutative nil algebras are finite-dimensional, so applying Lemma 4.2 in [7] several times gives $2d \ge GK\dim R$. Recall that Lemma 4.2 [7] says that if R is a commutative finitely generated graded algebra of Gelfand-Kirillov dimension t, and I is a principal ideal generated by a homogeneous element, then R/I has the Gelfand-Kirillov dimension at least t - 1.

Recall that for any $j \ge 0$, $Q^{j} = \prod_{k=N_{i}}^{N_{i-1}-1} (\mathbb{K}x_{k,1} + \mathbb{K}x_{k,2})^{2^{N_{i+1}-k-1}}$, and that:

dim
$$Q^{j} = \prod_{k=N_{i}}^{N_{i+1}-1} (j2^{N_{i+1}-k-1}+1) \ge 2^{\frac{1}{2}(N_{i+1}-N_{i}-1)(N_{i+1}-N_{i})} j^{N_{i+1}-N_{i}}.$$

Therefore, GKdim $R \ge N_{i+1} - N_i + 1$.

We can thus conclude that, as long as dim $F_{i+1} < \frac{1}{2}(N_{i+1} - N_i + 1)$, there is a $\vec{w} \in \overline{W}$ such that $G(\vec{w}) = 0$, and we have appropriate spaces $\{U_k\}$ and monomials $\{v_{k,1}, v_{k,2}\}$ for all $k \le N_{i+1}$. If this holds for all $i \ge 0$, the induction can proceed.

4. Constructing the ideal E. For any $i \ge 0$, let $V_i = \mathbb{K}v_{i,1} + \mathbb{K}v_{i,2}$ (where $v_{i,1}$, $v_{1,2}$ are as in Property (1), Section 3), let $v_i \in V_i$ be such that $U_{i+1} = H(2^i)U_i + U_iH(2^i) + v_iH(2^i)$ and let $Q_i = U_i + \mathbb{K}v_i$ (v_i exists by Property (2), Section 3). If $v_{i,1} \notin \mathbb{K}v_i$, let $W_i = \mathbb{K}v_{i,1}$, otherwise $W_i = \mathbb{K}v_{i,2}$. This way $Q_i \oplus W_i = H(2^i)$, $U_{i+1} = H(2^i)U_i + Q_iH(2^i)$ and $V_{i+1} = W_iV_i$.

PROPOSITION 4.1. For any j > i and any $k \le 2^{j-i} - 1$,

$$H(k2^i)U_iH(2^j-(k+1)2^i)\subseteq U_j.$$

Proof. Apply induction on the value of *j* by using $H(2^i)U_i + U_iH(2^i) \subseteq U_{i+1}$. For any n > 0, let $m \ge 0$ be maximal such that $2^m \le n$, and define:

$$R(n) = \{x \in H(n) : xH(2^{m+1} - n) \subseteq U_{m+1}\},\$$

$$L(n) = \{x \in H(n) : H(2^{m+1} - n)x \subseteq U_{m+1}\}.$$

Also, set R(0) = L(0) = (0).

PROPOSITION 4.2. For any n > 0 and any M such that $2^M > n$,

$$R(n)H(2^M - n) \subseteq U_M,$$

$$H(2^M - n)L(n) \subseteq U_M.$$

Proof. Apply induction on M, using the fact that $H(2^M)U_M + U_MH(2^M) \subseteq U_{M+1}$.

PROPOSITION 4.3. *For any* n > 0, $R(n)H(1) \subseteq R(n+1)$ *and* $H(1)L(n) \subseteq L(n+1)$.

Proof. Let $m \ge 0$ be maximal such that $2^m \le n$. If $2^{m+1} - 1 < n$ then:

$$R(n)H(1) \cdot H(2^{m+1} - n - 1) = R(n)H(2^{m+1} - n) \subseteq U_{m+1},$$

and $R(n)H(1) \subseteq R(n + 1)$. If $2^{m+1} - 1 = n$, then:

$$R(n)H(1) \cdot H(2^{m+2} - n - 1) \subseteq U_{m+1}H(2^{m+1}) \subseteq U_{m+2},$$

and $R(n)H(1) \subseteq R(n+1)$. By symmetry, $H(1)L(n) \subseteq L(n+1)$.

Define the space $R'(n) \subseteq H(n)$ recursively: if n = 0, set $R(0) = \mathbb{K}$, and otherwise let *m* be maximal such that $2^m < n$ and set:

$$R'(n) = W_m R'(n-2^m).$$

Note that dim R'(n) = 1.

PROPOSITION 4.4. For any $n \ge 0$, $R(n) \oplus R'(n) = H(n)$.

Proof. Use induction on *n*. The base case n = 0 is trivial.

For the inductive step, $n \ge 0$, let *m* be maximal such that $2^m \le n$, and assume that $R(n-2^m) \oplus R'(n-2^m) = H(n-2^m)$. Proposition 4.2 can be used to confirm that:

$$Q_m H(n-2^m) \cdot H(2^{m+1}-n) = Q_m H(2^m) \subseteq U_{m+1},$$

$$H(2^m)R(n-2^m) \cdot H(2^{m+1}-n) \subseteq H(2^m)U_m \subseteq U_{m+1},$$

$$R(n) + R'(n) \supseteq Q_m H(n-2^m) + H(2^m)R(n-2^m) + W_m R'(n-2^m) = H(n).$$

Since dim R'(n) = 1, either $R(n) \oplus R'(n) = H(n)$ or $R'(n) \subseteq R(n)$. However, the latter option implies R(n) = H(n) and that $H(n) \cdot H(2^{m+1} - n) \subseteq U_{m+1}$, a clear contradiction. Therefore, $R(n) \oplus R'(n) = H(n)$.

PROPOSITION 4.5. For any $n \ge 0$,

$$0 < \dim H(n)/L(n) \le 2.$$

Proof. Let *m* be maximal such that $2^m \le n$.

If H(n)/L(n) were zero, then L(n) = H(n) and $H(2^{m+1} - n)H(n) \subseteq U_{m+1}$, a contradiction.

Using Proposition 4.2, $R(2^{m+1} - n)H(n) \subseteq U_{m+1}$. By Proposition 4.4,

$$L(n) = \{ x \in H(n) : R'(2^{m+1} - n) x \in U_{m+1} \}.$$

Let $p \in H(2^{m+1} - n)$ be an element that generates $R'(2^{m+1} - n)$, and let $\phi : H(n) \to H(2^{m+1})/U_{m+1}$ be the K-linear transformation:

$$\phi: x \mapsto px/U_{m+1}$$

so that $L(n) = \ker \phi$. The image of ϕ has at most dimension 2, and so dim $H(n)/L(n) \le 2$.

Let $L'(n) \subseteq H(n)$ be a space such that $L(n) \oplus L'(n) = H(n)$. Proposition 4.5 shows that dim L'(n) is either 1 or 2.

Define the space $E(n) \subseteq H(n)$ as:

$$E(n) = \bigcap_{i=0}^{n} L(i)H(n-i) + H(i)R(n-i).$$

LEMMA 4.1. For any n > 0, $E(n)H(1) + H(1)E(n) \subseteq E(n + 1)$.

Proof. Using Proposition 4.3,

$$E(n)H(1) = \bigcap_{i=0}^{n} L(i)H(n-i) \cdot H(1) + H(i)R(n-i)H(1)$$
$$\subseteq \bigcap_{i=0}^{n} L(i)H(n+1-i) + H(i)R(n+1-i).$$

It remains to show that $E(n)H(1) \subseteq L(n+1)H(0) + H(n+1)R(0) = L(n+1)$. Let $m \ge 0$ be maximal such that $2^m \le n+1$.

$$H(2^{m+1} - n - 1)E(n)H(1)$$

$$\subseteq H(2^{m+1} - n - 1)L(n - 2^m + 1)H(2^m) + H(2^m)R(2^m - 1)H(1)$$

$$\subseteq U_mH(2^m) + H(2^m)U_m \subseteq U_{m+1}.$$

 \square

Therefore, by definition, $E(n)H(1) \subseteq L(n + 1)$. We can prove $H(1)E(n) \subseteq E(n + 1)$ by symmetry.

Let $E = \sum_{n=1}^{\infty} E(n)$.

THEOREM 4.2. E is an ideal of A.

Proof. Apply Lemma 4.1 to the definition of *E*.

PROPOSITION 4.6. A/E is infinite dimensional.

Proof.

$$\dim A/E = \sum_{n=1}^{\infty} \dim H(n)/E(n) > \sum_{n=1}^{\infty} \dim H(n)/R(n) = \sum_{n=1}^{\infty} \dim R'(n) = \infty.$$

PROPOSITION 4.7. *A*/*E* has quadratic or linear growth.

Proof. Using the fact that $(L(i)H(n-i) + H(i)R(n-i)) \oplus L'(i)R'(n-i) = H(n)$, and recalling Proposition 4.5,

$$\dim H(n)/E(n) \le \sum_{i=0}^{n} \dim L'(i)R'(n-i) \le \sum_{i=0}^{n} 2 = 2(n+1),$$
$$\sum_{i=0}^{n} \dim H(i)/E(i) \le n^{2} + 3n + 1.$$

142

Proposition 4.6 shows that the algebra A/E is not finite-dimensional. Bergman's Gap Theorem [2] proves that the only types of growth strictly slower than quadratic are linear and finite, so A/E must have quadratic or linear growth.

5. $E \supseteq \mathcal{E}(F_i)$. In this section we introduce the set $\mathcal{E}(F)$ and prove that $\mathcal{E}(F)$ is an ideal in \overline{A} (and in A). We also show that $\mathcal{E}(F) \subseteq E$. We start with the following result:

THEOREM 5.1. For any n > 0, let m be maximal such that $2^m \le n$, the following holds:

$$\bigcap_{i=0}^{2^{m+1}-n} \{x \in H(n) : H(i)xH(2^{m+1}-n-i) \subseteq U_mH(2^m) + H(2^m)U_m\} \subseteq E(n).$$

Proof. It is sufficient to show that for any $0 \le i \le 2^{m+1} - n$ and any $x \in H(n)$ such that $x \notin L(2^m - i)H(n - 2^m + i) + H(2^m - i)R(n - 2^m + i)$,

$$H(i)xH(2^{m+1} - n - i) \nsubseteq U_mH(2^m) + H(2^m)U_m.$$

We can uniquely decompose x into $x_1 + x_L x_R$ with:

$$x_1 \subseteq L(2^m - i)H(n - 2^m + i) + H(2^m - i)R(n - 2^m + i),$$

$$x_L \subseteq L'(2^m - i), \ x_R \in R'(n - 2^m + i).$$

Under our assumption, $x_L x_R \neq 0$. However,

$$H(i)x_1H(2^{m+1} - n - i)$$

 $\in H(i)L(2^m - i)H(2^m) + H(2^m)R(n - 2^m + i)H(2^{m+1} - n - i)$
 $\subseteq U_mH(2^m) + H(2^m)U_m.$

Therefore, it is sufficient to show there exist $y \in H(i)$ and $z \in H(2^{m+1} - n - i)$ such that $yx_Lx_Rz \notin U_mH(2^m) + H(2^m)U_m$.

As $x_L \notin L(2^m - i)$, there must exist a $y \in H(i)$ such that $yx_L \notin U_m$. Let $yx_L = x_{LU} + x_{LV}$, with $x_{LU} \in U_m$ and $0 \neq x_{LV} \in V_m$. Symmetrically, there is a $z \in H(2^{m+1} - n - i)$ with $x_R = x_{RU} + x_{RV}$, $x_{RU} \in U_m$ and $0 \neq x_{RV} \in V_m$. We see that

$$yx_Lx_Rz = x_{LU}x_Rz + x_{LV}x_{RU} + x_{LV}x_{RV} \notin U_mH(2^m) + H(2^m)U_m.$$

For any non-zero homogeneous space $F \subseteq H(n)$, let $\mathcal{E}(F)$ denote the space:

$$\mathcal{E}(F) = \bigcap_{j=0}^{n-1} \sum_{k=0}^{\infty} H(kn+j)FA.$$

PROPOSITION 5.1. For any non-zero homogeneous space $F \subseteq H(n)$, $\mathcal{E}(F)$ is an ideal in \overline{A} .

Proof. By the definition, it is clear that $\mathcal{E}(F)$ is right ideal. To prove that it is a left ideal, it is sufficient to show that $H(1)\mathcal{E}(F) \subseteq \mathcal{E}(F)$.

$$H(1)\mathcal{E}(F) = \bigcap_{j=0}^{n-1} \sum_{k=0}^{\infty} H(kn+j+1)FA$$

= $\bigcap_{j=1}^{n-1} \sum_{k=0}^{\infty} H(kn+j)FA \cap \sum_{k=0}^{\infty} H(kn+n)FA$
= $\bigcap_{j=1}^{n-1} \sum_{k=0}^{\infty} H(kn+j)FA \cap \sum_{k=1}^{\infty} H(kn)FA \subseteq \bigcap_{j=0}^{n-1} \sum_{k=0}^{\infty} H(kn+j)FA = \mathcal{E}(F).$

COROLLARY 5.2. For any $i \ge 0$, $\mathcal{E}(F_i) \subseteq E$.

Proof. Since it is graded, $\mathcal{E}(F_i)$ can decompose into homogeneous subspaces. If $n < 2^{N_i}$, $\mathcal{E}(F_i) \cap H(n) = (0)$, and if $n \ge 2^{N_i}$,

$$\mathcal{E}(F_i) \cap H(n) = \bigcap_{j=0}^{n-1} \sum_{k=0}^{\lfloor (n-j)2^{-N_i}-1 \rfloor} H(k2^{N_i}+j)F_iH(n-(k+1)2^{N_i}-j).$$

Let $n \ge 2^{N_i}$ and *m* be maximal such that $2^m \le n$. For any $0 \le j \le 2^{m+1} - n$,

$$H(j)(\mathcal{E}(F_i) \cap H(n))H(2^{m+1} - n - j)$$

$$\subseteq \sum_{k=1}^{\lfloor (n+j)2^{-N_i} - 1 \rfloor} H(k2^{N_i})F_iH(2^{m+1} - (k+1)2^{N_i})$$

$$\subseteq H(k2^{N_i})U_{N_i}H(2^{m+1} - (k+1)2^{N_i}).$$

Using Proposition 4.1, this is contained in U_{m+1} , and so by Theorem 5.1, $\mathcal{E}(F_i) \cap H(n) \subseteq E(n)$.

6. Enumerating elements. To construct a Jacobson radical algebra using the above method, we use an approach very similar to that used in Theorem 9 in [6], but adapted for our constraints. First, we require that the field \mathbb{K} be countable so that we can enumerate the polynomials of \overline{A} . For each such $f \in \overline{A}$, we will find a $g \in \overline{A}$ and a sufficiently 'small' F such that $f + g - fg \in \mathcal{E}(F)$.

Let $f \subseteq \overline{A}$ be any polynomial with no constant term, and let *d* be minimal such that $f \in \sum_{n=1}^{d} H(n)$. We can decompose *f* into $f_{(1)} + \cdots + f_{(d)}$ with each $f_{(i)} \in H(i)$, and recursively define the spaces $s(n) \subseteq H(n)$ for each $n \ge 0$ with:

•
$$s(0) = 1$$
,

144

• $s(n) = \sum_{i=1}^{n} f(i) s(n-i)$ for n > 0. This way,

$$s(n) = \sum_{k=0}^{n} \sum_{1 \le i_1, \dots, i_k \le d, i_1 + \dots + i_k = n} f_{(i_1)} \cdots f_{(i_k)}.$$

Lemma 8 from [8] can be used to prove the following simple property:

LEMMA 6.1. For any $m_1, m_2 \ge 0$ and any $n \ge m_1 + m_2 + 2d$,

$$s(n) \subseteq \sum_{a,b=1}^{d} H(m_1 + a)s(n - m_1 - m_2 - a - b + 1)H(m_2 + b - 1)$$

Using s, we can build our subspace F. Recall that |X| is the number of generators of A.

THEOREM 6.2. For any $N \ge 2d$, there exists a homogeneous subspace $F \subseteq H(N)$ with dim $F \le (\frac{|X|^d-1}{|X|-1})^2$ and a polynomial $g \in \overline{A}$ such that $f + g - fg \in \mathcal{E}(F)$.

Proof. Let $g = -\sum_{n=1}^{2N+d} s(n)$, and let *P* be the two-sided ideal generated by $\{s(2N + i)\}_{i=1}^{d}$. By the recursive construction of *s*,

$$g = -\sum_{n=1}^{2N+d} s(n) = -\sum_{n=1}^{2N+d} \sum_{i=1}^{\min\{n,d\}} f_{(i)}s(n-i)$$

= $-\sum_{n=1}^{d} f_{(n)} - \sum_{n=1}^{2N+d} \sum_{i=1}^{\min\{n-1,d\}} f_{(i)}s(n-i) = -f - \sum_{i=1}^{d} \sum_{n=i+1}^{2N+d} f_{(i)}s(n-i)$
= $-f - \sum_{i=1}^{d} \sum_{n=1}^{2N} f_{(i)}s(n) - \sum_{i=1}^{d} \sum_{n=2N+1}^{2N+d-i} f_{(i)}s(n) \in -f + fg + P.$

Now set $F = \sum_{a,b=0}^{d-1} H(a)s(N-a-b)H(b)$. It is our goal to show that $P \subseteq \mathcal{E}(F)$. Thanks to Proposition 5.1, it is sufficient to show that for any $1 \le i \le d$, $s(2N+i) \in \mathcal{E}(F)$. Consequently, it is sufficient to show that for any $0 \le j < N$,

$$s(2N+i) \in H(j)FH(N+i-j) = \sum_{a,b=0}^{d-1} H(j+a)s(N-a-b)H(N+i+b-j),$$

which can be extracted easily from Lemma 6.1.

Finally, recall that dim $H(n) = |X|^n$, where |X| is the number of generators of A,

$$\dim F \le \sum_{a,b=0}^{d-1} \dim H(a)s(N-a-b)H(b) = \sum_{a,b=0}^{d-1} |X|^{a+b} = \left(\frac{|X|^d - 1}{|X| - 1}\right)^2.$$

Proof of Theorem 1.1. In order to make our quotient algebra \overline{A}/E Jacobson radical, for every $f \in \overline{A}$ there needs to be a $g \in \overline{A}$ such that $f + g - fg \in E$. As \overline{A} is countable, we can make an enumeration $f_1, f_2, ...$ For each f_m , let d_m be minimal such that $f_m \in \sum_{n=1}^{d_m} H(n)$. For any $N_m \ge 1 + \log_2 d_m$, Theorem 6.2 can give us a $g_m \in \overline{A}$ and an $F_m \subseteq H(2^{N_m})$ such that $f_m + g_m - f_m g_m \in \mathcal{E}(F_m)$ and dim $F_m \le (\frac{|X|^{d_m} - 1}{|X| - 1})^2$.

If each dim $F_m < \frac{1}{2}(N_m - N_{m-1} + 1)$, then we can construct sets $U(2^n)$ and $V(2^n)$ as in Section 3 (see last four lines of Section 3), and hence we can construct the ideal E as detailed in Section 4. The algebra A/E is infinite-dimensional (Proposition 4.6),

has quadratic growth (because affine algebras with linear growth are PI by Small–Stafford–Warfield Theorem [5]) with each dim $H(n)/E(n) \leq 2(n+1)$ (Proposition 4.7) and contains each $\mathcal{E}(F_m)$ (Corollary 5.2). Fortunately, each N_m can be set arbitrarily high in relation to N_{m-1} . The needed upper bound of dimension of F_m depends on d_m , $|X|, N_m$ and N_{m-1} , so if each N_m is set to $\lceil \sup\{1 + \log_2 d_m, 2(\frac{|X|^{d_m}-1}{|X|-1})^2 + N_{m-1}\}\rceil$, each F_m will be 'small enough' for the construction of E.

In other words, there is a graded ideal $E \triangleleft A$ such that $\bigcup_{i \in \mathbb{N}} \mathcal{E}(F_i) \subseteq E$ and A/E is infinite-dimensional, Jacobson radical and has quadratic growth. Specifically, $1 \leq H(n)/(E \cap H(n)) \leq 2n + 2$ for each $n \geq 1$.

The following more general theorem can be proved in a similar way.

THEOREM 6.3. Let \mathbb{K} be an algebraically closed field. Let $A = \mathbb{K}\langle x, y \rangle$ be the free non-commutative algebra generated (in degree one) by the elements x, y. Let $H(n) \subset A$ be the homogeneous subspace of degree $n \ge 0$. Finally, for any $F \subseteq H(n)$, let:

$$\mathcal{E}(F) = \bigcap_{j=0}^{n-1} \sum_{k=0}^{\infty} H(kn+j)FA.$$

For any sequence $\{N_i\}_{i\in\mathbb{N}}$ of strictly increasing natural numbers, and any sequence $\{F_i\}_{i\in\mathbb{N}}$ of homogeneous subspaces such that $F_i \subseteq H(2^{N_i})$ and dim $F_i < \frac{1}{2}(N_i - N_{i-1} + 1)$, the quotient algebra $A/\langle \mathcal{E}(F_i) \rangle_{i\in\mathbb{N}}$ can be mapped homomorphically onto an infinitedimensional graded algebra B of linear or quadratic growth; moreover, the dimension of B_n , in other words the homogeneous subspace of degree n elements of B, is at most 2n + 2 for each n.

Proof. By assumption, dim $F_m < \frac{1}{2}(N_m - N_{m-1} + 1)$, hence we can construct sets $U(2^n)$, $V(2^n)$ as in Section 3 (see last four lines of Section 3), and hence we can construct the ideal E as detailed in Section 4. The algebra A/E is infinite-dimensional (Proposition 4.6), has at most quadratic growth with each dim $H(n)/E(n) \le 2(n+1)$ (Proposition 4.7) and contains each $\mathcal{E}(F_m)$ (Corollary 5.2).

ACKNOWLEDGEMENTS. The research of the first author was supported by Grant No. EPSRC EP/D071674/1, and the research of the second author was partially supported by the United States National Science Foundation.

REFERENCES

1. L. Bartholdi, Branch rings, thinned rings, tree enveloping rings, *Israel J. Math.* 154 (2006), 93–139.

2. G. R. Krause and T. H. Lenagan, *Growth of algebras and Gelfand-Kirillov dimension*, Revised ed., Graduate Studies in Mathematics, 22. (American Mathematical Society, Providence, RI, 2000).

3. T. H. Lenagan and A. Smoktunowicz, An infinite dimensional algebra with finite Gelfand-Kirillov algebra, *J. Amer. Math. Soc.* **20**(4) (2007), 989–1001.

4. T. H. Lenagan, A. Smoktunowicz and A. A. Young, Nil algebras with restricted growth, *Proc. Edinburgh Math. Soc.* (Ser. 2), **55** (2012), 461–475.

5. L. W. Small, J. T. Stafford and R. B. Warfield, Jr., Affine algebras of Gelfand–Kirillov dimension one are PI, *Math. Proc. Camb. Philos. Soc.* 97(3) (1985), 407–414.

6. A. Smoktunowicz, Jacobson radical algebras with Gelfand–Kirillov dimension two over countable fields, *J. Pure Appl. Algebra* **209**(3) (2007), 839–851.

7. A. Smoktunowicz and L. Bartholdi, Images of Golod–Shafarevich algebras with small growth, *Q. J. Math.* First published online (2013)doi:10.1093/qmath/hat005.

8. A. Smoktunowicz and L. Bartholdi, Jacobson radical non-nil algebras of Gelfand-Kirillov dimension 2, *Israel J. Math* **194**(2) (2013), 597–608.

9. U. Vishne, Primitive algebras with arbitrary Gelfand-Kirillov dimension, J. Algebra 211(1) (1999), 150–158.