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For any semi-group S and any ring A with unit 1 
(always taken to be distinct from 0, the neutral element of 
A under addition) there is known to exist a ring A[S] DS 
which is a A-bimodule such that (i) S is a sub semi-group 
of the multiplicative semi-group of A[S], (ii) Xs = sX, 
(iii) \ ( s t ) = (X.s)t = s(Xt) ( s , t c S and X c A ) and (iv) S i s 
a A -bas is of A[S]. This ring is uniquely determined by these 
conditions and is usually called the semi-group ring of S over A. 
It may be described explicitly as consisting of the functions 
f : S -» A which vanish at all but finitely many places, with 
functional addition (f+g) (s) = f(s) + g(s) and convolution 
(fg) (s) = Sf(u) g(v) (uv = s) as the ring operations, the 
functional A-bimodule operations (Xf) (s) = Xf(s) and (fX) (s) -
f(s)X, and each s € S identified with the character is t ic function 
of { s} with values in A. 

Via the correspondence S -* A[S], every property of rings 
induces a property of semi-groups, and the natural problem 
aris ing here is that of characterizing the la t ter directly in 
semi-group t e r m s . In the present note, this problem will be 
studied for the following condition on semi-groups S : 

(NZ) If A has no zero divisors then A[S] also has no 
zero divisors . 

Concerning this and the further condition 
(O) S is ' totally orderable , 

(i. e. , there exists a total ordering £ of S such that s < t 
implies us < ut and su < tu) one has the well-known implication 

(O) =» (NZ). 

Proof. Any non-zero x c A[S] is a sum g* s + . . . . . + g x 
1 1 n n 

of n > l t e r m s with uniquely determined non-zero g. € A if the 
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s are taken to be distinct. Moreover, it may be assumed that 
i 

s < s < . . . < s . Now, given any two non-zero elements of 
1 2 n 

A!"Si in this form, a = <x s + . . . . + a s and b = 6 t + . . . + (3 t L J 1 1 n n 1 1 m m, 
one sees that the product ab, if also writ ten in this manner , will 
have the "leading11 t e r m ce p s t which is non-zero since 

n m n m 
a P 4 0 by hypothesis on A . Thus one has àb 4 0. 

n m 

The essent ial feature of (O) used in this proof is that it 
implies a certain other condition for S, namely 

(U) For any two finite subsets F , G C S , there exists a 
unique product in FG, i . e . , there exists a pair (a ,b) , a € F 
and b € G, such that ab = xy, x c F and y € G, implies 
a = x and b = y. It is c lear that this is all one uses of (O) 
and that, therefore , 

(U) =» (NZ) 

Whether the converse of this implication also holds seems 
an interest ing open question. In the case of abelian S this is 
indeed so, as will be seen la ter ; however, the proof of this draws 
heavily on the commutativity of S, leaving no indication as to how 
it might ca r ry over to non-abelian S. 

Turning from sufficient to necessary conditions for (NZ), 
one may consider the Cancellation Law 

(C) If sx = sy or xs = y s then x = y 
for which one has 

(NZ) => (C) 
Proof. If x 4 y in S then x-y 4 0 in A[S], and since 

s 4 0 in A [S] for any s € S one obtains from (NZ) that 
s(x-y) and (x-y)s a re both non-zero . Back in S this means 
that sx 4 sy and xs 4 ys . 

A s imilar resul t , though less general, i s 1 

(NZ) ^ ( P C ) 

with the Power Cancellation Law 

(PC) If x = y then x = y for any n = 1, 2, . . . . 

In the following, =^ denotes implication for all abelian S. 
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Proof. Let x 4 y and suppose there exist natural numbers 

n > 1 such that x = y , Then, let k be the first one of these 
and consider the equations 

• k k , x , k-1 k-2 k-2 k-1 
0 = x . - y = (x-y) (x + x y + + xy + y } 

from which 
k-1 k-2 k-2 k-1 

x + x y + . . . + xy + y = 0 
follows in view of x ^ y. This lat ter equation, however, cannot 
hold if all summands on its left-hand side are distinct, since 
~ . , A m TT , k- i i-1 k-j j - 1 
S is a bas is for A [SJ. Hence one must have x y = x y 
for some i, j > i. By cancellation this leads to x = y with 
0 < j - i < k, which contradicts the choice of k. 

Combining the last two implications one obtains 
(NZ) => (C) h (PC). 

Now, here one has ar r ived at a proposition whose converse 
( res t r ic ted to the abelian case) also holds, i. e. , 

(C) V (PC) ^ (NZ). 

It seems that, so far, transfinite methods have always 
been employed in obtaining this result . Thus a typical proof 
proceeds through the following steps: (i) By (C), S can be 
imbedded in a group G and (ii) (PC) implies that this G' is 
torsion free. Hence (iii) G, written additively now, can be 
imbedded in a module G over the rational field, (iv) G has 
a bas is which (v) can be totally ordered and (vi) then be used 
to order G lexicographically. This establishes that S is 
orderable and thus (O) =* (NZ) completes the proof. Clearly, 
the steps (iv) and (v) require transfinite arguments . Of course , 
this line of reasoning may be shortened somewhat: the orderabili ty 
of S can actually be deduced directly, without the intervention 
of G, by a suitable application of Zorn' s Lemma. However, 
that does not change the essential nature of the proof. 

The question which naturally a r i ses here is : Can the 
implication (C) *< (PC) => (NZ) be obtained without the use of 

j \ . 

transfinite methods? The answer to this turns out to be: yes , 
and it will now be shown how this can be done. 
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We introduce the following concept: 

DEFINITION, An element a of a subset F C-S is called an 

extremity of F if, for any natural number k > 0, a = c c . . . c , 

c € F, implies c = a for all i. 
i l 

Using this notion, one can formulate a further condition on S: 

(E) Any non-void finite subset of S has extremities. 

In passing, we note that (O) =* (E), for if (O) then the 

greatest and the least element of a finite FC S with respect to 

any total ordering of S are clearly extremities of F. 

The first step is: 

(C) «̂  (PC) =^>{E) 

Proof. Let the finite set F C S have an extremity a and 

consider F' = F u { b } where b € S but b 4 F. If b is not 

an extremity of F' there esist c , . . . , c e F1 , not all equal 
1 k 

to b, such that b = c c . .-. c with c € F{ . Cancelling out 
1 2 k l 

all c. = b one obtains, after suitable renumbering, b = c c . . . c . 

Now, if a also fails to be an extremity of F' one has 

a = d d . . . d with certain d e F! , not all equal to a. 
1 2 m i 

Moreover, since a is an extremity of F, not all d, can belong 

to F, i. e. , some must be equal to b. Let these be exactly the 

d with i < r where r < m ; here, one actually has r < m 
i "~~ -~ 

since r = m leads to a = b which contradicts b 4 F. Then, 

a = b p where p is a product of m-r terms from F. Now, 

ml . lr 1 r r r 1 ml 
a = b p = c c . . . c p shows a to be a product of 

1 2 1 
rl -f (m-r)l = ml factors, all in F, and by the choice of a this 

1 1 
implies c = . . . = c = a. It follows that b = a and hence 

1 1 
b = a which contradicts b 4 F. 

Thus F1 = F u { b } has a or b as extremity. Since 

the collection of all non-void finite F G S satisfies the minimum 
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c o n d i t i o n a n d e a c h F = { c} c l e a r l y h a s a n e x t r e m i t y , t h e 

s t a t e m e n t i s p r o v e d b y i n d u c t i o n . 

N e x t , w e p r o v e 

(C) U ( E ) ^ (U) . 

P r o o f . L e t F , G C S b e f i n i t e a n d n o n - v o i d , a a n 

e x t r e m i t y of F a n d G = { b . . . . , b } . If F G d o e s n o t c o n t a i n 
1 n . 

a n y u n i q u e p r o d u c t t h e n t h e r e e x i s t s , f o r e a c h p a i r (a , b ) s o m e 
i 

p a i r (a , b I w i t h a € F , b . € G, (a , b . ) 4 ( a , b ) a n d a b . = a b . 
i j i J i J l l i j 

H e n c e , t h e r e e x i s t s a m a p p i n g <j> of { 1, . . . , n} i n t o i t s e l f s u c h t h a t 

1 1 <j>(l) 2 2 4>(2) n n (j>(n) 

w h e r e a ^ a . o r b ^ b , . . B y (C) i t f o l l o w s t h a t b o t h c o n -
i i 4>(i) 

d i t i o n s , a 4 a . a n d b . 4 b I / # , h o l d f o r e a c h i , a n d t h e l a t t e r 
i i c(>(i) 

m e a n s t h a t 4>(i) 4 i f o r e a c h i . N o w , t h e r e e x i s t s a s e t 

{ i » • • « , i } C { 1, . - . n } o n w h i c h <j> a c t s a s a c y c l i c p e r m u t a t i o n : 
1 k -— 

*> -n4- 4 

f o r i n s t a n c e , t h e n u m b e r s 4>(1), cf> ( 1 ) , . . . , <{> (1) c a n n o t 
r s 

a l l b e d i s t i n c t , h e n c e t h e r e e x i s t s a f i r s t r s u c h t h a t cf> (1) = cj) (1) 
s r— 1 

w i t h s o m e s < r a n d { <j> (1) , . . . , 4> (1)} i s s u c h a s e t . N o w 
o n e o b t a i n s 

a b . b . . . . b . = a . a . . . . a . b * b \ ' " b x / - x 
\ X2 \ \ X2 \ +( li î <f)(l2) ^ V 

a n d h e n c e , b y t h e c h o i c e of { i , . . . , i } a n d b y ( C ) , 

a = a a . . . a . H o w e v e r , a w a s t a k e n a s an e x t r e m i t y 

of F a n d , t h e r e f o r e , t h i s l e a d s t o a .= . . . = a = a w h i c h 

\ \ 
i s a c o n t r a d i c t i o n . 

T h e f i n a l s t e p i n o u r a r g u m e n t i s (U) =£• ( N Z ) w h i c h h a s 
a l r e a d y b e e n d e a l t w i t h , a n d t h u s (C) & ( P C ) *f ( N Z ) i s 

e s t a b l i s h e d . 

S o m e f u r t h e r r e l a t i o n s b e t w e e n t h e c o n d i t i o n s c o n s i d e r e d 
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h e r e a r e : 
(NZ) ^ (U) , (E) =* (PC) , (U) =*> (C). 

The f i r s t one i m m e d i a t e l y fol lows f rom (NZ) ^ ( C ) & (PC) 

and (C) ^ (PC) —^ (U), the second one i s ob ta ined by apply ing 

(E) to t w o - e l e m e n t s e t s and the l a s t one by apply ing (U) to 
s e t s { a , b } and { c} . F o r a b e l i a n S, one now h a s tha t the 
four cond i t ions (U), (C) U ( P C ) , (C) & (E) , (U) k (E) 
a r e a l l equ iva len t to (NZ), and one w o n d e r s w h e t h e r it m i g h t 
be p o s s i b l e to modify any one of t h e s e in o r d e r to obta in a 
condi t ion which i s g e n e r a l l y equ iva len t to (NZ). In a s i m i l a r 
ve in , the i m p l i c a t i o n s (O) =£> (E) & (U) and (E) & (U) =f (O) 

r a i s e the ques t ion w h e t h e r (E) î< (U), o r some mod i f i c a t i on 
thereof , m i g h t be equ iva len t with (O), e i t h e r in g e n e r a l o r , 
p e r h a p s , for a r e s t r i c t e d c l a s s of S such a s g r o u p s . 

In conc lus ion , we give, a s a n o t h e r app l i ca t i on of the 
not ion of e x t r e m a l e l e m e n t s , a c h a r a c t e r i z a t i o n of the addi t ive 
s e m i - g r o u p s of r a t i o n a l n u m b e r s . The condi t ion to be c o n s i d e r e d 
h e r e i s 

(2E) Any finite s u b s e t of S of a t l e a s t two e l e m e n t s h a s 
exac t ly two e x t r e m i t i e s . 

Now one h a s the p r o p o s i t i o n 
(C) & (2E) *T^ S i s i s o m o r p h i c to a sub s e m i g r o u p of Q . 

H e r e , O d e n o t e s the add i t ive g r o u p of the r a t i o n a l f ield Q. 

Proof . Le t S be abe l i an and sat is fy (C) and (2E). 
Since (2E) = ^ ( E ) =^>(PC), S i s a s u b s e m i g r o u p of a t o r s i o n 
f ree g roup G. If r a n k G > 1 t h e r e ex i s t independen t e l e m e n t s 
a , b € S. Now, for any c e S, c o n s i d e r F = { a c , b c , c } . If 

(ac) = (be) c wi th k, 1 > 0 and k+1 4 0 one h a s a = b 
which e i t h e r c o n t r a d i c t s the i ndependence of a and b o r the 
fact that G i s t o r s i o n f r e e . H e n c e , ac and, s i m i l a r l y , be 

r T-» ^T .* ^ + 1 k . 1 

a r e e x t r e m i t i e s of F . Nex t , if c = (ac) (be) wi th k, 1 > 0 

and k+1 4 0 one h a s 1 = a b which aga in i s not p o s s i b l e ; 
thus c i s a l s o an e x t r e m i t y of F . H o w e v e r , t h i s c o n t r a d i c t s 
(2E) and t h e r e f o r e r a n k G = 1. It fol lows now f r o m a known 
t h e o r e m tha t G i s i s o m o r p h i c to a subg roup of Q * and t h i s 
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proves the asser t ion concerning S. 

Conversely, let S be a subsemigroup of Q and suppose 
F C S has at least three elements a, b and c. Let a = f/n, 
b = g/n and c = h/n with integers f, g, h and n where n > 0 
and f < g < h. Then (h-f)g = (h-g)f + (g-f)h and therefore 
(h-f)b = (h-g)a + (g-f)c where all coefficients are positive and 
h-f = (h-g) + (g-f)- This shows that b is not an extremity of F. 
On the other hand, any finite F C S of at least two elements does 
have two extremit ies , namely its least and its greatest element 
with respect to the natural ordering of Q. Hence, S satisfies (2E). 

Hamilton College, 
McMaster University 
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