NEAR-RINGS OF POLYNOMIALS OVER GROUPS

by J. D. P. MELDRUM, G. PILZ and Y. S. SO

(Received 9th November 1983)

The set $G[x]$ of polynomials over a group ($G,+$)-as well as the polynomial functions $P(G)$ on $(G,+)$ form near-rings with respect to addition and composition (substitution). See [1] for polynomials and [2] for near-rings. A number of results on $G[x]$ can be deduced from [2].

Due to [1], the polynomials in $G[x]$ can uniquely be represented in the following "normal form":

$$
\begin{equation*}
g_{1}+z_{1} x+g_{2}+z_{2} x+\ldots+z_{n} x+g_{n+1} \tag{1}
\end{equation*}
$$

with $n \in \mathbb{N}_{0}, g_{1}, \ldots, g_{n+1} \in G, z_{1}, \ldots, z_{n} \in \mathbb{Z}, g_{2}, \ldots, g_{n} \neq 0$ if $n>1$ and $z_{i} \neq 0$ if $g_{i+1} \neq 0$. In short, we write $\sum_{i}\left(g_{i}+z_{i} x\right)$ for (1). Another unique representation for the polynomials of $G[x]$ is given by

$$
\begin{equation*}
\sum_{i=1}^{n}\left(g_{i}+z_{i} x-g_{i}\right)+g_{n+1} \tag{2}
\end{equation*}
$$

with $n \in \mathbb{N}_{0}, g_{i} \in G, z_{i} \in \mathbb{Z}$. Since $g_{i}+z_{i} x-g_{i}=z_{i}\left(g_{i}+x-g_{i}\right)$, another normal form is given by

$$
\begin{equation*}
\sum_{i=1}^{n} \sigma_{i}\left(g_{i}+x-g_{i}\right)+g_{n+1} \tag{3}
\end{equation*}
$$

with $n \in \mathbb{N}, g_{i} \in G$ and $\sigma_{i} \in\{1,-1\}$. The zero-symmetric part $G_{0}[x]:=\{p \in G[x] \mid p \circ 0=0\}$ of $G[x]$ (where 0 denotes the identity in $(G,+)$) is then given by

$$
\begin{equation*}
G_{0}[x]=\left\{\sum_{i} \sigma_{i}\left(g_{i}+x-g_{i}\right) \mid g_{i} \in G, \sigma_{i} \in\{1,-1\}\right\} . \tag{4}
\end{equation*}
$$

Note that we write groups additively, this does not imply commutativity. Moreover, $A \leqq G$ means that A is a subgroup of G. $A \subset B$ denotes strict inclusion.

The first interesting property of $G[x]$ comes directly from the normal form (4) and the fact that all $g_{i}+x-g_{i}$ are distributive elements in $G[x]$:

Proposition 1. $G_{0}[x]$ and $P_{0}(G)=\{f \in P(G) \mid f(0)=0\}$ are distributively generated (d.g.) near-rings.

Another interesting feature stems from the fact that all normal subgroups are left ideals. For $S, T \subseteq G$ let S^{T} be the set of all sums of the form $t_{i}+s_{i}-t_{i}\left(t_{i} \in T, s_{i} \in S\right)$. S^{G} is then just the normal closure of S in G.

Proposition 2. Let S be a subgroup of $(G[x],+)$. Then
(i) S is a left ideal in $G[x]$ iff S is a normal subgroup, which in turn is equivalent to $S^{G \cup\{x\}}=S$.
(ii) S is a $G_{0}[x]$-subgroup iff $S^{G}=S$.

Proof. (a) As in 6.6 of [2] one sees that every normal $G_{0}[x]$-subgroup of $G_{0}[x]$ is a left ideal. So let us take a normal subgroup N of $G_{0}[x]$ or of $G[x]$ and arbitrary $p \in G_{0}[x]$ and $n \in N$ in order to show that $p \circ n \in N$. From (4) we see that it suffices to take $p=g+x-g$. Then $p \circ n=g+n-g \in N$ and N is a normal $G_{0}[x]$-subgroup, hence a left ideal. The rest of (i) and (ii) are shown similarly.

In a general near-ring N, the sum of an N_{0}-subgroup and a left ideal is an $N_{0^{-}}$ subgroup, but usually not a left ideal. The situation is better in $G[x]$. For that, suppose $(A: g):=\{p \in G[x] \mid p \circ g \in A\}$ for $A \subseteq G$ and $g \in G$. If $A \triangleq G$ then $(A: g)$ is easily shown to be a left ideal of $G[x]$.

Proposition 3. Let S be a $G_{0}[x]$-subgroup of $G[x], g \in G$ and $A \triangleq$. Then $L:=S+$ $(A: g)$ is a left ideal of $G[x]$.

Proof. Since S is a subgroup and ($A: g$) a normal subgroup of $(G[x],+), L$ is a subgroup of $G[x]$. For $h \in G, s \in S$ and $p \in(A: g)$ we get $h+(s+p)-h=(h+s-h)+$ $(h+p-h) \in S+(A: g)=L$ by Proposition 2(ii). Also,

$$
\begin{aligned}
x+(s+p)-x= & (x-g)+(g+s-g)+(g+p-g)+(g-x) \\
& \in(A: g)+S+(A: g)+(A: g)=L .
\end{aligned}
$$

Hence L is a left ideal by Proposition 2(i).
In order to get results about the structure of $G[x]$ one needs a certain amount of knowledge about strictly maximal left ideals (i.e. left ideals which are at the same time maximal $G_{0}[x]$-subgroups). We start with

Theorem 1. The collection of maximal left ideals L of $G[x]$ with $G \subseteq L$ is precisely given by

$$
L_{p}:=\left\{\sum_{i}\left(g_{i}+z_{i} x\right) \in G[x] \mid \sum z_{i} \in p \mathbb{Z}\right\} \text { for } p \text { prime }
$$

Proof. (a) It follows readily from Proposition 2(i) that L_{p} is a left ideal for each prime number $p . L_{p} \neq G[x]$. Now suppose that U is a left ideal with $L_{p} \subset U$. The set U_{1} of all $z \in \mathbb{Z}$ such that there is some $\sum_{i}\left(g_{i}+z_{i} x\right) \in U$ with $\sum z_{i}=z$ is a subgroup of $(\mathbb{Z},+)$
containing $p \mathbb{Z}$. Since $L_{p} \neq U$ there is some $\sum_{i}\left(h_{i}+y_{i} x\right) \in U \backslash L_{p}$. This means that $\sum_{i} y_{i} \in U_{1} \backslash p \mathbb{Z}$, whence $p \mathbb{Z} \subset U_{1}$, hence $U_{1}=\mathbb{Z}$. But then $x \in U$ and (since $G \cup\{x\}$ generates $G[x]$) $U=G[x]$. Hence L_{p} is maximal.
(b) Now let L be a maximal left ideal and define L_{1} similar to U_{1} in (a). If S_{1} is a proper subgroup of $(\mathbb{Z},+)$ then $S:=\left\{\sum_{i}\left(g_{i}+z_{i} x\right) \mid \sum z_{i} \in S_{1}\right\}$ is a proper left ideal of $G[x]$. If $L_{1} \subseteq S_{1}$ then $L \subseteq S$. Since L is maximal and $S \neq G[x]$, we get $L=S$ and $L_{1}=S_{1}$ $=p \mathbb{Z}$ for some prime p. Hence $L=L_{p}$.

Theorem 2. Let L be a strictly maximal left ideal of $G[x]$ and $L_{c}:=L \cap G$. Then $L_{c}=G$ or L_{c} is a maximal normal subgroup of G.

Proof. By Proposition 2(ii), L_{c} is normal in ($G,+$). If $L_{c} \subset M \triangleq{ }_{c}{ }^{\Delta}$ then M is (again by Proposition 2(ii)) a $G_{0}[x]$-subgroup. Since L is maximal, $L+M=G[x]$. If $g \in G$ then there are $l \in L$ and $m \in M$ with $g=l+m ; m \in M \subseteq G$ implies that $l \in L_{c} \subset M$. Hence $g \in M$ and $M=G$. This shows that L_{c} is a maximal normal subgroup of G.

For a group G let $\beta(G)$ be Baer's group radical (the intersection of all maximal normal subgroups). From Theorem 2 and Proposition 3 we get

Corollary 1. Let L be a strictly maximal left ideal of $G[x]$. Then $\beta(G) \subseteq L$.
From [3] we get the information that if M is a maximal normal subgroup of G and $g \in G \backslash M$ then ($M: g$) is a strictly maximal left ideal. For groups we can generalize this result by determining all strictly maximal left ideals of $G[x]$.

Theorem 3. Let G be a group. The set of all strictly maximal left ideals L of $G[x]$ is given by the following list.
(i) $L_{A}:=(A: 0)$, where A is a maximal normal subgroup of G containing the commutator subgroup $[G, G]$.
(ii) $L_{B, g}:=(B: g)$, where B is a maximal normal subgroup of G not containing $[G, G]$ and $g \in G \backslash B$ or $g=0$.
(iii) $L_{\chi, p}:=\left\{\sum_{i}\left(g_{i}+z_{i} x\right) \in G[x] \mid \chi\left(\sum_{i} g_{i}\right) \equiv \sum_{i} z_{i}(\bmod p)\right\}$, where p is a prime and $\chi \in \operatorname{Hom}\left(G, \mathbb{Z}_{p}\right)$.
In cases (i) and (iii), $G / L \cap G$ is cyclic of prime order, while $G / L_{B, g} \cap G \cong G / B$ holds in case (ii).

Proof. (a) First we show that a strictly maximal left ideal L is of the form (i), (ii) or (iii). If $G \subseteq L$ then $L=L_{\zeta, p}$ (where ζ is the zero map) is of type (iii) by Theorem 1 . Hence we may assume that $G \nsubseteq L$. By Theorem $2, L_{c}=L \cap G$ is a maximal normal subgroup of G, and G / L_{c} is simple. By Proposition $2(i), G[x] / L$ is a simple group, too. By Proposition 2(ii), L is even maximal as a subgroup of $G[x]$ normalized by G. G is an $G_{0}[x]$-subgroup of $G[x]$ and so is $G+L$ by 2.15 of [2]. Hence $G+L=G[x]$ since L is strictly maximal and $G \nsubseteq L$. This implies that (as groups) $G[x] / L=G+L / L \cong G / L \cap G$
$=G / L_{c}$ holds. This gives a natural epimorphism $\pi: G[x] \rightarrow G[x] / L \rightarrow G / L_{c}$. Hence there is some $g \in G$ with $\pi(x)=g+L_{c}$. By the well-known form of $\pi, \pi(g)=\pi(x)$, therefore $\pi(g-x)$ $=0$ and $g-x \in L$. Let $K:=\left\langle L_{c}\right\rangle+\langle g-x\rangle$, where \rangle denotes the normal closure in $G[x]$. Now the map $\phi: G[x] \rightarrow G, p \rightarrow p(g)$ is clearly a group epimorphism. We claim that Ker $\phi=\langle x-g\rangle$. If $p \in\langle x-g\rangle$ then $p=p_{0} \circ(x-g)$ for some $p_{0} \in G_{0}[x]$ by Theorem 1 of [3]. Hence $p(g)=p_{0}(g-g)=p_{0}(0)=0$ and $p \in \operatorname{Ker} \phi$. Conversely, if $k=\sum\left(g_{i}+z_{i} x\right) \in \operatorname{Ker} \phi$ then $x \equiv g(\bmod \langle g-x\rangle)$ implies $\sum\left(g_{i}+z_{i} x\right) \equiv \sum\left(g_{i}+z_{i} g\right)=k(g)=0(\bmod \langle g-x\rangle)$, hence $k \in\langle g-x\rangle$. This shows that the map $\psi: p+\langle x-g\rangle \rightarrow p(g)$ is an isomorphism from $G[x] /\langle g-x\rangle$ onto G. If $a \in\left\langle L_{c}\right\rangle$ and $s \in\langle g-x\rangle$ then $\psi(a+s+\langle g-x\rangle)=a(g)+s(g)$ $=a(g) \in\left\langle L_{c}\right\rangle^{G}=L_{c}$ which shows that ψ maps $K /\langle g-x\rangle=\left(\left\langle L_{c}\right\rangle+\langle g-x\rangle\right) /\langle g-x\rangle$ onto L_{c}. By the second isomorphism theorem we get

$$
G[x] / K \cong G[x] /\langle g-x\rangle / K /\langle g-x\rangle \cong G / L_{c} \cong G[x] / L
$$

which together with $K \subseteq L$ shows $K=L$ (note that $G[x] / L$ is simple).
Case I: $g \in L_{c}$. Then, since $g-x \in L, x \in L$, too, and L is the normal closure of $L_{c} \cup\{x\}$, i.e. $L=\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum g_{i} \in L_{c}\right\}=\left(L_{c}: 0\right)$, and we are in (i) with $A=L_{c}$ or in (ii) with $B=L_{c}$.

Case II: $g \notin L_{c}$. Then $L=K \subseteq\left(L_{c}: g\right)$. Both L and ($L_{c}: g$) are strictly maximal (Theorem 2 of [3]), hence we have $L=\left(L_{c}: g\right)$. If $L_{c} \nsupseteq[G: G]$ we are in case (ii). If $L_{c} \supseteq[G, G]$ then G / L_{c} is simple and abelian, hence cyclic of prime order p.

The epimorphism $\chi: G \xrightarrow{\pi} G / L_{c} \xrightarrow{\alpha} \mathbb{Z}_{p}$ with canonical π and an isomorphism α with $\alpha\left(g+L_{c}\right)=-1$ has kernel L_{c}. Hence

$$
\begin{array}{r}
\sum\left(g_{i}+z_{i} x\right) \in L \Leftrightarrow \sum\left(g_{i}+z_{i} g\right) \in L_{c} \Leftrightarrow 0=\chi\left(\sum\left(g_{i}+z_{i} g\right)\right) \\
=\chi\left(\sum g_{i}\right)+\left(\sum z_{i}\right) \chi(g)=\chi\left(\sum g_{i}\right)-\left(\sum z_{i}\right) \Leftrightarrow \chi\left(\sum g_{i}\right) \equiv \sum z_{i}(\bmod p)
\end{array}
$$

and we are in case (iii).
The assertions concerning G / L are already proved or follow easily.
(b) Conversely, each $L_{A}, L_{B, g}$ and $L_{\chi, p}$, as in the statement of the Theorem, are strictly maximal left ideals. It is straightforward that they are left ideals. That L_{A} (case (i)) and $L_{B, g}$ (case (ii)) are strictly maximal follows from Theorem 2 in [3] and its proof. So consider $L_{\chi, p}$. Clearly $L_{\chi, p} \neq G[x]$. Suppose that the $G_{0}[x]$-subgroup U is strictly bigger than $L_{x, p}$ and let $u \in U \backslash L_{x, p}, u=\sum\left(g_{i}+z_{i} x\right)$. Then $\chi\left(\sum g_{i}\right) \not \equiv \sum z_{i}(\bmod p)$. Let $k \in\{1,2, \ldots, p-1\}$ be such that $\chi\left(\sum g_{i}\right) \equiv\left(\sum z_{i}\right)+k(\bmod p)$. There exist $m, n \in \mathbb{Z}$ with $m k+$ $n p=1$. By the definition of $L_{\chi, p}$ and since $m k \equiv 1(\bmod p), x+m u \in L_{\chi, p}$. Since also $-m u \in U$ we know that $x=(x+m u)-m u \in U$. If $g \in G$, let $r \in\{0,1, \ldots, p-1\}$ be such that $\chi(g) \equiv r(\bmod p)$. Then $g+r x \in L_{x, p} \subset U$ and $r x \in U$, hence $g \in U$. Therefore $G \cup\{x\} \subseteq U$ and so $U=G[x]$.

The proof of the preceding theorem also shows
Corollary 2. All strictly maximal left ideals of $G[x]$ are given by either one of the following two lists:
(i) $(G \cup\{p x\})^{G[x]}, p$ a prime, and $(B \cup\{x-g\})^{G[x]}, g \in G, B$ maximal normal in G.
(ii) ($B: g$) with $g \in G \backslash B$ or $g=0$ and B maximal normal in G, and $L_{x, p}, p$ a prime.

This enables us to compute the Jacobson-type radicals of $G[x]$. Recall that for a near-ring N with identity, $J_{1 / 2}(N)$ is defined as the intersection of all maximal left ideals of N, while $J_{2}(N)$ is the intersection of all strictly maximal ones. $J_{0}(N)=\left(J_{1 / 2}(N): N\right)$ and $J_{1}(N)=J_{2}(N)$ (since N has an identity). In the general case, we have $J_{0}(N) \subseteq J_{1 / 2}(N) \subseteq J_{1}(N) \subseteq J_{2}(N)$.

Theorem 4. $J_{1}(G[x])=J_{2}(G[x])=G^{G[x]} \cap(\beta(G): G)=\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum z_{i}=0\right.$ and for all $\left.g \in G \sum\left(g_{i}+z_{i} g\right) \in \beta(G)\right\}$.

Proof. Let \mathscr{M} be the collection of all maximal normal subgroups of G and ζ the zero map. From Theorem 3 we get with $G^{\prime}=[G, G]$:

$$
\begin{aligned}
J_{2}(G[x]) & =\bigcap_{\substack{G \subseteq A \\
A \in \mathcal{M}}}(A: 0) \cap \bigcap_{\substack{G \nsubseteq B \in B \\
B \in \mathcal{M}}} \bigcap_{g=0 \text { or }}^{g \notin B} \\
& (B: g) \cap \bigcap_{p} \bigcap_{\chi \neq \zeta} L_{\chi, p} \cap \bigcap_{p} L_{\zeta, p} \\
& =\left(\bigcap_{\substack{G \subseteq A \\
A \in \mathcal{M}}}(A: 0)\right) \cap \bigcap_{\substack{G \in B \\
B \in \mathcal{M}}}(B:(G \backslash B) \cup\{0\}) \cap \bigcap_{p} \bigcap_{\chi \neq \zeta} L_{\chi, p} \cap \bigcap_{p} L_{\zeta, p} .
\end{aligned}
$$

Now if f is in the second block of the intersection and $g \in B$ then $f \circ 0 \in B$, hence $f \circ g=$ $(f-f \circ 0) \circ g \in B$, since $f-f \circ 0 \in G_{0}[x]$ and B is normal (see Proposition 2(ii)). Hence

$$
\bigcap_{\substack{G \notin B \\ B \in \mathcal{M}}}(B:(G \backslash B) \cup\{0\})=\left(\left(\bigcap_{\substack{G \notin B \\ B \in \mathcal{M}}} B\right): G\right) .
$$

The first two intersections give $(\beta(G): G)$. Moreover, we get $\bigcap_{p} L_{\zeta, p}=\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum z_{i}=\right.$ $0\} \supseteq G^{G[x]}$. That this inclusion is in fact an equality can be seen by the same argument as for equations (3) and (4) at the beginning of this paper. Finally, take $q=\sum\left(g_{i}+\right.$ $\left.z_{i} x\right) \in(\beta(G): G) \cap G^{G[x]}$. Then $\sum g_{i}=q \circ 0 \in \beta(G)$. If χ is in $\operatorname{Hom}\left(G, \mathbb{Z}_{p}\right), \chi \neq \zeta$, then χ is an epimorphism and $G / \operatorname{ker} \chi \cong \mathbb{Z}_{p}$. Hence $\operatorname{ker} \chi$ is maximal and normal in $G, p G \subseteq \operatorname{ker} \chi$, and $\beta(G) \subseteq \operatorname{ker} \chi$. Hence $\chi\left(\sum g_{i}\right)=0=\sum z_{i}$, since $q \in G^{G[x]}$. Therefore $q \in L_{\chi, p}$ and we can forget about the third part of the intersection. Hence the result (in the elegant and the explicit form.).

Examples.

(i) Since $\beta(\mathbb{Z})=\{0\}$, we get

$$
J_{2}(\mathbb{Z}[x])=(0: \mathbb{Z}) \cap \mathbb{Z}^{[x]}=\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum z_{i}=\sum g_{i}=0\right\} .
$$

(ii) Let G be the direct sum of simple groups. Then similarly

$$
J_{2}(G[x])=(0: G) \cap\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum z_{i}=0\right\}
$$

(iii) Now let G be the group Z_{p}^{∞}. Then $\beta(G)=G$ and

$$
J_{2}(G[x])=(G: G) \cap G^{G[x]}=\left\{\sum\left(g_{i}+z_{i} x\right) \mid \sum z_{i}=0\right\} .
$$

(iv) The arguments in the proof of Theorem 4 showed that $(B: 0)=(B: B)$ holds for all normal subgroups B of G. But in general, $(\beta(G): G) \neq(\beta(G): 0)$. Let, for instance, $g \in G \backslash \beta(G)$. Then $g+x-g \in(\beta(G): 0)$, but $(g+x-g) \circ g=g \notin \beta(G)$, whence $g+x-g \notin(\beta(G): G)$.

Concerning the other two Jacobson-type radicals J_{0} and $J_{1 / 2}$ of [2] we get from 5.2 and 5.35 of [2]

Corollary 4. $J_{0}(G)=(\beta(G[x]): G[x])$ and $J_{1 / 2}(G)=\beta(G[x])$.
We close this topic with some remarks on $G[x]$.
(i) All $G[x]$-groups of type 2 arise as $G[x] / L$ for L a strictly maximal left ideal. If $G[x] / L$ is cyclic of prime order then x acts as the identity and G induces the constant maps. Hence $G[x] /(0: G[x] / L) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, where the first \mathbb{Z}_{p} is generated by the image of x and the second \mathbb{Z}_{p} is given by the constant maps. If $G[x] / L$ is not of this kind, it is isomorphic to the non-abelian simple group $G / L \cap G$. Then $G_{0}[x]$ induces the near-ring $I(G / L \cap G)$ generated by all inner automorphisms of $G / L \cap G$. Adding the constants we get $G[x] /(0: G / L \cap G) \cong I(G / L \cap G)+G / L \cap G$. Observe that by 7.46(c) of [2], $I(G / L \cap G)=M_{0}(G / L \cap G)$ if $G / L \cap G$ is finite.
(ii) The $G[x]$-groups of type 0 which are not of type 2 are induced by maximal normal subgroups L of $G[x]$ where $G+L / L \subset G[x] / L$. The latter creature is simple. In this case, $G[x] /(0: G[x] / L) \cong(R, S)+G / L \cap G$, where (R, S) is the d.g. near-ring generated by the inner automorphisms of $G[x] / L$ induced by $G / L \cap G$. Observe that $G[x] / L$ need not be finite, nor need $G / L \cap G$ be simple.

Life becomes very simple if we change from the variety of all groups to \mathscr{A}, the one of all abelian groups. In this case, for all $G \in \mathscr{A}$ we have other polynomial algebras, namely $\left.G^{\mathscr{A}}[x]=\{g+z x \mid g \in G, z \in \mathbb{Z}\}=: G\right] x[$.

Proposition 4. For $G \in \mathscr{A},(G] x[,+, \circ)$ is an abstract affine near-ring.
The proof is easy and hence omitted.
Theorem 9.77 of [2] gives us the following

Corollarly 5. For $G \in \mathscr{A}$, all radicals of $G] x[$ are equal to $\beta(G)$, which is the Frattini subgroup in this case.

One knows from universal algebra (see e.g. [1]) that $G] x[$ must be a factor nearring of $G[x]$ if $G \in \mathscr{A}$. In fact:

Theorem 5. Let G be abelian.
(i) $\vartheta: G[x] \rightarrow G] x\left[: \sum\left(g_{i}+z_{i} x\right) \rightarrow\left(\sum g_{i}\right)+\left(\sum z_{i}\right) x\right.$ is a near-ring epimorphism.
(ii) $\left.G[x] /\left\{\sum g_{i}+z_{i} x \mid \sum g_{i}=0 \wedge \sum z_{i}=0\right\} \cong G\right] x[$.

Proof. (i) follows from [1] (it is not trivial that ϑ is well-defined!) and from this we get (ii) by the homomorphism theorem.

Example. $\mathbb{Z}[x] /(0: \mathbb{Z}) \cong \mathbb{Z}] x[$.

Remarks.

(i) There is a striking similarity between Theorem 4 and (ii) in Theorem 5. It is, however, unknown how far these results are related.
(ii) One may switch to the variety of R-modules (see [4]). One then gets, for an R module M, a polynomial algebra (near-ring and R-module at the same time) $M_{R}[x]=\{m+r x \mid m \in M, r \in R\} . M_{R}[x]$ is again an abstract affine near-ring (in the paper [4] we show that all abstract near-rings are isomorphic (!) to some $\left.M_{R}[x]\right)$. Hence all radicals are equal to $J(M)+J(R) x$, where $J(M)$ is the intersection of all maximal R-submodules of M and $J(R)$ is the Jacobson-radical of R.

Acknowledgements. Thanks are due to the British Royal Society for a grant under the European Science Exchange Programme and to the Austrian "Fonds zu Förderung der wissenschaftlichen Forschung (Projekt Nr. 3479).

REFERENCES

1. H. Lausch and W. Nobauer, Algebra of Polynomials (North-Holland, Amsterdam 1973).
2. G. Pilz, Near-rings (North-Holland, Amsterdam, 1977).
3. G. Pilz and Y. S. So, Near-rings of polynomials over Ω-groups, Monatsh. Math. 91 (1981), 73-76.
4. J. D. P. Meldrum, G. Pilz and Y. S. So, Embedding near-rings into polynomial near-rings, Proc. Edinburgh Math. Soc. 25 (1982), 73-79.

Department of Mathematics
University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, Scotland
Institutut fur Mathematik
Johannes Kepler Universität
A-4040 Linz, Austria
Department of Mathematics, Tunghai University
Taichung, Taiwan 400, Republic of China

