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We study ribbons of vanishing Gaussian curvature, i.e. flat ribbons, constructed
along a curve in R

3. In particular, we first investigate to which extent the ruled
structure determines a flat ribbon: in other words, we ask whether for a given curve
γ and ruling angle (angle between the ruling line and the curve’s tangent) there
exists a well-defined flat ribbon. It turns out that the answer is positive only up to
an initial condition, expressed by a choice of normal vector at a point. We then
study the set of infinitely narrow flat ribbons along a fixed curve γ in terms of
energy. By extending a well-known formula for the bending energy of the rectifying
developable, introduced in the literature by Sadowsky in 1930, we obtain an upper
bound for the difference between the bending energies of two solutions of the initial
value problem. We finally draw further conclusions under some additional
assumptions on the ruling angle and the curve γ.
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1. Introduction and main results

Developable, or flat, surfaces in R
3 are among the most classical and well-studied

objects in differential geometry [15, 26]. They are characterized by having zero
Gaussian curvature or, equivalently, by being ruled surfaces with a constant family
of tangent planes along each ruling. Our main interest in this article is to study the
set of flat surfaces containing a given space curve, or, more precisely, the set of flat
ribbons along γ.

Let I = [0, L], let γ : I → R
3 be a smooth, regular connected curve, and let S ⊂

R
3 be a smooth surface; without loss of generality, we may assume γ to be unit-

speed. We say that S is locally nonplanar if it does not contain any planar open
set. Furthermore, if S is ruled and γ(t) ∈ S, then we define the width of S (with
respect to γ) at t to be the length of the projection of the ruling passing from γ(t)
onto the normal plane γ′(t)⊥.

Definition 1.1. A developable surface D that contains γ is called a flat ribbon
along γ if the following conditions are satisfied:
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(1) D is locally nonplanar, and it is a compact subset of R
3.

(2) γ is transversal to every ruling of D and meets each of them at the midpoint.

(3) D has constant width.

It is well known that, if the curvature of γ is always different from zero, then there
exist plenty of flat ribbons along γ. Indeed, let N : I → R

3 be a unit vector field –
always normal to γ′ – along γ. It is not difficult to check that, if 〈γ′′(t), N(t)〉 �= 0
for all t ∈ I, then the image of the map t �→ γ(t) + (N(t)⊥ ∩N ′(t)⊥) is a well-
defined surface in a neighbourhood of γ, both locally nonplanar and flat; see [5, pp.
195–197] and § 3.

On the other hand, to any (singly) ruled surface containing γ one can associate a
function α : I → [0, π), called ruling angle, describing the angle between the ruling
line and the tangent vector of γ. Different ruled surfaces along γ possessing equal
ruling angle could/should be regarded as akin, if not equivalent.

It is therefore natural to consider the following problem.

Problem 1.2. Given a flat ribbon along γ, describe the set of all flat ribbons along
the same curve γ having the given width and ruling angle.

In this paper, we shall see that, under some mild conditions, the set in question
is isomorphic to a full circle. Indeed, suppose that N is the normal vector of a flat
ribbon R(N) along γ, and denote the corresponding ruling angle by α(N). Then
the following result holds.

Theorem 1.3. Suppose that γ is locally nonplanar, i.e., its restriction to any open
interval is nonplanar, and let ϕ be a smooth function I → (0, π). For any t0 ∈ I
and any unit vector v ∈ γ′(t0)⊥, there exists a flat ribbon R(V ) along γ such that
V (t0) = v and α(V ) = ϕ.

Corollary 1.4. Suppose that γ is locally nonplanar, and let R(N) be a flat ribbon
along γ. For any t0 ∈ I and any unit vector v ∈ γ′(t0)⊥, there exists a flat ribbon
R(V ) along γ, having the same width as R(N), such that V (t0) = v and α(V ) =
α(N).

Corollary 1.5. Suppose that γ is locally nonplanar. The set of all flat rib-
bons of any fixed width along γ admitting a smooth asymptotic parametrization
is isomorphic to C∞(I; (0, π)) × S

1.

Remark 1.6. The nonplanarity assumption in theorem 1.3 allows γ to have isolated
points of vanishing curvature or torsion. It is only needed because we have excluded
a planar strip to qualify as a flat ribbon. Indeed, if γ is planar, then there exists a
vector v for which the corresponding ribbon degenerates into a planar strip.

Remark 1.7. The definition of I as a closed interval is essential for the validity of
the theorem. Suppose for a moment that I is an arbitrary interval. Then theorem
1.3 holds provided the functions κg cot(ϕ) and κn cot(ϕ) are bounded; see § 4.
Without this extra hypothesis, we could yet prove the following local statement:
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Figure 1. Examples of flat ribbons along γ having the same width and ruling angle. The
curve γ : [0, 2π] → R

3 is a trivial torus knot, while the ruling angle is induced by the unit
normal vector of the torus; in other words, we are considering the ruling angle of a flat
ribbon that is tangent to the torus along γ (shown in plot (d)). Each plot corresponds
to a different initial condition v ∈ γ′(0)⊥, obtained by rotating the normal vector of the
torus at γ(0) by an angle q. Plots (a), (b) and (c) are generated by solving numerically
equation (4.6). (a) q = −π/2, (b) q = −π/3, (c) q = −π/6, (d) q = 0.

for any t0 ∈ I and any unit vector v ∈ γ′(t0)⊥, there exists a neighbourhood I0 of
t0 and a flat ribbon R0(V ) along γ|I0 such that V (t0) = v and α0(V ) = ϕ|I0 .

Remark 1.8. The extra assumption in corollary 1.5 is needed because the ruling
angle of a flat ribbon along γ, in the presence of planar points, may fail to be
differentiable in a nowhere dense set; see [25].

To the best of the author’s knowledge, theorem 1.3 has not appeared in the
literature before. This is somewhat surprising, given the classical nature of the
subject and the relative simplicity of the proof.

The proof of theorem 1.3, which is based on the standard theory of ordinary
differential equations, will be given in § 4. In particular, the proof offers a means
to construct the solution by solving a nonlinear differential equation of first order;
see figure 1.

It is worth emphasizing that any two flat ribbons R(N1) and R(N2) are
locally isometric, by Minding’s theorem. More precisely, for any p1 ∈ R(N1) and
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p2 ∈ R(N2), there exist neighbourhoods U1 of p1, U2 of p2 and an isometry U1 → U2.
On the other hand, if R(N1) and R(N2) have the same ruling angle, then in general
they are not globally isometric. This can be deduced from the fact that the geodesic
curvatures of γ relative to R(N1) and R(N2) are typically different; see remark 4.2.

The second objective of the paper is to understand the set of flat ribbons along
γ in terms of energy. In 1930, Sadowsky [13, 20] argued that the bending energy∫

D
H2 dA of the rectifying developable of γ, in the limit of infinitely small width,

is proportional to ∫ L

0

κ2
(
1 + μ2

)2
dt.

Here κ > 0 is the curvature of γ and μ = −τ/κ, where τ is the torsion. Sadowsky’s
claim was formally justified by Wunderlich [24, 27].

In § 4 we will prove that Sadowsky’s result extends virtually unchanged to any
flat ribbon along γ; cf. [6].

Theorem 1.9. If R(N) has width 2w, then its bending energy E(R(N)) = E(N)
satisfies

lim
w→0

E(N) = lim
w→0

w

2

∫ L

0

κ2
n

(
1 + cot(α(N))2

)2
dt, (1.1)

where κn is the normal curvature of γ with respect to N, as defined in § 2.

Remark 1.10. The function cot(α(N)) agrees with μ = −τg/κn on the subset I \
κ−1

n ({0}), which is dense in I; here τg is the geodesic torsion of γ with respect to
N . Thus cot(α(N)) is the unique continuous extension of μ to I.

Theorem 1.9 tells us that, for any ruling angle, the ribbon in which γ has the
least energy (=

∫ L

0
κ2

g dt, where κg is the geodesic curvature of γ with respect to N)
costs the most energy, and vice versa. Hence when κ > 0 we obtain: among all
infinitely narrow flat ribbons along γ having ruling angle α(T ′/‖T ′‖), the rectifying
developable of γ has the maximum bending energy.

More generally, the following corollary applies.

Corollary 1.11. If R(N) and R(V ) are flat ribbons along γ with the same ruling
angle, then, in the limit of infinitely small widths, their bending energies E(N) and
E(V ) satisfy

E(V ) � E(N) +
w

2

∫ L

0

κ2
g

(
1 + cot(α(N))2

)2
dt,

where κg is the geodesic curvature of γ with respect to N , as defined in § 2. In
particular, if the normal curvature κn of γ with respect to N is always nonzero,
then

E(V )
E(N)

� 1 + max ρ2 = 1 + max tan(φ)2,

where ρ = κg/κn and φ is the angle between N and γ′′.
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The plan of the paper is as follows. The next two sections present the preliminaries
needed for the proof of theorem 1.3, which is carried out in § 4. In § 5 we then
proceed with the proofs of theorem 1.9 and corollary 1.11. In the subsequent section
we derive further results by considering two natural choices of ruling angle. Finally,
in § 7 we specialize the discussion to the case where the curve γ is a circular helix.

This work joins several other recent studies on ribbons; see e.g. [2, 7, 8, 21]. In
particular, the problem of constructing flat surfaces along a given curve has also
been considered in [12, 14, 18, 28]; interesting applications of Sadowsky’s energy
formula can be found in [3, 4, 11, 23].

In fact, a closely related work [22] appeared shortly before the first version of this
paper was completed. By basing their analysis on the geodesic curvature – rather
than the ruling angle – the authors in [22] offer an alternative description of the
surfaces studied here.

2. The Darboux frame

We begin by defining the Darboux frame. Classically, that is a natural frame along
a surface curve. For our purposes, the surface is not important, only the normal
vector is.

Let N be a (smooth) unit normal vector field along γ, let T be the unit tangent
vector γ′ of γ, and let H = N × T . We define

• the Darboux frame of γ with respect to N to be the triple (T, H, N);

• the geodesic curvature κg of γ with respect to N by κg = 〈T ′, H〉;
• the normal curvature κn of γ with respect to N by κn = 〈T ′, N〉;
• the geodesic torsion τg of γ with respect to N by τg = 〈H ′, N〉.

Since (T, H, N) is a frame along γ, we may express the derivative of any of its
elements in terms of the frame itself. In fact, being (T, H, N) orthonormal, it is
easy to verify that the following equations hold:

⎛
⎝T ′

H ′

N ′

⎞
⎠ =

⎛
⎝ 0 κg κn

−κg 0 τg
−κn −τg 0

⎞
⎠
⎛
⎝TH
N

⎞
⎠.

3. Constructing a flat ribbon

The Darboux frame is a useful tool for constructing a flat ribbon normal to N along
γ, in that it permits to prescribe its width, which by definition is measured along
the vector field H.

Theorem 3.1 [5, pp. 195–197], [14, 18]. Suppose that κn(t) �= 0 for all t ∈ I. Then
there exists w > 0 and a unique flat ribbon of width 2w normal to N along γ. Such
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ribbon is parametrized by σ : I × [−w, w] → R
3,

σ(t, u) = γ(t) + u(H(t) + μ(t)T (t)),

where μ = −τg/κn. Conversely, if R(N) is a flat ribbon normal to N along γ, then
τg(t) = 0 for all t ∈ I such that κn(t) = 0.

For the reader’s convenience, we give a short proof of the theorem.

Proof of Theorem 3.1. Given a vector field X along γ, let σ be defined by

σ : I × R → R
3

(t, u) �→ γ(t) + uX(t).

Recall that σ is flat exactly when T , X and X ′ are everywhere linearly dependent;
accordingly, we need to find X such that⎧⎪⎨

⎪⎩
〈X(t), N(t)〉 = 0,
〈X(t) × T (t),X ′(t)〉 = 0,
X(t) × T (t) �= 0

(3.1)

for all t ∈ I. Note that the first two equations are equivalent to X(t) ∈ N(t)⊥ ∩
N ′(t)⊥.

Suppose that κn(t) �= 0. Then N ′(t) = −κn(t)T (t) − τg(t)H(t) �= 0; the intersec-
tion N(t)⊥ ∩N ′(t)⊥ has dimension one and is spanned by

N ′(t) ×N(t) = κn(t)H(t) − τg(t)T (t),

as desired.
Conversely, suppose that R(N) is a flat ribbon normal to N along γ. Then

R(N) lies in the image of σ for some X satisfying (3.1). Hence τg(t) = 0 whenever
κn(t) = 0, because otherwise R(N) would be singular at γ(t). �

Remark 3.2. If κn(t) �= 0, then the ruling angle α(N) of R(N) satisfies

α(N(t)) = arccot(−τg(t)/κn(t)). (3.2)

Remark 3.3. In the spirit of [16, 19], the existence condition in theorem 3.1 can
be weakened as follows. For all t ∈ I, we require that

(i) there exists l ∈ N0 such that the lth derivative κ
(l)
n is nonzero at t. This

implies, in particular, that every zero of κn is isolated;

(ii) τ (0)
g (t) = · · · = τ

(l−1)
g (t) = 0.

These two conditions guarantee that, if κn(t) = 0, then limz→t τg(z)/κn(z) is well-
defined. In fact, it is not difficult to verify that the continuous extension of τg/κn

to I – obtained by setting τg(t)/κn(t) = limz→t τg(z)/κn(z) whenever κn(t) = 0 –
is smooth.
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4. Proof of theorem 1.3

We are now ready to prove theorem 1.3.
Given any unit normal vector field N along γ, let the Darboux frame of γ with

respect to N rotate around the tangent T by a smooth function θ : I → R:

H(θ) = cos(θ)H + sin(θ)N,

N(θ) = − sin(θ)H + cos(θ)N.

The normal curvature of γ with respect to N(θ) is given by

κn(θ) = 〈T ′, N(θ)〉
= 〈T ′,− sin(θ)H + cos(θ)N〉
= −κg sin(θ) + κn cos(θ). (4.1)

Similarly, the geodesic torsion of γ with respect to N(θ) is given by

τg(θ) = 〈H ′(θ), N(θ)〉
= 〈H ′(θ),− sin(θ)H + cos(θ)N〉.

We first compute

H ′(θ) = θ′ cos(θ)N + sin(θ)N ′ − θ′ sin(θ)H + cos(θ)H ′

= θ′ cos(θ)N − sin(θ)(κnT + τgH) − θ′ sin(θ)H + cos(θ)(−κgT + τgN)

= −(cos(θ)κg + sin(θ)κn)T − sin(θ)(θ′ + τg)H + cos(θ)(θ′ + τg)N.

Let us also compute

− sin(θ)〈H ′(θ),H〉 = sin(θ)2(θ′ + τg),

and

cos(θ)〈H ′(θ), N〉 = cos(θ)2(θ′ + τg).

It follows that

τg(θ) = θ′ + τg. (4.2)

Next, let ϕ be a smooth function I → (0, π), and assume that γ is locally
nonplanar. We claim that, if the condition

κn(θ) cot(ϕ) + τg(θ) = 0 (4.3)

holds, then the ribbon R(N(θ)) is well-defined, and its ruling angle is exactly ϕ. To
verify the claim, note that the zero set of κn(θ) is nowhere dense in I, because oth-
erwise there would be an interval where both κn(θ) and τg(θ) vanish, contradicting
the assumption of local nonplanarity; thus the ruling angle α(N(θ)) is well-defined
on a dense subset, where it agrees with ϕ, and so it admits a unique continuous
extension to the entire interval.
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Substituting the expressions of κn(θ) and τg(θ) obtained earlier, condition (4.3)
becomes

θ′ + cot(ϕ)(κn cos(θ) − κg sin(θ)) + τg = 0. (4.4)

This is a first-order, nonlinear ordinary differential equation in θ : I → R, which
admits a unique local solution for any initial condition θ(t0) = q ∈ [0, 2π).

It remains to check that the initial value problem is globally solvable, that is, its
solution can be extended to the entire interval I.

Define F : I × R by

F (t, x) = cot(ϕ)(κg sin(x) − κn cos(x)) − τg.

We are going to show that F satisfies the following Lipschitz condition: there exists
a constant c > 0 such that, for every t ∈ I and every x, y ∈ R,

|F (t, x) − F (t, y)| � c|x− y|.

This way the statement will follow from the classical Picard–Lindelöf theorem; see
e.g. [17, theorem 3.1].

First of all, note that both κg cot(ϕ) and κn cot(ϕ) are bounded, because they
are continuous on the closed interval I. Let l and m be upper bounds for |κg cot(ϕ)|
and |κn cot(ϕ)|, respectively. Computing

|F (t, x) − F (t, y)|
= |κg(t) cot(ϕ(t))(sin(x) − sin(y)) + κn(t) cot(ϕ(t))(cos(y) − cos(x))|
� |κg(t) cot(ϕ(t))(sin(x) − sin(y))| + |κn(t) cot(ϕ(t))(cos(y) − cos(x))|
= |κg(t) cot(ϕ(t))||sin(x) − sin(y)| + |κn(t) cot(ϕ(t))||cos(x) − cos(y)|,

we observe that

|F (t, x) − F (t, y)| � (l +m)|x− y|,
and so F satisfies the Lipschitz condition with c = l +m, as desired.

Remark 4.1. It follows from § 3 that R(N(θ)) has the same ruling angle as R(N)
if and only if

τgκn(θ) = τg(θ)κn. (4.5)

By substituting (4.1) and (4.2), we observe that (4.5) is equivalent to

κnθ
′ + κgτg sin(θ) − κnτg cos(θ) + κnτg = 0. (4.6)

Compared with (4.4), equation (4.6) offers a shortcut to the construction of the
ribbon R(V ) defined in corollary 1.4.
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Remark 4.2. The geodesic curvature of γ with respect to N(θ) is given by

κg(θ) = 〈T ′,H(θ)〉
= 〈T ′, cos(θ)H + sin(θ)N〉
= κg cos(θ) + κn sin(θ).

It is easy to see that κg(θ) = κg if and only if N(θ) = N(π − 2θ̄), where θ̄ satisfies
sin(θ̄) = κg/κ and cos(θ̄) = κn/κ. It follows that, if κ > 0, then there exist pairs of
globally isometric flat ribbons along γ; cf. [9]. This is in striking contrast to the
case of positive Gaussian curvature, where a surface is globally rigid relative to any
of its curves [10].

5. Bending energy

Let D be a flat surface in R
3. The bending energy E(D) of D is defined by

E(D) =
∫

D

H2 dA,

where H is the mean curvature and dA the area element of D.
The purpose of this section is to prove theorem 1.9 and corollary 1.11 in the

introduction.

Theorem 1.9. If R(N) has width 2w, then its bending energy E(R(N)) = E(N)
satisfies

lim
w→0

E(N) = lim
w→0

w

2

∫ L

0

κ2
n

(
1 + cot(α(N))2

)2
dt.

Proof. Since the integrand is zero whenever κn(t) = 0, we may assume that κn is
never zero. We need to prove that

lim
w→0

E(N) = lim
w→0

w

2

∫ L

0

κ2
n

(
1 + μ2

)2
dt,

where μ = −τg/κn.
Our first goal is to compute the expressions of the mean curvature and the area

element of R(N) in the standard parametrization σ : [0, L] × [−w, w] → R
3,

σ(t, u) = γ(t) + uX(t), X(t) = μ(t)T (t) +H(t).

This way, we will obtain a formula for the bending energy of a finite-width ribbon
R(N) along γ.
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As the reader may verify, the components of the first and second fundamental
forms are

E = 〈γ′ + uX ′, γ′ + uX ′〉=(1 + u(μ′ − κg))
2 + (uμκg)

2
,

F = 〈γ′ + uX ′,X〉=μ(1 + uμ′),

G = 〈X,X〉= 1 + μ2,

and

e = 〈γ′′ + uX ′′, N〉=κn

(
1 + u

(
μ′ − κg − κgμ

2
))
,

f = 〈X ′, N〉= 0,

g = 〈0, N〉= 0,

respectively. A computation reveals that the area element is given by√
EG− F 2 = 1 + uμ′ − u

(
1 + μ2

)
κg,

whereas for the mean curvature one obtains

H =
Ge

2(EG− F 2)
= −

(
1 + μ2

)
κn

2(1 + uμ′ − u(1 + μ2)κg)
.

The bending energy may therefore be computed by

E(N) =
∫ L

0

∫ w

−w

H2
√
EG− F 2 du dt

=
1
4

∫ L

0

∫ w

−w

(
1 + μ2

)2
κ2

n

1 + u(μ′ − (1 + μ2)κg)
du dt.

In particular, in the closed subset where μ′ = (1 + μ2)κg, the integrand does not
depend on u, and so the inner integral reduces to

2wκ2
n

(
1 + μ2

)2
. (5.1)

Hence, we may assume that μ′(t) �= (1 + μ(t)2)κg(t) for every t ∈ I. In that case,
integration with respect to u gives

E(N) =
1
4

∫ L

0

(
1 + μ2

)2
κ2

n

μ′ − (1 + μ2)κg
log

(
1 + w

(
μ′ − (1 + μ2

)
κg

)
1 − w(μ′ − (1 + μ2)κg)

)
dt. (5.2)

Our task is now to evaluate the limit of E(N) as w approaches zero. We first
rewrite (5.2) by means of the following notations:

λ = μ′ − (1 + μ2)κg,

η1 =
1
wλ

log
(

1 + wλ

1 − wλ

)
,

η2 = w
(
1 + μ2

)2
κ2

n,

E(N) =
1
4

∫ L

0

η1η2 dt. (5.3)
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Since η1 converges pointwise to 2 as w → 0, it is clear that the integrand η1η2
converges pointwise to 0 as w → 0. In fact, we will show that the convergence is
uniform. Therefore, it will follow from standard analysis [1, p. 251] that

lim
w→0

E(N) =
1
4

∫ L

0

lim
w→0

η1η2 dt

=
1
4

∫ L

0

lim
w→0

2w
(
1 + μ2

)2
κ2

n dt

= lim
w→0

w

2

∫ L

0

(
1 + μ2

)2
κ2

n dt.

It is evident that η2 is uniformly convergent to 0 as w → 0. Thus, being η1 and η2
bounded, proving that η1 converges uniformly to 2 is sufficient to establish uniform
convergence of η1η2; see [1, p. 247].

Let

ξ =
1
wλ

log
(

1 + wλ

1 − wλ

)
− 2. (5.4)

We need to check that maxt∈I |ξ(t)| → 0 as w → 0. To this end, we calculate ξ′ and
set it equal to 0. This leads to

−2wλλ′ + log
(

1 + wλ

1 − wλ

)(
λ′ − w2λ2λ′

)
= 0.

Note that the term multiplying the logarithm only vanishes when λ′ does. Let J
be the zero set of λ′. Then, since J is independent of w, it follows that

lim
w→0

max
J

|ξ| = 0.

On the other hand, in the subinterval (0, L) \ J , we have ξ′ = 0 if and only if

log
(

1 + wλ

1 − wλ

)
=

2wλλ′

λ′ − w2λ2λ′
.

Together with (5.4), this implies

max
(0,L)\J

|ξ| = max
(0,L)\J

∣∣∣∣ 2λ′

λ′ − w2λ2λ′
− 2
∣∣∣∣,

from which we observe that

lim
w→0

max
(0,L)\J

|ξ| = 0.

Hence,

lim
w→0

η1 = 2 uniformly,

which is the desired conclusion. �
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Remark 5.2. If γ is locally nonplanar, then, as a function on the set of infinitely
narrow flat ribbons along γ, the bending energy is unbounded. This is because

lim
κn(t)→0

κ2
n(t)

(
1 + μ(t)2

)2
= ∞

when τg(t) �= 0, and one can construct flat ribbons along γ of arbitrarily small
normal curvature. Indeed, on a subinterval where κ > 0, for x ∈ R, let N(x) be
defined by

‖T ′‖N(x) = cos(x)T ′ − sin(x)T ′ × T.

It follows that τg(x) = τ and κn(x) → 0 as x→ π/2.
On the other hand, under the same assumption of local nonplanarity, the bend-

ing energy has a positive lower bound. Thus, one may search for the ruling angle
and initial condition in γ′(0)⊥ that give the least bending energy. This is a very
interesting problem, which the author hopes will be the subject of future study.

Corollary 1.11. If R(N) and R(V ) are flat ribbons along γ with the same ruling
angle, then, in the limit of infinitely small widths, their bending energies E(N) and
E(V ) satisfy

E(V ) � E(N) +
w

2

∫ L

0

κ2
g

(
1 + cot(α(N))2

)2
dt,

where κg is the geodesic curvature of γ with respect to N . In particular, if the normal
curvature κn of γ with respect to N is always nonzero, then

E(V )
E(N)

� 1 + max ρ2 = 1 + max tan(φ)2,

where ρ = κg/κn and φ is the angle between N and γ′′.

Proof. Let R(N) and R(V = N(θ)) be flat ribbons along γ with the same ruling
angle. By theorem 1.9, the bending energy of R(V ) satisfies

lim
w→0

E(V ) = lim
w→0

w

2

∫ L

0

κn(θ)2
(
1 + cot(α(N(θ)))2

)2
dt

= lim
w→0

w

2

∫ L

0

κn(θ)2
(
1 + cot(α(N))2

)2
dt. (5.5)

Since κn(θ)2 � κ2 = κ2
n + κ2

g, assuming that w is infinitely small, we obtain

E(V ) � w

2

∫ L

0

κ2
n

(
1 + cot(α(N))2

)2
dt+

w

2

∫ L

0

κ2
g

(
1 + cot(α(N))2

)2
dt

= E(N) +
w

2

∫ L

0

κ2
g

(
1 + cot(α(N))2

)2
dt.

Now, suppose that κn(t) �= 0 for all t ∈ I, and let ρ = κg/κn. Then

E(V ) � E(N) +
w

2

∫ L

0

ρ2κ2
n

(
1 + cot(α(N))2

)2
dt.
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Noting that the integrand in the equation above is a product of nonnegative func-
tions, by invoking the first mean value theorem for integrals [1, p. 301], we deduce
that there exists s ∈ I such that∫ L

0

ρ2κ2
n

(
1 + cot(α(N))2

)2
dt = ρ(s)2

∫ L

0

κ2
n

(
1 + cot(α(N))2

)2
dt.

Hence

E(V ) � E(N) + ρ(s)2E(N),

and the assertion of the corollary follows. �

6. Special cases

In this section we study the set of flat ribbons along a locally nonplanar curve γ
under two natural choices of ruling angle α:

(A) α is constant and equal to π/2.

(B) Assuming κ > 0, α coincides with the ruling angle of the rectifying devel-
opable of γ.

Case A. Note from (3.2) that α(N) = π/2 if and only if τg = 0. Hence, between
any two consecutive zeros of κn, equation (4.6) reduces to θ′ = 0. Assuming κn(t) �=
0 everywhere, it follows that the initial value problem (defined by θ(0) = q) has
constant solution θ = q.

Applying (5.5) and (4.1), we then observe that the bending energy of R(N(q)),
under the hypothesis of infinitely small width, is given by

E(N(q)) =
w

2

∫ L

0

(κn cos(q) − κg sin(q))2 dt. (6.1)

In order to analyse the dependence of the bending energy on the initial condition,
we calculate dE(N(q))/dq and set it equal to zero. This leads to

A sin(q) cos(q) +B
(
sin(q)2 − cos(q)2

)
= 0, (6.2)

where

A =
∫ L

0

(
κ2

g − κ2
n

)
dt,

B =
∫ L

0

κgκn dt.

First, suppose that A = B = 0. Then the energy is independent of q, and

E(N(q)) =
w

4

∫ L

0

κ2 dt.
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Else, if B = 0 and A �= 0, then dE(N(q))/dq= 0 if and only if sin(q)=0 or cos(q)=0,
implying that the extreme values of E(N(q)) are

w

2

∫ L

0

κ2
n dt = E(N) and

w

2

∫ L

0

κ2
g dt.

Next, suppose that B �= 0. Noting that dE(N(q))/dq �= 0 if B �= 0 and sin(q) = 0,
we may assume that B �= 0 and sin(q) �= 0. Consequently, dE(N(q))/dq vanishes if
and only if

B cot(q)2 −A cot(q) −B = 0,

which have solutions

q = arccot
A±√

A2 + 4B2

2B
. (6.3)

Substitution of (6.3) into (6.1), alongside an easy, if tedious, calculation, demon-
strates that

max
q∈[0,2π)

E(N(q)) =
w

4

∫ L

0

κ2 dt+
w

4

√
A2 + 4B2,

min
q∈[0,2π)

E(N(q)) =
w

4

∫ L

0

κ2 dt− w

4

√
A2 + 4B2.

Case B. It is clear that, if N = T ′/‖T ′‖, then κg = 0, κn = κ, and τg = τ . Hence
in this case equation (4.6) simplifies to the separable equation

θ′ = τ(cos(θ) − 1).

Letting ψ(t) =
∫ t

0
τ(z) dz, the solution is

θq =

{
0 if q = 0,
2 arccot(cot(q/2) + ψ) if q ∈ (0, 2π).

(6.4)

As for the bending energy, equation (5.5) now yields

E(N(θq)) =
w

2

∫ L

0

(κ cos(θq))
2(1 + μ2

)2
dt.

Substituting (6.4), we obtain

E(N(θq)) =

⎧⎪⎪⎨
⎪⎪⎩
E(N(0)) = E(N) if q = 0,

w

2

∫ L

0

(
1 − δ2q

)2
(
1 + δ2q

)2κ2
(
1 + μ2

)2
dt if q ∈ (0, 2π),

(6.5)

where δq = cot(q/2) + ψ.

https://doi.org/10.1017/prm.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.45


Nonrigidity of flat ribbons 1311

7. The helix

We conclude the paper by applying the results of the previous section to a specific
curve, namely a circular helix of radius a and pitch 2πb:

γ(t) =
(
a cos

t√
a2 + b2

, a sin
t√

a2 + b2
,

bt√
a2 + b2

)
.

The curvature and torsion are a/(a2 + b2) and b/(a2 + b2), respectively; they
coincide with the normal curvature and geodesic torsion of γ with respect to
γ′′/‖γ′′‖ = N .

We first examine the case α = π/2. Setting ϕ = π/2 and τg = b/(a2 + b2),
equation (4.4) becomes

θ′ = − b

a2 + b2
,

and so

θ(t) = − bt

a2 + b2

is a solution, i.e. α(N(θ)) = π/2. It follows that the normal and geodesic curvatures
with respect to N(θ) are

κn(θ(t)) = κ cos(θ(t)) =
a

a2 + b2
cos

bt

a2 + b2
,

κg(θ(t)) = κ sin(θ(t)) = − a

a2 + b2
sin

bt

a2 + b2
,

whereas τg(θ) = 0, as desired. Applying formula (6.1) to N(θ), we obtain

E(N(θ + q)) = a2w
2bL+

(
a2 + b2

)(
sin
(
(2bL/(a2 + b2)) − 2q

)
+ sin(2q)

)
8b(a2 + b2)2

.

Letting r = bL/(a2 + b2) and normalizing by E(N(θ)), we finally get

E(N(θ + q))
E(N(θ))

=
2r + sin(2q) − sin(2(q − r))

2r + sin(2r)
. (7.1)

Figure 2 displays the graph of the function q �→ E(N(θ + q))/E(N(θ)) for different
values of the parameter r.

We then turn our attention to the case in which α coincides with the ruling angle
of the rectifying developable. The bending energy is now given by (6.5). For q = 0
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Figure 2. Plots of the normalized bending energy (7.1) as a function of q for several
values of r. (a) r = 1, (b) r = 2, (c) r = 3, (d) r = 4.

it reads

E(N) =
wL

2a2
.

On the other hand, if q �= 0, then δq = cot(q/2) + ψ, where ψ(t) = bt/(a2 + b2).
A computation reveals that

b

a2 + b2

∫ (
1 − δ2q

)2
(
1 + δ2q

)2 dt = −2 arctan δq + δq
3 + δ2q
1 + δ2q

,

from which one easily obtains E(N(θq)). In particular, it follows that

E(N(θq))
E(N)

=
1
r

[
2 arctan(cot(q/2)) − 2 arctan(cot(q/2) + r)

+ (cot(q/2) + r)
3 + (cot(q/2) + r)2

1 + (cot(q/2) + r)2

+ (cos(q) − 2) cot(q/2)

]
. (7.2)
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Figure 3. Plots of the normalized bending energy (7.2) as a function of q for several
values of r. (a) r = 1, (b) r = 2, (c) r = 3, (d) r = 4.

As in the previous case, the graph of function q �→ E(N(θq)/E(N) is plotted for
different choices of r in figure 3.

It is worth pointing out that, in both cases treated, the bending energy becomes
less and less dependent on the initial condition as r increases. More precisely, one
can check that both ratios (7.1) and (7.2) tend to 1 as r → ∞. It seems reasonable
to expect that the same conclusion holds for any choice of ruling angle. Proving
this is outside the scope of the present study.
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