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THREE-DIMENSIONAL PRESENTATIONS FOR THE GROUPS OF
ORDER AT MOST 30

GRAHAM ELLIS anp IRINA KHOLODNA

Abstract

For each grouf of order up to 30 we compute a small 3-dimensional
CW-spaceX with 71X = G andw2X = 0, and we quantify the ‘ef-
ficiency’ of X. Furthermore, we give a theoretical result for treating
the case whel@ is a semi-direct product of two groups for which
3-presentations are known. We also describeZitiemodule struc-

ture on the second homotopy grompX? of the 2-skeleton of¥.

This module structure can in principle be used to determine the co-
homology groupsH?(G, A) and H3(G, A) with coefficients in a
ZG-module A. Our computations, which involve the Todd—Coxeter
procedure for coset enumeration and the LLL algorithm for finding
bases of integer lattices, are rather naive in that the LLL algorithm
is applied to matrices of dimension a multiple|&f|. Thus, in their
present form, our techniques can be used only on small groups (say
of order up to several hundred). They can in principle be used to con-
struct (crossed¥G-resolutions ofZ, but again, only for smalG.

The paper is accompanied by two attachment files. The first of these
is a summary of our computations in HTML format. The second
contains variousAP programs used in the computations.

1. Introduction

Recall that a presentation of a grotronsists of a setthat generate§, together with a set
r of relations between these generators, such that every relation satisfied by the genera
can be derived from. The notion is made precise by introducing the free grBum x, and
takingr to be any subset df whose normal closur® satisfiesF/R = G. The elements of
r are calledelatorswhen one wishes to emphasize that they are elements of the roup
Forexamplex x, y | x2, y3, (xy)? > is a presentation of the symmetric grasginvolving
three relators := x2, b := y3, ¢ := (xy)2.

A 3-dimensional presentatiqior more simply3-presentation) of; consists of the data
< x | r > together with a set of ‘identities between the relators’, such that every identity
satisfied by the relators can be derived frontor example, the above presentatiornsef
can be extended to a 3-presentation by setting

s={Caal, Cob7L CCaH oCaH a e b H b ),

where*q is intended to be read as a conjugate —. Note that any word constructed from
conjugates of relators represents an element iand that each of the wordsdmepresents
the identity element.
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To make the notion of a 3-presentation more precise we use the 2-dimensional CW-sp:
K = K (x, r) associated to the presentatiarx | r >. This space has a single 0-cell, a 1-cell
for each generator, and a 2-cell for each relator (attached in accordance with the genera
word spelled by the relator). There is an isomorphistR = G, and the elements ab K
are defined to be thidentities between relatordlote that there is a canonical group action
711K x moK — mokK, (x,r) — *r. The sets is taken to be any set of generators for the
ZG-module oK, with each generator exhibited as a word in conjugates of relators the
represents the identity word . An alternative, purely algebraic, descriptionsaé given
below.

In this paper we explicitly construct a small 3-presentation | r | s > for each grougs
of order less than 32. In each case we also determine the structureraidiode of identities
m = mK (x,r) by listing: (1) the rank dim = of the freeZ-module underlyingr; (2) a
minimal set of elements i@, ZG that generate AG-module isomorphic ter. Furthermore,
for each group we list the integral homologl; (G, Z) in dimensions: = 1, 2, 3 and relate
this homology to the ‘efficiency’ of the given 3-presentation. Full details of computationa
results are presented in HTML formatAppendix A.

Our method requires the use of a computer algebra package sagir§81] or MAGMA
[5]. In particular, it uses the Todd-Coxeter procedure for coset enumerdtrand the
LLL algorithm of Lenstra, Lenstra and Lovas27] for finding bases of integer lattices.
The final section of the paper describes seversP procedures that we have written to
computer and H3(G, Z). These procedures are listedAppendix B. Our procedure for
H3(G, Z) is generally not as efficient as existing methods, such as that describ?].in [
(However, our procedure can be adapted to one for higher-dimensional integral homolo
groupsH, (G, Z). We believe that for values aff larger than about 5, and for small groups
G, this might perform better than the method in [22].)

The motivation for the paper is two-fold.

(i) 1t is explained below how the module of identitiesis useful for computing the
cohomologyH?(G, A) and H3(G, A) of G with coefficients in aZG-module A. The
elements of the third cohomology group represent the homotopy 2-§path 71X = G
andm2X = A. An estimate for the numbek (2, p") of distinct homotopy 2-types with
|G| x |A| = p", p aprime, is given in17]. In a subsequent paper we intend to determine
A (2, p™) precisely, for various low values ¢@f andn, by using the results obtained below
to make explicit computations of third cohomology groups. (On a more conjectural leve
we also hope at some future stage to combine the techniques of this paper with those gi
in [2] and [15] in order to determine the numb&(3, p"*) of distinct homotopy 3-typeX
with |71 X| x |m2X| x |73X| = p".)

(i) Several authors have developed sophisticated and powerful methods for computi
identities among relators (and for tackling the related problem of computingZitee
resolutions). See for example the survey papé}spd [7], and more recent papers such
as [1], [10], [22] and 25]. Our second motivation was a desire to compare these methoc
with the relatively naive computer techniques described below. It turns out that for finit
groupsG of small order (say up to order several hundred) our techniques would see|
to be a useful alternative. For instance, existing techniques had suggested that one m
need a minimum of four identities between relators to extend the standard presentat
< x,y | x2 3 (xy)2 > of $3to a 3-presentation; in Sectidwe illustrate our methods
by verifying that the above setof three identities suffices.
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2. Further details on 3-presentations

It might not be fully apparent from the above description of a 3-presentation why th
elements oft = 72K (x, r) represent ‘identities’ between the relators of the presentation
< x | r >. To clarify the situation we now recall an algebraic description of

As before, letF = F(x) be the free group on the setandR be the normal closure in
F of the setr. Let E denote the free group on the cartesian produst r. The generators
of E are thus pairg f, r) with f € F,r € r. There is a group actioR x E — E defined
by /'(f,r) = (f'f.r), and a homomorphisth: E — F defined bys(f,r) = frfL.
Elements inE of the form

vwv—l(s(v)w—l)

with v, w € E are calledPeiffer commutators. Since any Peiffer commutator clearly lies in
kers, we consider the quotient group

Cr)=E/P

where P denotes the subgroup @& that is normally generated by the set of all Peiffer
commutators. The above action and homomorpHisnduce an actiorF x C(r)—C(r),

(f, w) — fw and homomorphism: C(r) — F. (As explained in [7], [30] and [2] the
homomorphisnd has the structure of a free crossed module.)

The elements o€ (r) can be considered as formal expressions involving conjugate:
of relators, with those elements in kierepresenting ‘identities’ among relations. It is not
difficult to show that the subgroup k&iis abelian, and that the action Bfinduces an action
of G on this subgroup, making kérinto aZG-module. An isomorphism aZG-modules

oK (x,r) = kero

was proved by J. H. C. Whitehea8!]]. This leads to the following purely algebraic defini-
tion.

Definition 1. A 3-presentatiorof a groupG consists of a presentation x | r > for G
together with a set of elements inC(r) that generate k¢d: C(r) — F(x)) as aZG-
module.

In obtaining the above isomorphism Whitehead showed that theresisquivariant
group isomorphism

(K% KY = C(r)

whereK” denotes the-dimensional skeleton of the CW-spaKéx, r). Note that specifying

a set of elements of the relative homotopy grempk 2, K1) that generates,(K?) is an
extremely effective means of specifying how to attach 3-cell& fain order to obtain a
3-dimensional CW-spack with 72X = 0, 71X = G. Thus a 3-presentation is equivalent
to such a CW-spack.
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There are fairly obvious strategies for finding presentations for finite groups specifie
by their multiplication table (such as permutation groups and matrix groups). Rather th:
discuss these here, we suppose that our finite gé@inas been specified by means of a
finite presentation< x | r >. Our method for computing is based on the commutative
diagram

kerg=—— C(r) ——— F
= C(r) h

i;

ker A ®,2G —2 > @,ZG

in which A is a homomorphism aZ G-modules, and: is aderivative(as defined in the
following paragraph). Further details on this diagram are givenin[7] and [30]. The importar
feature for us is that we can compute a suitable $Bt first computing ken\. In order to
do this we recall a description of the homomorphidngiven in terms of the Whitehead—
Reidemeister—Fox derivative.

Let W be aZG-module, let¢: F — G be the quotient homomorphism, and let an
elementf € F acton anelement € W by f.w = ¢(f)w. Afunctiony: F — W is said
to be aderivativeif it satisfies the ruley (ff") = xf + f.xf'. Takingx = {x1, ..., xm},
it is readily seen that for each generatpithere is a unique derlvanvg?— F — ZG that

sansﬂesB—xl,(x,) =1 anda‘;’q (xj) =0fori # j.

Let us denote byil the basis element @,ZG corresponding ta; € x. Similarly, we
taker = {a1, ...,a,}and Ietel.2 denote the basis element®fZG corresponding te; € r.
TheZG-module homomorphism\: @,ZG — @,ZG is defined on basis elements by

A(e?)=2(—) g
j=1

More details can be found in [7] and [30].
We now illustrate how these definitions and results are used to construct 3-presentatio

3. Calculating a 3-presentation fdsz

We start with the presentatioa x, y | x2, y3, (xy)? > for G = S3, and as above set
a:=x%b:= y3, c = (xy)z. Then

d ab d
¥ =1+4x, $£=0, 77 = 1+xy,
fa =0, F=lty+y? E=x+)t

TheZG-modules®,ZG and®,ZG can be considered as free abelian groups of dimen-
sions 12 and 18. In order to speciybases for these abelian groups we order the element:
of G, x andr as follows:
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={g1,.... 86} = {L.x,y. Y% xy, xy2},
x = {x1, x2} = {x, y},

r ={ay, az,a3} ={a, b, c}.

We identify the basis elemergte} of @,ZG with the standard basis elemei@ .. ., 0,

1,0, ...,0) of Z12whose{6(j — 1) + i}th coordinate is equal to 1. Similarly we identify
gief with the standard basis element®¥ whose{6(j — 1) + i}th coordinate is equal to

1. With respect to thesé-bases the matrix of the homomorphismz1® — 712 js:

110000 0 00 O0OTOO 1 0 001 q
110000 0 00 O0OTOO 011000
0 01 001 0 0 00O OO 01 1000
0 00110 0 0 0O OO 0 0 01 01
0 00110 0 00O O0OTO OO 1 00010
0 01001 0 00 O0OTO OO 0 00 1 0 1
A= .
0O 0 00 0O 1 01100 01 1000
0 000 OO 01 0011 1 000 1Q0
0 0 OO0 OO 1 01100 0 0 01 01
0O 00O0OOO 1 01100 1 00010
0O 00O0OO 010011 0 00 1 0 1
0 000 OO 01 0011 01 100 q

A Z-basis for kerA can be found using the computer algebra package [21]. One
enters the matrid and applies the command

NS:= LLLReducedBasis(TransposedMat(A), "linearcomb").relations;

to obtain, by means of the LLL algorithm [27], the followigbasis for kerA:

= (-1,1,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0),
= (0,0,0,-1,1,0, 0,0,0,0,0,0, 0,0,0,0,0,0),
vz= (0,0,-1,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0),
vu= (0,0,0,0,0,0, -1,0,1,0,0,0, 0,0,0,0,0,0),
vs= (0,0,0,0,0,0, -1,0,0,1,0,0, 0,0,0,0,0,0),
ve= (0,0,0,0,0,0, 0,-1,0,0,1,0, 0,0,0,0,0,0),
vz= (0,0,0,0,0,0, 0,-1,0,0,0,1, 0,0,0,0,0,0),
= (0,0,0,0,0,0, 0,0,0,0,0,0, 0,-1,1,0,0,0),
vw= (-1,0,-1,-1,0,0, -1,-1,0,0,0,0, 1,1,0,1,0,0),
vio= (0,0,0,0,0,0, 0,0,0,0,0,0, -1,0,0,0,1,0),
vi1= (-1,0,-1,-1,0,0, -1,-1,0,0,0,0, 1,1,0,0,0,1).

The Z-basis for kerA is reducedin the sense that the norms of the basis vectors are ‘ac
small as possible]7]. (As a homomorphism of free abelian groupss rather special in
that its cokernel is free abelian. It might be possible to incorporate this extra informatio
into the LLL algorithm and thereby increase the speed of computing-theesis for kerA.
Alternatively, it might be possible to incorporate this extra information into one of the twc
algorithms described in [11].)
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In order to find a minimal subset MIN af = {vs, ..., v11} that generates kex as a
ZG-module we apply the following procedure.

TempGens= (;
SpanTempGens= #;
fori =1to11do
if v; ¢ SpanTempGens
then
if (v; is not aZ-linear combination of
elements of SpanTempGens)
then
TempGens= TempGensJ {v;};
SpanTempGens= SpanTempGens {g.v; : g € G};
end if;
end if;
end do;
MIN := TempGens;
for v in TempGens do
if (v is aZ-linear combination of elements
of{gw : g€ G, weMIN\{v}})
then
MIN := MIN \ {v};
end if;
end do;

A time-consuming feature of the procedure is our somewhat unsophisticated method 1
testing whether a given vectoris aZ-linear combination of a given set of vecta¥sOur
method is to test whether tllemodulesL (S) and L (S U {v}) generated by andS U {v}
are identical. We first check easily computed properties, such as whethey(sank
rankg (S U {v}). If these checks do not implf.(S) # L(S U {v}) then we useGAP’s
function HermiteNormalFormintegerMat to check whether the Hermite Normal
Forms of the set§ andS U {v} are identical; they are identical if and onlyZi{S) is equal
to L(S U {v}). (We believe that Grébner basis techniques might lead to a more efficier
procedure for determining MIN.)

The above procedure shows that keirs minimally generated asaG-module by the
following three elements:

vi= (—1+x)eZ,
va= (—1+y)es,
vg= (—1l—y— yz)ef +(-1— x)e% +A+x+ yz)eg.
To complete the construction of a 3-presentationS¢omwe must find a set of three

elementsirC (r) whose images i@, ZG generate the same modulgas, vs, vg}. Consider
the following elements i€ (r):

w1 = (fa)a L,
wy = (Ob)b7,
ws = CaH*)CaHE a e b H b,
It is easily verified that eacts; lies in kerd and that the isomorphism k&r= ker A maps
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w1 = V1,
w2 > V4,
w3 > Vg :=vg — (L+x + y)vg,
where the setfv1, va, vg} and{v1, va, vg} have the samgéG-span. Hence

2 .3 2
<x,y|x%y°, (xy)° | w1, wo, wz >

is a 3-presentation dfs.
(An alternative 3-presentation f6g was calculated in]0] using groupoid techniques.
This alternative involves four identities between relators, and has the form

<xyla=atbi=y%d:= (0 [a 0, b7 h), (dTH ),
CaHda epHET ) a T H0d) >

A 3-presentation foiS3 involving just two identities between relators can be found by
applying the above method to the 2-presentation, y | x2y~2, xyx~1y2 >. We leave
this as an exercise for the reader!)

The above generatars was not plucked from thin air. Rather, it was extracted from the
Cayley graph ofS3

which can be viewed as representing a non-trivial identity involving three copieswb
copies ofb and three copies af. Our current method for finding a preimagedtir) of

a general element in kex involves human ingenuity and we are thus unable to automate
this step of the calculation on a computer. (We should remark that the groupoid approa
in [10] circumvents this step by performing computations directlg {n).)

Our computations can be seen as describing the low-dimensional terms ofZGfree
resolution oZ. More precisely, leG now be an arbitrary group, let denote the set of gen-
erators for theZG-module kerA, and consider the module homomorphiamt &,,2G —
®,ZG determined by sending a fre&G-basis element to the corresponding element in
ker A. We then have an exact sequence

8,26 2% 0,26 2 9,26 25 26 — 7 — 0

of ZG-modules (whereA; sends th&Z G-basis element € x to the group-ring element
¢(z) — 1). Further terms in the resolution can be constructed inductively by using the abo
techniques to compute a minimal ¢t ; of generators for keA,,.
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The size ofr,, grows polynomially inn. Nevertheless, for certain small grou@sthis
method could be used to construct quite a number of terms in a resolution. Consider |
instance the particularly favourable case when= Dy is the dihedral group of order
2k. For this group it is possible to construct a resolution With = n + 1. Under the
(possibly inaccurate) assumption that the above techniques yield this same resolution,
matrix of A,, would have 2n rows and 2(n + 1) columns. The computer timings provided
in the following section suggest that, for the dihedral gra@up= Dg of order 12, the
above techniques could be used to produce the first 100 terms or so/®4-sesolution.
This estimate compares favourably with estimates for the constructioB Bgaresolution
given in [22]. (However, it should be mentioned that the technique&2j &lso apply to
infinite groups. Moreover, for large finite groups and low values, dfie techniques ir?2]
are more efficient.)

4. Improving computational feasibility

Consider a finite presentatienx | r > of an arbitrary finite groug;. The above method
for obtaining a 3-presentation involves calculating the nullspace of an integer matitk
|x||G| rows and|r||G| columns. Tablel lists the CPU time taken by the LLL algorithm
in computing the nullspace of a fairly typicalx » matrix for various values aof. (The
computation was performed usimgcma [5] on a Sun Microsystems Ultra 10, and for each
n the matrix was taken to be thex n identity matrix! The corresponding timings using
GAP were slightly slower.)

Table 1: LLL algorithm timings

Value ofn CPU time (seconds)
64 0.009
128 0.060
256 0.259
512 1.660
1024 14.250
2048 115.999

Thus, for groupsG of even quite modest order, the dimensions of the matripose a
problem. We need techniques for breaking the computation of the nullspaténtd a
number of steps, the steps involving smaller matrices. One such technique is based on
following notion of ‘morphism of presentations’.

Definition 2. By a morphismof presentations< x’ | ¥’ >—< x | r > we mean a set-
theoretic functiom.: x’ — F(x) such that the induced homomorphidiix’) — F(x)
maps the elements of to distinct elements in.

We letr1(x, r) denote the groug, andwz(x, r) denote th& G-module ked: C(r) —
F(x).

Proposition 1. (i) Any such morphism of presentations induces a natural group homo
morphismiq: w1(x’, r’) — m1(x, r) and natural module homomorphism: 7o (x/, r’) —
m2(x, r).
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(i) Considered as a morphism of free abelian grougsmaps the free abelian group
m2(x’, r’) isomorphically onto a direct summand of the abelian graypy, r).

(i) If A1 is injective then assertiofii) can be strengthened to an isomorphisnZ &f -
modules

mo(x,r) Emo(x',r') ®zy P

whereH = m1(x’,r’), P is a projectiveZH-module, andbzy denotes a direct sum of
ZH -modules.

Proof. We use the language of crossed modufg$30] [2]. The morphism of presentations
clearly induces a morphisfc (r') — F(x')} — {C(r) — F(x)} of free crossed modules,
which in turn induces the homomorphistgsandaa.

SetK = K(x',r’) andL = K(x,r). The morphism of free crossed modules also
induces amag': K — L of 2-dimensional CW-spaces. This map can be converted into ar
inclusionK — L’ with L’ a 2-dimensional CW-space that is homotopy equivalerit.to
(The spacd.’ is obtained by adding 2-cells to the mapping cylinder of the map of 1-skelet:
f:K* — L) By aresult of M. Dyer {3] the boundary homomorphistnra (L', K) —
1(K) is a projective crossefl; (K)-module. Thus, by a result of J.G. Ratcliffed] [19],
the abelianised group,(L’, K)? is a projectiveZr 1 (K )-module. Thus, considered as an
abelian groupH»(L', K) = (L', K)? is free abelian. (Herd,’ denotes the universal
cover.) The exact homology sequence

0= Hs(L',K) - Hx(K) — Hx(L) — Ho(L', K) — ker(A1) = 0

impliesthatra(K) = Ho(K) is adirect summand of the free abelian gragpL) = Hx(L);

to see this note that the image®$(L) in Ho(L', K) is free abelian since it is a subgroup
of a free abelian group. If kéx1) = 1 then this exact sequence implies assertion (iii) with
P =mo(L', K)?. O

To see how this proposition could have been used in the calculation of a 3-presentati
for S3, consider the following morphisms of presentations:

<z|z2 >—< x,y|x2,y3, ()cy)2 >, Zb> X,
< z| P >o< x,y|x2, y3, ()cy)2 >, k> XYy,

<u|u3 >—< x,y|x2,y3, ()cy)2 >, ur>y.

The module of identities>({z}, {z%}) is isomorphic to the submodule &, generated by
z—1. This generator gets mapped by the first two morphisms to the elementsr — 1)e§
andvig = (xy — 1)e§ inkerA:®,ZG — @,ZG,whereA is as in Sectiod. The generator
1—u for the module of identities»({u}, {#3}) gets mapped by the last morphism to the ele-
mentvy = (y— 1)e§. PropositioriL(ii) implies that the set := {v1, v4, v10} can be extended
toaZ-basis of®, ZG. Moreover, the sei; = {v1, v2, v3, va4, Us, V6, V7, U8, V10, V11— V9},
which is a basis for the abelian grolpspanned byG.v := {g.v1, g.v4, g.v10 : g € S3},
can be extended to&basis of®,ZG. (The computation of this extended basis can in fact
be done by row operations over the rationals.) ket {u1, ..., ug} be aZ-basis for the
complement o¥/, letU denote this complement, and consider the restricted homomorphisr
AU — @®,ZG. ThenA’ is represented by a 12 9 integer matrix. We can determine a
Z-basisb for the nullspace of this 12 9 matrix, and take the unidnU v as aZ-basis for
the nullspace of ke.
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5. Finitely generated abelian groups

The above computer method is used in Sectitmlist 3-presentations for the nonabelian
groups of order less than 32. The following proposition yields a 3-presentation for ar
finitely generated abelian group. This proposition is essentially givef]iarid B]. It is
also a particular case of Propositidielow.

Proposition 2. Suppose that x | r | s > and< x’ | ' | s > are 3-presentations for the

groupsG andG’. Then the direct produdf x G’ has a 3-presentation of the form
<xUx [ruruxex |susuxerux'®r>

where the sets ® x’, x ® r’ andx’ ® r are defined as follows. For; € x, xj/. € x'letc;;

denote the commutata[x/x_lx]’ Lin the free groupF (x U x’) generated by U x’. Then

x®@x' ={cj : xex, xjex)
. / / __ €1 € €n ;€1 /€2 /Gn
For x; € x, Xp €X', r=xx0 " = Wlthe, =1lor -1, we set
c(xi, x}) = ¢ij,
/—1 1
c(xi, x; ) =" ¢,
1 .4 _xt
clx; 7 x) =" ¢
, eq e 62 L2 s e e ’En 1 .
c(xi,r)zc(xi,le) 1 oe(xi, x ) i i c(xi, x J3) R R c(xi, x x; ),
f e2 n—1 1 €
c(r, xh) = Yig Kig iy, lc(xl ,x]/) L. it c(xl , ])xllc(xez x)c(xel, ]')

Then

x@r = e, ) s xex, M er),

’
Y@r=Frrternx): x'ex, rer).

Proof. We use the language of crossed complexes 3] [2]. The 3-presentatiorc
x | r|s > gives rise to a 3-dimensional CW-spa&ewith 71X = G, 72X = 0 and
associated free crossed complex

C(X)u: @26 — C(r) > Flx).

We say that the 3-presentatigenerates” (X)... Similarly the triple< x’ | r’ | s’ > gives
rise to a spac&’ and generates a free crossed comgléX’)... The product spack x X’
hasm1(X x X') = G x G’ andn2(X x X') = 0. Any generating triple fo€ (X x X’), will

be a 3-presentation f@r x G’. In fact, one can read off the 3-presentation of the proposition
from the description of the free crossed compl&X x X’) given in [6] (see alsoZ, page
126]). (Note that the function(u, u’) is defined inductively by the commutator relations
cCe, u'v') = c(x, ) e(x,v), cuv, x') ="c(v, x) c(u, x').) O

We illustrate this proposition by using it to construct a 3-presentation of the abelia
groupC2 x C4. The method of the preceding sections yields 3-presentations

<xla=x2|Caat> <ylb:=y"Cbb?
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of the cyclic groupC, and C4. Applying the proposition to these 3-presentations yields
the 3-presentation

< x, ylx yhe=xyx" b7 Ca)a Tl Ca)aio)e,

CObbL, Eob 1 e P H e et >

of Co2 x Cgy.

The computer calculations of Sectidshow that, for an arbitrary direct produ@tx G’,
Proposition2 does not necessarily yield the smallest possible ségenerating identities
between relators.

6. Split extensions

Supposethat x |r|s >and< x’|r’|s’ > are 3-presentations for grougsandN, and
thata: G — Aut(N) is an action ofG on N. We would like to construct a 3-presentation
for the semi-direct produadV x, G. (Recall that this semi-direct product has underlying
setN x G, and multiplication is defined bz, g)(n’, g') = (n *®'n’, gg').)

Note that for eacty € G we can construct a (non-unique) commutative diagram of
group homomorphisms

ce’) 2L )

il a

F() 22 R

such thatw(g) preserves the action éf(x’); the induced homomorphism on cokee N
is equal to the automorphisar(g). (The homomorphisme;(g), a2(g) are not necessarily
group automorphisms.) Suppose that one such diagram has been chosen foeedach

For an element € F(x) representing € G, and elementg € F(x’) andw € C(r'),
we denoter1(g)(f) by *® £ andaz(g)(w) by *@w.

Proposition 3. Suppose thak x |r |s > and< x' | ¥’ | s’ > are 3-presentations for the
groupsG and N, and thate: G — Aur(N) is an action ofG on N. Then the semi-direct
productN x, G has a 3-presentation of the form

<xUxX' [rUr'Ux®ex |sUs'Ux Q' Ux' ®qr >

where the sets ®, x’, x ®, r’ andx’ ®, r are defined as follows. For; € x, x]/. € x' let

c;j denote the elemeliatxj/.xi_1(‘3‘("1')x]/.)‘1 in the free groupF (x U x’) generated by U x'.

Then
x®x' ={cij : x€x, xj €x'},
x®or =) e, Y i xex, M er),
X ®er={"rrterx) X ex rer),
wherec(—, —): F(x) x F(x') — C(r Ur’' Ux ®, x’) is a function that satisfies
c(xi, xj) = cij,
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cL,u)y=c(u,1)=1,
N @@y ’
c(u,uv’)y =c(u,u’) c(u,v),

cuv,u')y = c(uv,u') c(u, *“@u’).

Proof. Itis an elementary resultin the theory of group presentatid@gsthat< x Ux’ | r U
r'Ux ®q x’ > constitutes a presentation of the semi-direct produst, G.

For convenience let us sét:= F(x Ux'), M := C(r Ur' Ux ®, x’) and consider the
free crossed modulg&e M — F. The properties of the functian(—, —): F(x) x F(x') —
M stated in the proposition enable one to evaludie «") as an element o#/ for each
u € F(x),u € F(x). To show that this evaluation yields a unique elemsant «’) of
M it suffices to establish, using the crossed module propertigstbbtc(u, (ujub)uy) =
c(u, uy(ubus)), c((uiuz)us, u') = c(u(uzuz), u'), andthat (uiuz, uju’) does not depend
on which variable is expanded first.

Consider the commutative diagram

Cr) —2= M <2—C()

l(’)o l& ifh
F(x)>—— F <—F(x/)

in which each vertical arrow is the canonical free crossed module, and the horizontal arro
are morphisms of crossed modules induced by set inclusion¥ lbet theF-subgroup of
M generated by the union of the sets

ig(kerdg) U ii(kerdq)
and
Cr ey e, s xex, r er/}U rr e x) X e x',rer}.

Itis routine to check thak' liesin the kernel 0d: M — F.We need to showth& = kera.
Consider the induced homomorphi$mM /K — F. Now im3d is a subgroup of a free

group, and hence free. We can thus choose a group-theoretic sggtiofh — M /K to

3. (This section will not necessarily preserve thaction.) Setr := n9: M/K — M/K.

Let S be a set of elements i /K that generates//K as a group. It is readily seen that

kerd is normally generated (as a group) by the elememts)~* for s € S. Thus, to prove

the proposition, it suffices to show thats) = s for all s € S. We shall take

S:={r Ir, Je(x,x') : feF, xex, x'ex',rer, rer}

where, for convenience, we specify elementdWiiK by their preimage inM. Any el-
ementf e F can be written as a product of the forfn= (9m)uu’ with m € M/K,
u € F(x), u € F(x'). For any elementw € M/K the crossed module properties of
3 imply o (@mu' )y = mo (“'w)m=1. To prove the proposition it thus suffices to show
thato (““'r) = “'r o(®'r) = 'y ando (™ c(x,x’)) = “c(x,x') foru € F(x),
ueFX), xex, x'ex',rer,rer.

Sinceig(kerdp) andiy(keroq) lie in K, we can assume

o(“t) ="t,
! ’
a(u t/) — u t/
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foru e F(x), u' € F(x), t €io(C(r)), t' €ir(C()).
Let us write
<u,u >=uru 1.
The Reidemeister—Schreier rewriting proc&s jields a free generating set for imwhich
includes the elementd < u, x’ > u'~Y' forallu € F(x), u’ € F(x'), x' € x, wherer' is
some elementin (C (")) determined by, u’, x’. Sinced (* c(u, x')) = u’ < u, x' > u'~1,
we can choose such that

o™cu,x")) ="cu, x).
This equality can be extended to
o™ c(u,v)) ="c,v)
for v’ € F(x') by expressing’ in terms of generators and expanding. We also have
ate,u)) = o (cuv, e, u’ )™ = Yc(v, u')
forv € F(x). Itis now routine to verify that
o (" ry = o elr,u) Hr) = Yol )y =1y

The verification of the equalities (““r') = ““v and o (““'c(x,x’)) = ““c(x,x') is
similar. ]

A version of Propositior8 was first proved by Y.G. Baik in his PhD thesis (sée [
Theorem 3.2]) and extended by Baik, J. Harlander and S. Ptjde p more general result
on the module of identities of general group extensions. Their results are expressed us
the language of ‘pictures over presentations’. Our proof of Proposiioees different
techniques from those employed in [4] and [1].

The computer calculations of Secti@show that Propositio does not necessarily
yield the smallest possible sebf generating identities between relators. Furthermore, it
should be noted that Propositi@rcannot be used to extend an arbitrary presentation of a
semi-direct product to a 3-presentation.

We illustrate PropositioB by using it to obtain a 3-presentation of the semi-direct product
C3 x4 C2 Where the generatarof C; acts on the generatgrof C3 by *y = y~1. We have
3-presentations: x | a := x? | (*a)a—! > and< x | b := y3 | (’b)b~1 > of C, andCs.
Applying the proposition to these yields the 3-presentation

<x, y 122 ¥3 ci=xyx Yy | Ca)al CHBO e H e he
Co)b~L, Caya=t(e)Pct) >

of §3 = C3 x4, C2. Note that this is a variant of the 3-presentationSggiven in SectiorB.

7. The nonabelian groups of order at most 30

We have used the above techniques to list, in an attached HTML filé\(ggendix A),
the following data for each of the 45 nonabelian groGpsf order at most 30.
(i) The order|G| and, where appropriate, name@®@f
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(ii) A 3-presentation< x | r | s > for G. The sets is given using the convention that
the first relator irr is denoted by:, the second relator is denoted lyand so on. (We have
followed [8] in our choice of generators, relators and names for the groups.)

(iii) A set v of elements in®,ZG that generate ZG-submodule that is isomorphic to
theZG-module of identitiest = 72K (x, r). We use the convention tha(.ZG has a basis
{eq, ep, ...} With ¢, corresponding to the first relator in with ¢, corresponding to the
second relator im, and so on.

(iv) The rank rkr of the free abelian group underlying the module of identities=
m2K (x,r).

(v) The cardinalityjs| of the sefs.

(vi) The integral homology groufy,, (G) = H, (G, Z) forn = 1, 2, 3. (In the following
section these homology groups are related to the ‘efficiency’ of the given 3-presentatio
Our method for calculating homology is explained in Secfign

A summary of the HTML file inAppendix Ais given in Table2.

This summary omits the details of the setandv. For example, for the presentation
< x,y]x% y3 (xy)? > of S3the HTML file lists the three elements ofs

Caya™t, Opb7L CaH oCaHE a e pH e b Y
and the three elements ofas
(x —Dea, (v —Dep, (—1—y—yDeq + (=1 —x)ep + (L +x + yDe, .

The dihedral group®,, of order 2: have all been presented using two generators and
three relators. However, for odd values igf these groups also admit the presentation
<x,y|x%y™", xyx~1y"=Y 5 The above methods can be used to show that the moduls
of identity of this two-relator presentation for odds generated by just two elements (for
small values ofz).

8. Efficiency of 3-presentations

Recall that thedeficiencyof a finite presentatior< x | r > is the integerr| — |x|.
The deficiencyof a finite groupG, which we denote by detG), is defined to be the least
possible deficiency of any presentation of the group. P. Hall proved that every finite grot
G satisfies

def2(G) > d(H2(G)),

whered (H2(G)) denotes the minimal cardinality of a generating set for the second integre
homology groupH>(G) (see for instance [3]). Using dgiG) to denote the minimum
cardinality of a generating set fcr, the well-known isomorphisni/y(G) = G** implies

defi (G) > d(H1(G)).

Recall that a presentation x | » > of a finite groupG is said to beefficientf |r| — x| =
d(H2(G)). For instance [20],

< X1,...,Xp |le,...,x,'1"”, x,-xjxl._lxj_lforlgigjgn >

is an efficient presentation of an (arbitrary) finite abelian group if eacHividesm; 1.
Many finite groups admit no efficient presentati@i][24]. However, every finite grou@

can be embedded in a finite group that does admit an efficient presentation [23].
We extend these ideas to 3-presentations as follows.
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Table 2: A summary ofppendix A

Name |G| Defining relators Is| rkxr  Hy(G) Hy(G) H3(G)
D3 6 x2, y3, (xy)? 3 11 7, 0 Zs
Dy 8 x2 y4 (xy)? 4 15 (22 2 (Z2)2° @24
02 8 122 x2(xy? 1 7 Z?> 0 Zg
Ds 10 x2, 2, (xy)2 3 19 7, 0 Z10
Dg 12 %2, yG (x)? 4 23 (22 1z, Z2%®Z3
Aa 12 x3, 32, (xy)3 3 23 Z3 Z Zg
03 12 x 2y3, 2(xy)2 1 11 2z, 0 Z12
D7 14 x2, 37, (xy)? 3 27 7y 0 Z1a
Cox Dy 16 x2, y2, z2, 10 63 (Zy)°3 (Z2)°2 (2Z%@z4
(v2)*, (xy>2 (xz>2
Cox Q2 16 x72y2 x72(xy)? 6 47 (Z2® (Z2? Z»%eZg
2, (xz)2 (v2)?
Dg 16 x2 y8 (xy) 4 31 2% 2 Z2%eZg
16 x2, xyxy=3 2 15 (Z»%2 o0 Zo,®Zg
16 x2, xyxy 2 15 Z,3Z4 O Zo®Zg
16 x4 y4 xLyxy 4 31 Zy8Z4 Zo (Za)2® 75
16 % )4 n? T2 6 47 Zp@Zs (227  Zole (222
16 x2, y2, z2, xyziyzx)™l 6 47 (Z9)3 Z2)2  (Z2)3o®Zg
xyz(zxy) L
04 16 x"2y% " x—2<xy>2 1 15 (Zp? O Z16
C3x D3 18 x2, 3, (xy) (yx)~2 3 35 74 0 Z3®Zg
Dg 18 x2, y9 (xy)? 3 3 7, 0 Z18
18 x2, y2, 72, (xy)3, 7 71 2, Z3 Z3)3 @2,
(x2)3, (xy2)?
Do 20 12, 310 (xy)? 4 39 22 2 Z2%®Zs
20 x5, y4, 2y~ 1yl 3 39 74 0 Z4
0Os 20 x72y5) x72(xy)2 1 19 2z, 0 Z20
21 3, y21y-1y 2 20 Z3 0 Z3
D11 22 x2, y 1 ()cy)2 3 43  Zy 0 Zoo
Cox Ag 24 x3,y2, (xLyxy)? 5 47 Zg Z> Z2)3 @ 23
CoxDg 24 x2, y2 22 (y2)® 10 95 (Zp° (@22° @»'®Zs
)2, (x2)?
C3x Dy 24 x12 32 yxyx® 4 AT Zo®Zg Zo (Z2)2 @21
C3x Qp 24 x12 y2x=6 y=lyyx=7 3 47 Z,8Zg O Zoa
Cax D3 24 x12 32 yxyx™> 4 AT 2,24 Zo (Z2)2®Z12
Cox Q3 24 x5, y4, yilxyx 4 AT Zr®Z4 2o (22)269212
D12 24 x2, y12 (xy)? 4 41 2?2 2, Z2?®Z12
Sa 24 x* 2 (xy)3 4 41 27, Zs Zo®Z1o
A4 24 x_3y3, x_zyxy 1 23 Zj3 0 Zoyg
24 x4 58 a2 7?2 5 71 (222 Zp Z2%®Z12
24 x72y2 x72(xy)3 1 23 Zg 0 Zoa
06 24 x72y8 x72(xy)? 1 23 (Zp? 0 Zoa
D13 26 x2, y13, (xy)? 3 51 7, 0 Zo6
B3 27 x3 33 a3 73 6 80 (29?2 @ (Z3? (Z9*
27 x3, xLyxy 2 26 (23?2 0 (Z3)?
D1y 28 x2, yM (xy)? 4 55 (22 2 (Z2?®Z14
Q7 28 x_2y7, )c_z(xy)2 1 27 Z4 0 Zog
C3xDs 30 x2 xyxy™@ 2 29 Zg 0 Z30
Csx D3 30 x2, xyxy* 2 29 Zjyp 0 Z30
Dis 30 x2, y15 (xy)? 3 59 7, 0 Z30
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Definition 3. Letthedeficiencyfa 3-presentatior x | r | s > be the integels|— |r|+|x]|.
The 3-deficiencyof a finite groupG is then taken to be the least possible deficiency of any
3-presentation of the group, and will be denoted by d&j.

Proposition 4. The inequality
defs3(G) > d(Hz(G))
holds for every finite grouf.

Proof. Let < x | r | s > be some 3-presentation of the finite groGp and letX be
the associated 3-dimensional CW-space. The integral homology giguPs) are the
homology groups of a chain complex of free abelian groups

0— @2 - & Z— &, Z— 0.
By a well-known result on the Euler—Poincaré characteristic [29, page 146] we have
Is| — || + |x| = rankz H3(X) — rankz Hz(X) + rankz H1(X).
But Hy(X) = H2(G), H1(X) = H1(G) arefinite groups and thus have zero rank. Therefore
Is| — Ir| + |x| = rankz H3(X).
The proposition follows from the obvious inequality rarfitz(X) > d(H3(G)). O

Definition 4. We say that a 3-presentatienx | r | s > of afinite groupG is efficientwhen
Is| — Irl + x| = d(H3(G)).

The efficient 2-presentation of a finite abelian group given above can be extended, usi
Propositior?, to a 3-presentation. One can check that the resulting 3-presentation is efficiel
This proves the following proposition.

Proposition 5. Every finite abelian group admits an efficient 3-presentation.

We now adapt ideas from [31] and [23] to show that not all finite groups admit efficien
3-presentations, but that all finifegroups embed into a finite-group that does admit an
efficient 3-presentation. (It seems to be a difficult problem to decide whether, in fact, eve
finite p-group admits an efficient 3-presentation.) In a future paper we shall prove that ¢
arbitrary finite group embeds into a finite group admitting an efficient 3-presentation.

Proposition 6. Let G be ad-generator group of prime power ordes”. Suppose that the
Frattini subgroup® (G) is at-generator group. Then

defr(G) > M 1,
2
dd?+5
defs(G) > % —nt,

and any 3-presentatior x | r | s > satisfies
x| >d,
dd+1
Il > % —1,
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dd+1)d+2
15| > (d+1)(d+2)
6
Proof. There is an exact homology sequence [14]
H3(G) — H3(G/®P(G)) — ker(®(G) AG — G)

—t(n+1).

— H2(G) — Hao(G/P(G)) — P(G)/[P(6), G]
whereA denotes a certain nonabelian exterior product. A bound
|®(G) AG| < p™

is given in [18], and we have [17]:

dd-1)
d(H2(G/®(G))) = —
d(d?+5)
d(H3(G/®(G))) = 5
The inequalities of the proposition follow from this exact sequence, bound, equalitie
Proposition4 and P. Hall's inequality for def(G). O

This result is of interest fop-groups whose Frattini subgroup has a small generating
set. For example, it implies that any 3-presentation | r | s > of an extra-special group
G of orderp™ (thus [3]n = 2k + 1,1 = 1, d = 2k) needss| > (d® + 3d% — 4d — 6)/6.

In [31] a certain finite grouf; was shown to admit no efficient 2-presentation by con-
sidering a subgroup! of index|G : H| = k and using the formulédef,(G) + 1)k >
defa(H) + 1. This formula follows from the Reidemeister—Schreier Theorem. The formule
extends to 3-presentations as follows.

Proposition 7. Let G be a finite group with subgrouff of index|G : H| = k. Then
1
def3(G) — 1> %(defg(H) —-1).

Proof. Let < x | r | s > be a 3-presentation aff with |s| — |r| + |x|] = def3(G).
Let F = F(x) be the free group on, let R be the normal subgroup of generated
by the relators, and letFy be the preimage i of the subgroupHd < F/R. Thus
|F : Fy| = k. The free crossed-moduled: C(r) — F restricts to a crossely-module
doy:C(r) — Fpy. As explained in19], ay is the free crosse#iy-module on the function
T xr — Fy,(t,r) — trt—1 whereT is a transversal oy in F. Hencedy is the
crossed module arising from some presentation’ | ' > of H. By the Reidemeister—
Schreier theorem we haye’| = 1 + k(]x| — 1). Furthermore|r’| = |T| x |r| = k|r].
Now kerd = kerdy is generated as 2H -module by|T| x |s| = k|s| elements, and so
the presentatior: x’ | ' > can be extended to a 3-presentation’ | ' | s > of H with
|s’| = k|s|. Consequently

k(def3(G) —1) =k(|s| —Ir|+ |x] — 1)
=[5 = |r'|+ x| -1

> def3(H) — 1.
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Proposition 8. The groupA4 admits an efficient 2-presentation, but admits no efficient
3-presentation.

Proof. An efficient 2-presentation foA, is exhibited in Table2. The groupA4 has a
subgroupd = C x C, of indexk = 3. Propositioré implies deg(H) > 2(2°+5)/6 = 3
(in fact, equality holds here). So Propositioimplies that def(A4) > (defs(H) —1)/3+
1 =5/3. Table2 shows that/(H3(A4)) = 1. Hence def(A4) # d(H3(Ag)). O

The preceding proof shows that the 3-presentatiomAfpgiven in Table2 is minimal in
the sense that no other 3-presentation has smaller deficiency. It was mentioned in®ectic
that S3 admits an efficient 2-presentation. We suspect (but have not provedytadmits
no efficient 3-presentation.

A result of R.G. Swan {1, Corollary 5.2]) immediately implies the following useful
result on prime-power groups.

Proposition 9. [31] Let G be ad-generator finitep-group that admits an efficient 2-
presentation involving just generators. Thed admits an efficient 3-presentation.

It is an unsolved problem as to whether every figitgroup satisfies the hypothesis of
Proposition9 (cf. [26]). J. Harlander 23] has shown that for any finite group and any
prime p there exists an integer> 0 such that the groug x [[/_; C, is ad-generatop-
group which admits an efficient 2-presentationiagenerators. In particular, this means that
any finite p-group embeds into a finitg-group that satisfies the hypothesis of Proposition
9. The proposition thus yields the following further proposition.

Proposition 10. Any finite p-group embeds into a finitg-group that admits an efficient
3-presentation.

9. Cohomology

Let < x | r > be a presentation of a group, and letr = ker A be theZG-module
of identities for this presentation. The cohomolddy (G, A) of G with coefficients in a
ZG-module A has a well-known description in terms of fré&-resolutions ofZ. It is a
routine exercise to extract from this description the following isomorphisms

ker( Homzg (&,2G, A) — Homgzg (, A))
im( Homzg (©,ZG, A) — Homzg (8,ZG, A) )’

H2(G, A) = 0]

H3(G, A) = coker Homzg (©,ZG, A) — Homgg (7, A) ) . (1

These isomorphisms enable one to compute the cohomology groups in dimensidhS8
from a knowledge of the modute. Of course, even fot > 4 the cohomologyH” (G, A)
can be expressed in termsmotby means of the following formula:

H"(G, A) ZExti3(n, A), n>4

As explained in the Introduction (Sectidy, it is the third cohomology groufi3(G, A)

that is of particular interest to us. So for the remainder of this section we consider in mo
detail the problem of computing this cohomology group under the simplifying assumptio
thatG acts trivially onA.
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WhengG acts trivially onA, the Universal Coefficient Theorer®], page 385] states that
H3(G, A) = Ext(H2(G), A) @ Homz (H3(G), A),

whereH,, (G) denotes the integral homology grofp(G, Z). Since the functors Ext-, —)
and Hony (—, —) are routine to evaluate, the computation®f(G, A) reduces to the
problem of computing?2(G) and H3(G).

From a 3-presentatioa x | r | s > of G we can construct the following commutative
diagram ofZG-module homomorphisms, in which the rows are short exact and the midd|
column is exact.

keres——> ,2G —» @,Z
Az
kerep—> ©,2G — 2> @,Z
Az
kerey—> ©:2G — > @,Z

A1

|G 26 ——=7
Heree is the augmentation map, and eagls the canonical map induced by The map
As is the mapA (described in SectioR). The mapA 3 sends the basis elements (which are
in one-one correspondence withto the corresponding generators of ker. The mapA 1
sends the basis element corresponding te x to the element; — 1 € ZG.
We view the above diagram as the bottom part of a short exact sequence of chain co
plexes

B>— Cy, — D,
inwhichB,, = C,, = D, =0forn < -1, andH,(C,) =0, H,(D,) = H,(G) forn > 1.
The resulting exact homology sequence
-+ = H3(Cy) — H3(Dy) — Ha(By) — Ha(Cyx) — -+
implies that
ker(e1) Nker(A1)
As(kerep)

H>(G) = H1(By) = (y

ker(ez) N ker(A»)
Asz(kerez)

WhenG is finite, GAP’s LLL algorithm [21] [27] can be used to find & basis for the
modules kefe1) N ker(A1) and kelez) N ker(A»).

In order to findZ-bases for the modules,(kerep) andAs(keres) we abuse the notation
slightly and letr, s denote generating sets for td&-modules keiA1, kerA,. The sets
So={(g—Da: geGaecr}S3={g—Dw: g e G,w € s} then generate kex
and kerez as abelian groups. Thus the LLL algorithm can be applieshtand S to find
Z-bases forAo(kerep) and Az(keres).

Given the appropriatg-bases, it is routine to determine the abelian grodp&G) and
H3(G) from isomorphisms (III) andl¥). (We remark that three alternative methods for

H3(G) = Hz(By) =

(V)

https://doi.org/10.1112/51461157000000085 Published online by Cadrdblidge University Press


https://doi.org/10.1112/S1461157000000085

Three-dimensional presentations

computingH,(G) are described and implemented in [16].)

We illustrate the above discussion by computitigfG) for G = S3. Let us resume the
notation of Sectior8. Then ketez) N ker(A») is the nullspace of the following matrix:

111111 0 0 00O 0O 0 0 00O
0O 000 OO 111111 0 00O0O
0 00 O0O0OO 0 00 O0OO O 11111
110000 0 0 00O OO 1 00 0 1
110000 0 0 00O OO 01100
0 01 0 01 0 0 0 O OO 01100
0 00110 0 00O O0OO 0 0010
E=]10 0 01 10 0 00 O0OO 1 0 0 01
0 01 0 01 0 0 00 0O 0 00 1O
0O 0 0OO0O 0O 1 01100 01100
0O 000 OO 010011 1 0 0 01
0O 000 0O 1 01100 0 0010
0O 00O 0O 1 01100 1 0 0 01
0 000 0O 01 0011 0 00 1O
0O 0 0OO0O 0O 01 0011 01100

If the matrix E is entered into th&AP package, the command
U:= LLLReducedBasis(TransposedMat(E), "linearcomb").relations;

produces the followin@-basis for ketez) N ker(Ay):

up = (=1,1,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0),
up = (0,0,0,-1,1,0, 0,0,0,0,0,0, 0,0,0,0,0,0),
uz= (0,0,-1,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0),
us= (0,0,0,0,0,0, -1,0,1,0,0,0, 0,0,0,0,0,0),
us= (0,0,0,0,0,0, -1,0,0,1,0,0, 0,0,0,0,0,0),
us= (0,0,0,0,0,0, 0,-1,0,0,1,0, 0,0,0,0,0,0),
uz= (0,0,0,0,0,0, 0,-1,0,0,0,1, 0,0,0,0,0,0),
ug= (0,0,0,0,0,0, 0,0,0,0,0,0, 0,-1,1,0,0,0),
ug= (0,0,0,0,0,0, 0,0,0,0,0,0, -1,0,0,0,1,0),
uio= 1(0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,-1,0,1).

If the 20 non-zero vectorg.v; — v; (Whereg € G,i € {1, 2, 5,9} and they; are the vectors
of Section3) are entered intGAP as the rows of a vectd¥, the command

W:= LLLReducedBasis(W).basis;

convertsW into a matrix having 10 linearly independent rows, each row being an intege
linear combination of the above vectors For each 1< j < 10 the two commands
U[11] := W[j]; W:= LLLReducedBasis(U, "linearcomb").relations;
express thg'th row w; of W as a linear combination of the. We find that the quotient
H=<uq,..

LU >/ <wy,...,wip >
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is an abelian group with generatars . . ., u10 subject to the relations:

ug—u10=0, ug+u10=0, —ug+u10=0, —up—u10=0, —u1+u10=0,

—u3—u10=0, us+ug =0, —ua+us+ug—u7 =0, —ug+ug =0, ug—us+ug=0.

The groupH can be entered intGAP as a finitely presented (nonabelian) group. The
command

H := AbelianQuotients(H);

then recovers the well-known result thidt(S3) = H = Zs.

10. Twisted coefficients

If the groupG acts non-trivially on the modulé, then the Universal Coefficient Theorem
cannot be invoked, and the computations become slightly more unwieldy. Nevertheless,
principle a 3-presentation @f can still be used to computé” (G, A) for 0 < n < 3, for
any finite G, and any finitely generatediG-module A. We explain the method for = 3.

As there are a number of ways of representing the mada a computer, the method for
computing cohomology needs to vary accordingly.

We suppose that is presented by a short exact sequencé@fmodules

O—-—B—-M—-A—>0

in which M is a freeZG-module. This data is captured by a gebf elements that freely
generate the modul®, together with any sét of elements that generate the id@alEach
element inb is thus aZG-linear combination of elements @f. We make use of the fact
that B has an underlyinfree abelian group.

Since M is ZG-free, the cohomology coefficient sequence implies an isomorphisn
H3(G,A) = HZ(G, B). For any sety there is a canonical isomorphism of modules
Homzg (8,ZG, A) = @,A. Thus, from equation () above, we obtain the isomorphism

3 . kera
H°(G,A) = —
im g3

wherex andg are the homomorphisms

a:®,B — &8,

B:®yB — @, B,

canonically induced by the 3-presentatiarx | r | s > for G.

The LLL algorithm can be applied to the datam | b > to find a basis for the free
abelian group underlying. This enables one to view ands as homomorphisms of free
abelian groups and, by copying the procedure in Se&jdo determine the finite abelian
groupH3(G, A) = kera/im B.

The most crucial parameter for assessing the practicality of this computafibt{6f A)
is theZ-rank of @, B. Now dimz(B) < dimz(M) = |m| x |G|. The CPU times listed in
Section4 suggest that LLL algorithm is able to handle square matrices with 2000 rows
Thus, the computation should be practical for, say,

Ir| x Im| x |G| < 2000.
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In future work we hope to increase this heuristic upper bound by incorporating the grot
structure ofG into more stages of the computation.

11. Computer functions

The data in SectiorY was compiled with the aid of six computer functions written in
the computer algebra languag@a&P v.3 [21]. These functions automate the techniques
explained above, and are contained in the text-fileppendix B. The functions are made
operational by saving the text-file under the ndramology.gap and using the command

Read("homology.gap");
from within theGAP v.3 system. Brief descriptions of the functions follow.

FoxMatrix(G)
Given a finitely presented finite grop =< x | r >, the command

A := FoxMatrix(G);
constructs the integer matrik representing the homomorphist: ,Z2G — &,2G.

IdentityModuleZBasis(G)
Given a finitely presented finite grop =< x | r >, the command

S := IdentityModuleZBasis(G);

constructs a sef of vectors that form a basis for the free abelian group underlying
72K (x, r). Thus the vectors it§ have length equal tgG| x |r[; the implicit ordering on
the elements of; is that given by the standa@AP command

Elements(G);

for listing the elements o&;. The setS is consructed by applying theAP command
LLLReducedBasis to an integer matrix withr||G| rows and|x||G| columns.

VectorPermutations(G,v)
Given a finitely presented finite grop =< x | r > and an integer vectarwhose length
|v| is an integer multiple ok = |G|, the command

u := VectorPermutations(G, V);

constructs a sequenee= {u1, ..., u,} of integer vectors:; with eachu; obtained by
permuting the coordinates ofas follows. The vector is identified in the usual way with
an element in the free modulsG & ... ® ZG (the direct sum ofv|/|G| copies ofZG).
The vector; represents the elemegtv in this free module, wherg; is theith element
of G.

MinimalModuleGenerators(G,S)
Given a finitely presented finite grodp =< x | r > and a sef = {vy, ..., v,} of integer
vectors of equal length = |v; | with k an integer multiple of G|, the command

T := MinimalModuleGenerators(G, S);

constructs a subsét C S as follows. The vectors; are identified with elements in the
free moduleZG @ ... ® ZG (k/|G| copies 0fZG). Let < S >z denote the abelian group
consisting of all finite integer linear combinations of the elementS.ihet < T >z
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denote th&Z G-module generated by the elementsTofThenT is constructed to have the
property< S >z C < T >zg; moreover, no subset @f has this property. This function
may use th&sAP command.LLReducedBasis several times on an integer matrix with
Ir||G| rows andx||G| columns.

IdentityModuleGenerators(G)
Given a finitely presented finite group =< x | r >, the command

T := IdentityModuleGenerators(G);

constructs a sef of integer vectore; of length|v;| = |G| x |r|. The setl represents a
minimal set of generators for the module of identities= 72K (x, r).

IntegralHomology(G,n)
Given a finitely presented finite groud =< x | r > and an integen € {1,2, 3}, the
command

H := IntegralHomology(G, ny;

constructs the list of abelian group invariants of the finite homology grap(G, 2).

Help()
The command

Help();
displays on screen the above information about the functions.
The command

Test();

checks that the functions are operating correctly on a given computer. Error messages \
be produced if the functions produce answers different from those obtained on the authc
computer.

Appendix A. Computational results presented in HTML format

This appendix is available to subscribers to the journal at:
http://www.Ims.ac.uk/jcm/2/Ims99006/appendix-a/.

Appendix B. GAP procedures to compute and H3(G, Z)

This appendix is available to subscribers to the journal at:
http://www.Ims.ac.uk/jcm/2/Ims99006/appendix-b/.
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