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For any semi-group S and any ring A with unit 1
(always taken to be distinct from O, the neutral element of
A under addition) there is known to exist a ring A[S] DS
which is a A-bimodule such that (i) S is a subsemi-group
of the multiplicative semi-group of A[S], (ii) As = s)\,
(iii) A (st) = (As)t = s(A\t) (s,te€ S and Ae A ) and (iv) Sis
a A -basis of A[S]. This ring is uniquely determined by these
conditions and is usually called the semi-group ring of S over A.
It may be described explicitly as consisting of the functions
f : S—= A which vanish at all but finitely many places, with
functional addition (f+g) (s) = f(s) + g(s) and convolution
(fg) (s) = Z1f(u) g(v) (uv = s) as the ring operations, the
functional A-bimodule operations (\f) (s) = A{(s) and (f\) (s)
f(s)\, and each s ¢ S identified with the characteristic function
of {s} withvalues in A.

"

Via the correspondence S — A[S], every property of rings
induces a property of semi-groups, and the natural problem
arising here is that of characterizing the latter directly in
semi-group terms. In the present note, this problem will be
studied for the following condition on semi-groups S:

(NZ) If A has no zero divisors then A[S] also has no
zero divisors.’

Concerning this and the further condition
(O) S is'totally orderable,
(i.e., there exists a total ordering < of S suchthat s<t
implies us < ut and su < tu) one has the well-known implication
(O) = (NZz).

Proof. Any non-zero x ¢ A[S] is a sum g’is1 oo b E X

of n>1 terms with uniquely determined non-zero gi ¢ A if the
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s, are taxen to be distinct. Moreover, it may be assumed that
i
s, < S, <...< s - Now, given any two non-zero elements of

i is y = + ... d = ..
AN[S] in this form, a as, * ... tas an b piti + + ﬁmtm,

one sees that the product ab, if also written in this manner, will
have the ''leading" termm « f s t  which is non-zero since
nmmunm

a B # 0 by hypothesis on A. Thus one has ab # 0.
nm

The essential feature of {(Q) used in this proof is that it
implies a certain other condition for S, namely

(U) For any two finite subsets F,G CS, there exists a
unique product in FG, i.e., there exists a pair (a,b), ae F
and be G, suchthat ab = xy, x¢ F and y ¢ G, implies
a =x and b =y. Itis clear that this is all one uses of (O)
and that, therefore,

(U) = (N2Z)

Whether the converse of this implication also holds seems
an interesting open question. In the case of abelian S this is
indeed so, as will be seen later; however, the proof of this draws
heavily on the commutativity of S, leaving no indication as to how -
it might carry over to non-abelian S.

Turning from sufficient to necessary conditions for (NZ),
one may consider the Cancellation Law

(C) If sx = sy or xs =ys then x =y
for which one has

(N2) = (C)

Proof. If x4y in S then x-y # 0 in A[S], and since
s # 0 in A[S] for any s e S one obtains from (NZ) that
s(x-y) and (x-y)s are both non-zero. Back in S this means
that sx # sy and xs # ys.

A similar result, though less general, is!
(NZ) = (PC)

with the Power Cancellation Law

(PC) If xn=yn then x =y forany n =1,2,...

!In the following, ’—z denotes implication for all abelian S.
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Proof. Let x # y and suppose there exist natural numbers

n> 1 such that X = y'n:. Then, let k be the first one of these

and consider the equations

k k k=1 k=2 k-2 k-1
0=x -y =(xvy)(x +x v+ ... +xy +ty )

from which

k-1 k-2 k-2 k-1
x +x y+ ...+ xy +y =0

follows in view of x # y. This latter equation, however, cannot
hold if all summands on its left-hand side are distinct, since

-i i- k-3 j-
S is a basis for A[S]. Hence one must have = o ok Iy 1

for some 1i,j> i. By cancellation this leads to £ = y‘l-1

0 < j-i < k, which contradicts the choice of k.

with

Combining the last two implications one obtains

(Nz) = (C) & (PC)

Now, here one has arrived at a proposition whose converse
(restricted to the abelian case) also holds, i.e.,

(C) & (PC)i (NZ).

It seems that, so far, transfinite methods have always
been employed in obtaining this result. Thus a typical proof
proceeds through the following steps: (i) By (C), S can be
imbedded in a group G and (ii) (PC) implies that this G'is
torsion free. Hence (iii) G, written additively now, can be
imbedded in a module G over the rational field. {iv) G has
a basis which (v) can be totally ordered and (vi) then be used
to order G lexicographically. This establishes that S is
orderable and thus (O) = (NZ) completes the proof. Clearly,
the steps (iv) and (v) require transfinite arguments. Of course,
this line of reasoning may be shortened somewhat: the orderability
of S can actually be deduced directly, without the intervention
of G, by a suitable application of Zorn's Lemma. However,
that does not change the essential nature of the proof.

'The question which naturally arises here is : Can the
implication (C) % (PC) ’X {NZ) be obtained without the use of

transfinite methods? The answer to this turns out to be: yes,
and it will now be shown how this can be done.
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We introduce the following concept:
DEFINITION. An element a of a subset F CS is called an

k
extremity of F if, for any natural number k>0, a = cicz. .. ck,

c. € F, implies ¢, = a for all i.
i i

Using this notion, one can formulate a further condition on S:
(E) Any non-void finite subset of S has extremities.

In passing, we note that (O) = (E), for if (O) then the
greatest and the least elemsnt of a finite FC S with respect to
any total ordering of S are clearly extremities of F.

The first step is:
(C) & (PC) = (E)

Proof. Let the finite set F C S have an extremity a and
consider F' = Fuw{b} where be S but b¢ F. If b isnot

an extremity of F' there esist ci, s G e F', not all equal
k . .
to b, such that b = € Cor 7t Oy with ¢ e F'. Cancelling out
i
1
all ¢, = b one obtains, after suitable renumbering, b = cicz. e Cy
i

Now, if a also fails to be an extremity of F' one has
am =dd_...d with certain d, € F', not all equal to a.
12 m i

Moreover, since a is an extremity of F, not all d, can belong
- 1

to F, i.e., some must be equal to b. Let these be exactly the

d, with i< r where r<m ; here, one actually has r<m
i > =

since r = m leads to a = b which contradicts b ¢ F. Then,

am = brp where p is a product of m-r terms from F. Now,
arn1 = blrp1 = c:c;. .. clip1 shows aml to be a product of

rl + (m-r)l = ml factors, all in F, and by the choice of a this
implies ci =... ¢ =a It follows that b1 = a1 and hence

b = a which contradicts b ¢ F.

Thus F' = FuU{b} has a or b as extremity. Since
the collection of all non-void finite FES satisfies the minimum
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condition and each F = {c} clearly has an extremity, the
statement is proved by induction.

Next, we prove
(C) & (E) = (U).

Proof. lLet F,G C S be finite and non-void, a an

extremity of F and G = {bi’ e ,bn} . If FG does not contain

any unique product then there exists, for each pair (a,b,) some
i

pair (a,,b,) with a
i i

¢ F, b,¢e G, (a,b,) # (a,b.) and ab, = ab..
j i i i ij

Hence, there exists a mapping ¢ of {1, ...,n} into itself such that

= ab s =
ab1 a1 (1) ab‘2

where a #ai or bi b

., ab =ab
n

n ¢(n)
By (C) it follows that both con-

22P4(2)’

(1)’

ditions, a # a, and b, # b hold for each i, and the latter
i i —_—

$(i)
means that ¢(i) # i for each i. Now, there exists a set
{ii’ cee ik}g_ {1,...n} on which ¢ acts as a cyclic permutation:
. 2 n+1i
for instance, the numbers &(41), ¢ (1), ..., ¢ (1) cannot

all be distinct, hence there exists a first r such that ¢r(1) = ¢S(i)

with some s < r and {tbs(i), e ,¢r-1(1)} is such a set. Now
one obtains

akb,b_ ... b, = a a

.a. ... a b .. b, . ... b, ,.
11 12 1k 11 12 lk ¢(11) ¢’(12) CP(lk)
and hence, by the choice of {ii’ e ,ik} and by (C),
ak =a, a, ...a, . However, a was taken as an extremity
i i i
1 72 k
of F and, therefore, this leads to a.i = ... = ai = a which

1 k
is a contradiction.

The final step in our argument is (U) = (NZ) which has
already been dealt with, and thus (C) & (PC) f (NZ) is

established.

Some further relations between the conditions considered
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here are:
(NZ) ? (U) , (E) = (PC) , (U) =(C).

The first one immediately follows from (NZ) TA_? (C) & (PQC)
and (C) & (PC) -K—} (U), the second one is obtained by applying

(E) to two-element sets and the last one by applying (U) to
sets {a,b} and {c}. For abelian S, one now has that the
four conditions (U), (C) & (PC), (C) & (E), (U) & (E)

are all equivalent to (NZ), and one wonders whether it might
be possible to modify any one of these in order to obtain a
condition which is generally equivalent to (NZ). In a similar
vein, the implications (O) = (E) & (U) and (E) & (U) i} (O)

raise the question whether (E) & (U), or some modification
thereof, might be equivalént with (O), either in general or,
perhaps, for a restricted class of S such as groups.

In conclusion, we give, as another application of the
notion of extremal elements, a characterization of the additive
semi-groups of rational numbers. The condition to be considered
here is ’

(2E) Any finite subset of S of at least two elements has
exactly two extremities.

" Now one has the proposition +
(C) & (2E) GX} S is isomorphic to a subsemigroup of Q .

+
Here, © denotes the additive group of the rational field Q.

Proof. Let S be abelian and satisfy (C) and (2E).
Since (2E) = (E) =(PC), S is a subsemigroup of a torsion
free group G. If rank G > 1 there exist independent elements
a,be S. Now, for any ce¢ S, consider F = {ac,bc,c}. If

k+1 k1
(ac) = (bc) ¢ with k,1>0 and ktl # 0 one has ak+1 = bk

which either contradicts the independence of a and b. or the
fact that G is torsion free. Hence, ac and, similarly, bc
k
(

+1 1
are extremities of F. Next, if ¢ = (ac) (bc) with k,1>0

and k+l # 0 one has 1 = akb1 which again is not possible;

thus c¢ is also an extremity of F. However, this contradicts
(2E) and therefore rank G = 1. It follows now from a known
theorem that G is isomorphic to a subgroup of Q , and this
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proves the assertion concerning S.

Conversely, let S be a subsemigroup of Q+ and suppose
F CS has at least three elements a, b and c. Let a = {/n,
b = g/n and ¢ = h/n with integers f, g, h and n where n> 0
and f< g<h. Then (h-f)g = (h-g)f + (g-f)h and therefore
(h-f)b = (h-g)a + (g-f)c where all coefficients are positive and
h-f = (h-g) + (g-f). This shows that b is not an extremity of F.
On the other hand, any finite F C S of at least two elements does
have two extremities, namely its least and its greatest element
with respect to the natural ordering of Q. Hence, S satisfies (2E).

Hamilton College,
McMaster University
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