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SPECTRAL ZETA FUNCTIONS FOR THE QUANTUM
RABI MODELS

SHINGO SUGIYAMA

Abstract. We introduce the Hurwitz-type spectral zeta functions for the

quantum Rabi models, and give their meromorphic continuation to the whole

complex plane with only one simple pole at s = 1. As an application, we give

the Weyl law for the quantum Rabi models. As a byproduct, we also give a

rationality of Rabi–Bernoulli polynomials introduced in this paper.

§1. Introduction

The spectrum of a Hamiltonian has been studied in both physics and

mathematics, especially in spectral theory. One of the methods to do so

is to make use of spectral zeta functions. For a C-Hilbert space V and a

densely defined linear operator A : V → V , the multiset of all eigenvalues

of A in C is denoted by Spec(A). If Spec(A) is discrete, the spectral zeta

function of A is defined as

ζA(s) =
∑

λ∈Spec(A)

1

λs

for s ∈ C if it makes sense. For example, it is well known that, for the

harmonic oscillator h= 1
2(−∂2

x + x2) densely defined in L2(R), the set

Spec(h) is given by {n+ 1/2 | n ∈ Z>0} with multiplicity 1. From this, the

spectral zeta function of h is of the form

ζh(s) =
∞∑
n=0

1

(n+ 1/2)s
= (2s − 1)ζ(s),

where ζ(s) denotes the Riemann zeta function. This defining series is

absolutely convergent for Re(s)> 1, and has a meromorphic continua-

tion to the whole s-plane. Furthermore, the only pole s= 1 of ζh(s) is

simple, and ζh(−2n) = 0 holds for all nonnegative integers n. The points
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0,−2,−4,−6, . . . are called trivial zeros of ζh(s). The spectral zeta function

ζA(s) for an operator A encodes information on Spec(A) in its analytic

properties. For example, as seen in applications to the Weyl law for A, some

pole of ζA(s) with real part maximal is related to an asymptotic behavior

of the spectral counting function of A:

NA(T ) = #{λ ∈ Spec(A) | λ6 T}, T > 0

(cf. [1], [18, Section 6.4] and [29, Section 14]). In a quite general setting,

Robert [27] studied spectral zeta functions for pseudodifferential operators

in Rn, and later his result was generalized by Aramaki [1] to some infinite-

dimensional situations. As a remarkable example of spectral zeta functions of

matrix-valued pseudodifferential operators, we should mention that Ichinose

and Wakayama [8] investigated very quantitatively the spectral zeta function

ζQ(α,β)
(s) of the noncommutative harmonic oscillator

Q(α,β) =
−∂2

x + x2

2

[
α 0
0 β

]
+ (x∂x + 1/2)

[
0 −1
1 0

]
densely defined in L2(R)⊗C C2 with α > 0 and β > 0 such that αβ > 1. In

[8], they gave a meromorphic continuation of ζQ(α,β)
(s) to the whole s-plane

and established a formula of ζQ(α,β)
(s), which includes information on its

poles and trivial zeros. By the formula, ζQ(α,β)
(s) has the only one pole

s= 1, which is simple, and the following asymptotic formula holds:

NQ(α,β)
(T )∼ Ress=1 ζQ(α,β)

(s)T =
α+ β√

αβ(αβ − 1)
T, (T →∞).

Later, the formula in [8, Main theorem] was extended by Parmeggiani [18]

to the case where Q(α,β) is replaced with a general globally elliptic N ×N
self-adjoint regular partial differential system with polynomial coefficients

(PPDSs) in Rn of order 2 (cf. [18, Theorem 7.2.1]). For more details for

Q(α,β), see [19].

In this paper, we explore fine analysis of the Hurwitz-type spectral zeta

function for the quantum Rabi model with Hamiltonian H =HRabi, and

give a meromorphic continuation to C and an asymptotic behavior of

spectral counting function NH(T ) of H. Here, the quantum Rabi model

is a model describing an interaction of light and matter of a two-level atom

coupled to a single quantized photon of the electromagnetic field (cf. [3]).

The Hamiltonian for the quantum Rabi model, which is called the Rabi
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Hamiltonian, is given by

H =HRabi = ~ωa†a+ ∆σz + ~gσx(a† + a)

densely defined in L2(R)⊗C C2. Here ~ is the Dirac constant, a and a† are

the annihilation and creation operators for a Bosonic mode of frequency

ω > 0, respectively, the symbols σx, σy, and σz are the Pauli matrices for

the two-level system, 2∆> 0 is the difference of the two-level energies, and

g > 0 is the coupling constant for atom and photon. In [23] and [24], Rabi

introduced originally a semiclassical model, and Jaynes and Cummings [9]

fully quantized the Rabi model as H. It is known that every λ ∈ Spec(H)

is real and one of the three forms:

(1) λ= x±n − g2 with multiplicity 1 (nondegenerate), where {x+
n }∞n=1 and

{x−n }∞n=1, which are contained in C− Z>0, are the zeros of G+(x) and

of G−(x), respectively;

(2) λ= n− g2 for some n ∈ Z>0 with multiplicity 1 (nondegenerate);

(3) λ= n− g2 for some n ∈ Z>1 with multiplicity 2 (doubly degenerate);

(cf. [2, 3, 16, 17]). Here G±(x) is a meromorphic function with at most

simple poles at all n ∈ Z>0, which Braak [2] gave as power series satis-

fying Spec(H)− {n− g2 | n ∈ Z>0}= {y − g2 | y ∈ R, G+(y)G−(y) = 0} by

explicitly describing recurrence equations for the coefficients of G±(x).

The eigenvalues in case (1) are called the regular spectrum, and those in

cases (2) and (3) are called the exceptional spectrum. We should mention

that Parmeggiani and Wakayama in [20] and [21] described a part of the

spectrum of the noncommutative harmonic oscillators Q(α,β) with αβ > 1,

which is similar to Braak’s work recalled as above.

Several mathematicians have studied the Rabi Hamiltonian H and

contributed theoretically to the field of quantum optics. As recent works,

Hirokawa and Hiroshima [7] proved that the ground state energy for H is

nondegenerate (i.e., the smallest eigenvalue of H has multiplicity 1), and

that the ground state energy for H has no crossing for all g and ∆. By a

representation theoretic approach, Wakayama and Yamasaki [33] captured

the doubly degenerate exceptional spectrum of H via finite-dimensional

representations of sl2(R). Furthermore, Wakayama [32] pioneered a new

relation between the noncommutative harmonic oscillator Q(α,β) and the

Rabi Hamiltonian H, through a confluence process by Heun’s picture.

Nevertheless it seems difficult to capture finer properties of the spectrum

of H.
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1.1 Main results

In what follows, we consider the Hurwitz-type spectral zeta function of H

ζH(s; τ) := ζH+τI(s) =
∑

λ∈Spec(H)

1

(λ+ τ)s

for τ ∈ C. Throughout this paper, we normalize H so that ~ = ω = 1 without

loss of generality and both g and ∆ are supposed to be arbitrary nonnegative

real numbers. For the mathematical definition of H, see Section 2.2. Then,

the defining series converges absolutely for Re(s)> 1 (see Proposition 3.1).

We give its meromorphic continuation as follows by using the method of the

parametrix of the heat equation investigated in [8].

Theorem 1.1. For any g > 0, ∆ > 0, and τ ∈ R such that τ > g2 + ∆,

we have the following.

(1) There exists an explicitly computable sequence {CH,τ (k)}k∈Z>0
of com-

plex numbers such that, for any n> 2,

ζH(s; τ) =
1

Γ(s)

{
2

s− 1
+

∞∑
k=1

2g2k

k!

1

s+ k − 1

+

n−2∑
k=0

CH,τ (k)

s+ k
+ FH,n(s; τ)

}
, Re(s)> 1,

where FH,n(s; τ) is a holomorphic function on Re(s)>−n/2. In par-

ticular, ζH(s; τ) has a meromorphic continuation to C. Moreover, it is

holomorphic on C except for the only one simple pole s= 1 with the

residue Ress=1 ζH(s; τ) = 2.

(2) We have CH,τ (k) ∈Q[g2,∆2, τ ] for any k ∈ Z>0.

Theorem 1.1(1) solves Wakayama’s conjecture on a meromorphic contin-

uation of ζH(s; τ) (see [31, Section 3]), and is regarded as an analogue of [18,

Theorem 7.2.1] and [8, Main theorem]. We remark that [18, Theorem 7.1.1],

which is a special case of [27], cannot be applied to the Rabi Hamiltonian

H since H is not classical in the sense of [18, Definition 3.2.19] although the

noncommutative harmonic oscillator Q(α,β) is classical. By a general result

[27, Théorèmes (6.3) et (6.4)] by Robert, we can obtain a meromorphicity of

ζH(s; τ) and its poles are contained in {1} ∪ {1/2− j | j ∈ Z>0}. However,

Robert’s method by the parametrix of the resolvent does not seem to work

well in order to eliminate s= 1/2− j with j ∈ Z>0 from the possible poles.
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As for Theorem 1.1(2), we introduce a generalization of Bernoulli

polynomials as follows. By our proof of Theorem 1.1(1), we obtain that

a polynomial Rk(g,∆; x) ∈ C[g,∆, x] for every k ∈ Z>1 can be defined by

the relation

ζH(1− k; τ) = (−1)k−1

{
2g2k

k
+ (k − 1)!CH,τ (k − 1)

}
=−2Rk(g,∆; τ)

k
.

(1.1)

Then, Theorem 1.1(2) implies that Rk(g,∆; x) ∈Q[g2,∆2, x]. If g = ∆ = 0,

the polynomial Rk(0, 0; x) coincides with Bk(x) for every k ∈ Z>1, where

Bk(x) is the kth Bernoulli polynomial defined by

text

et − 1
=
∞∑
k=0

Bk(x)

k!
tk.

Thus we call Rk(g,∆; x) the kth Rabi–Bernoulli polynomial. As in the

case of Bk(x), the polynomial Rk(g,∆; x) is monic, all the coefficients of

Rk(g,∆; x) are rational, and its degree with respect to x equals exactly k

(see Proposition 5.3). Although we can compute explicitly Rabi–Bernoulli

polynomials by definition and integration, it seems difficult to give simple

formulas of them. We might expect some number theoretic properties of

quantum Rabi models, as Kimoto and Wakayama extracted from non-

commutative harmonic oscillators Q(α,β) via (higher) Apéry-like numbers1

encoded in special values of ζQ(α,β)
(s) (cf. [10–15]).

Braak in [2] conjectured that the interval [n− g2, n+ 1− g2] for every

n ∈ Z>0 contains at most two eigenvalues of H, that the interval [n, n+ 1]

for every n ∈ Z>0 has at most two zeros of G+(x)G−(x), that two intervals

containing no zeros are not adjacent, and that two intervals containing two

zeros are also not adjacent. As an application of Theorem 1.1, we have the

Weyl law for H by using Tauberian theorem (cf. [1, Theorem 1.1] and [8,

Corollary 2.6]).

Corollary 1.2. We have

NH(T )∼ 2T, (T →∞).

This corollary supports Braak’s conjecture.

1The definition of Apéry-like numbers Jk(n) in [10–13] was renewed in [14, 15].
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Here is a remark on zeta regularized products. The zeta regularized

product of Spec(A) for an operator A is defined by

∏∐
λ∈Spec(A)

λ := exp

(
− d

ds
ζA(s)|s=0

)

if ζA(s) is analytically continued to a function holomorphic around s= 0.

The zeta regularized product of Spec(A) is applied to the existence of an

entire function whose zeros coincide with Spec(A) as a multiset, and plays

a pivotal role as a functional determinant det(A) :=
∏∐
λ∈Spec(A) λ (cf. [25],

[26] and [30]). Wakayama [31, Conjecture 1] conjectured that ζH(s; τ) would

be meromorphic or holomorphic at s= 0. Since ζH(s; τ) is holomorphic

at s= 0 by Theorem 1.1 (or [27, Théorème (6.4), a)]), we can actually

define the zeta regularized product
∏∐
λ∈Spec(H)(z − λ) as an entire function

by [22, Theorem 1]. A formula of
∏∐
λ∈Spec(H)(z − λ) using FH,n(s; τ)

is given in Proposition 5.2. The comparison of
∏∐
λ∈Spec(H)(z − λ) with

G+(z + g2)G−(z + g2) may be an interesting problem (cf. [31, Conjec-

ture 1]).

This paper is organized as follows. After fixing our notation, we explain

the Rabi Hamiltonians H defined for any g > 0 and ∆ > 0 describing the

quantum Rabi models in Section 2, referring mainly to [6], [18] and [29]. In

the same section, a lower bound of Spec(H) is given in Lemma 2.2, and the

maximal domain of H is given as B2(R)⊗C C2, where B2(R) is a Shubin–

Sobolev space originally introduced by Shubin [29, Section 25] (the Russian

version of [29] was published in 1978). The convergence of the spectral zeta

functions for the quantum Rabi models is discussed in Section 3. In the

rest of Sections 3 and 4, we explore the method of the parametrix of the

heat equation from [8], by which a meromorphic continuation of ζH(s; τ) is

given in Section 5. The method is a finer analysis of the trace TrK(t) of the

heat operator K(t) = e−t(H+τI) for any t > 0 and sufficiently large τ ∈ R.

In Section 3, the heat operator K(t) is decomposed into the finite sum of

explicitly computable operators Km(t) over m= 1, . . . , n and the residual

operator Rn+1(t) (see (3.2)). In the same section, K1(t) is made explicit

and TrRn+1(t) is estimated. In Section 4, we give the asymptotic series

expansion of TrKm(t) for m> 2 as t→+0 in Theorem 4.1 with the aid of

the asymptotic series of eixy/t as t→+0 in Lemma 4.2. The vanishing results

of coefficients of the asymptotic series of TrKm(t), Lemmas 4.6–4.9, are key

ingredients of proving Theorem 4.1. Finally, we prove Theorem 1.1(1) in
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Section 5. Theorem 1.1(2) is also proved in Section 5.2 by a rationality

of CH,τ (k) (see Theorem 5.4). Lemmas 4.6–4.9 on vanishing results are

effectively used to prove Theorem 1.1(2). The first, second, and third Rabi–

Bernoulli polynomials Rk(g,∆; x) for k ∈ {1, 2, 3} are explicitly computed

in Section 6. For treating some matrix-valued exponential functions t 7→
exp(tX) for some 2-by-2 square matrices X, the commutativity of two

matrices [1 0
0 1] and [0 1

1 0] matches our computation from Sections 3–5, while

such a treatment is difficult in the case of the noncommutative harmonic

oscillator Q(α,β) [8], which is described by noncommutative matrices [α 0
0 β]

and [0 −1
1 0 ]. However, difficulty in the case of the quantum Rabi models seems

to be inherent in the simultaneous use of three matrices [1 0
0 1], [1 0

0 −1], and [0 1
1 0],

among which [1 0
0 −1] and [0 1

1 0] are noncommutative.

§2. Preliminaries

2.1 Notation

For any a ∈ Z, let Z>a denote the set of all n ∈ Z such that n> a.

For complex-valued functions f1 and f2 on a set X, we write f1(t) =

O(f2(t)) if there exists a constant C > 0 such that |f1(t)|6 C|f2(t)| for all

t ∈X. We write f1(t)� f2(t) if both f1(t) =O(f2(t)) and f2(t) =O(f1(t))

hold. Furthermore, if X = {t ∈ R | t > 0}, we write f1(t)∼ f2(t)(t→∞) for

limt→∞ f1(t)/f2(t) = 1. We also write

f1(t)∼0

∞∑
j=0

cjt
j

if there exists a positive constant CN for every N ∈ Z>0 such that∣∣∣∣f1(t)−
N∑
j=0

cjt
j

∣∣∣∣6 CN t
N+1, (t→+0).

Let S(R) be the Schwartz space on R and δ(x− a) : S(R)→ C the Dirac

delta distribution supported at a ∈ R. By abuse of notation, δ(x− a) is

used as if it is an integrand.

For a C-Hilbert space V and a densely defined linear operator A : V → V ,

let Spec(A) denote the multiset of eigenvalues of A in C. Suppose that

Spec(A) is discrete. Then, the norms ‖A‖p on V for p ∈ {1, 2} are defined

by

‖A‖p =

{ ∑
λ∈Spec(A)

|λ|p
}1/p

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.62


ZETA FOR QUANTUM RABI MODELS 59

as long as they make sense. For any N ∈ {1, 2}, we set L2(R; CN ) =

L2(R)⊗C CN . The natural L2-inner product on L2(R) is denoted by 〈·, ·〉L2 .

Then, we endow L2(R; C2) with the L2-inner product 〈·, ·〉 defined by

〈t(u1, u2), t(u′1, u
′
2)〉= 〈u1, u

′
1〉L2 + 〈u2, u

′
2〉L2(2.1)

for any u1, u2, u
′
1, u
′
2 ∈ L2(R). We note that the Schwartz space S(R; CN ) =

S(R)⊗C CN on R is densely embedded in L2(R; CN ) for any N ∈ {1, 2}. If

A : L2(R; CN )→ L2(R; CN ) for N ∈ {1, 2} is a densely defined differential

operator, then a dense domain of A is supposed to be the maximal domain

D(A) defined by

D(A) = {u ∈ L2(R; CN ) |Au ∈ L2(R; CN )},

where Au is the derivative of u as a tempered distribution on R.

2.2 Quantum Rabi models

Throughout this paper, we use the following 2-by-2 complex matrices

I =

[
1 0
0 1

]
, W =

[
0 1
1 0

]
, L=

[
1 0
0 −1

]
.

We note the relations IW =WI, IL= LI, and LW =−WL.

For real numbers ~> 0, ω > 0, g > 0, and ∆ > 0, let us define the Rabi

Hamiltonian H densely defined in L2(R; C2) by

H =HRabi = ~ωa†a+ ∆σz + ~gσx(a† + a),

where

a=
1√
2

(√
ω

~
x+

√
~
ω
∂x

)
,

a† =
1√
2

(√
ω

~
x−

√
~
ω
∂x

)
,

σz = [1 0
0 −1] and σx = [0 1

1 0]. Throughout this paper, we normalize H so that

~ = ω = 1 without loss of generality, and use the following expression:

H =
−∂2

x + x2 − 1

2
I + ∆L+

√
2gxW,
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which is the Weyl quantization of

H(x, ξ) =
ξ2 + x2 − 1

2
I + ∆L+

√
2gxW.

Then the operator H : L2(R; C2)→ L2(R; C2) is unbounded, closed, and

symmetric (cf. [18, pp. 8–9]). Besides, H is a global pseudodifferential

operator of order 2 and elliptic in the sense of [18, Definition 3.2.19], that

is, |detH(x, ξ)| ∼
√

1 + x2 + ξ2
4
, (x2 + ξ2→∞). We remark that H is not

classical but semiregular classical in the sense of [18, Definition 3.2.19 and

Remark 3.2.4], and that H is actually classical in the sense of [6, Définition

1.5.1]. Here, when we use “classical” in the sense of [6, Définition 1.5.1], we

need to generalize notions for scalar-valued pseudodifferential operators in

[6, Chapitre 1] to matrix-valued ones. However, this procedure is easy to

perform by referring to [18, Chapter 3].

Proposition 2.1. The operator H is self-adjoint.

Proof. Since H is formally self-adjoint, the assertion follows from [18,

Proposition 3.3.10].

Proposition 2.2. All eigenvalues λ of H satisfy λ>−g2 −∆. In

particular, for any τ ∈ R such that τ > g2 + ∆, the operator H + τI is

positive.

Proof. First, we see〈
−∂2

x + x2

2
v, v

〉
L2

>
1

2
〈v, v〉L2(2.2)

for any v ∈ S(R) by the proof of [18, Theorem 2.2.1].

Let us take any λ ∈ Spec(H). Then λ is real by the self-adjointness of H.

Set H ′ = UHU−1 with

U =


1√
2

1√
2

− 1√
2

1√
2

 .
Then,

H ′ =


−∂2

x + x2 − 1

2
+
√

2gx −∆

−∆
−∂2

x + x2 − 1

2
−
√

2gx

(2.3)
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holds by noting ULU−1 =−W and UWU−1 = L (cf. [7, (3.1)]). Since

Spec(H) coincides with Spec(H ′) as a multiset, λ is contained in Spec(H ′).

Put

D± =
−∂2

x + x2 − 1

2
±
√

2gx=
−∂2

x + (x±
√

2g)2

2
− 1

2
− g2.(2.4)

Let u= t(u1, u2) be a fixed eigenvector with H ′u= λu. We note that u is

taken as an element of S(R; C2) by [6, (1.9.2)]. By virtue of the inequality

〈D±u, u〉>−g2〈u, u〉 by (2.2), a direct computation gives us

λ〈u, u〉=

〈[
D+ −∆
−∆ D−

]
u, u

〉
= 〈D+u1, u1〉L2 + 〈D−u2, u2〉L2 −∆〈u1, u2〉L2 −∆〈u2, u1〉L2

>−g2〈u1, u1〉L2 − g2〈u2, u2〉L2 −∆(‖u1 + u2‖2L2 − ‖u1‖2L2 − ‖u2‖2L2)

>−g2(‖u1‖2L2 + ‖u2‖2L2)−∆(‖u1‖2L2 + ‖u2‖2L2) = (−g2 −∆)〈u, u〉,

where || · ||L2 is the L2-norm on L2(R) induced from 〈·, ·〉L2 . This completes

the proof.

Set Λ2 = 1 + x2 − ∂2
x and B2(R) = {u ∈ S ′(R) | Λ2u ∈ L2(R)}, where

S ′(R) denotes the space of tempered distributions on R and Λ2u is the

differential of u as a tempered distribution. Then B2(R) is called a

Shubin–Sobolev space (cf. [29, Section 25]). The Shubin–Sobolev space

B2(R) contains S(R) obviously and has a Hilbert space structure with

inner product (u1, u2)B2 = (Λ2u1, Λ
2u2)L2 for any u1, u2 ∈B2(R). The space

B2(R) is dense and compactly embedded in L2(R) by [29, Proposition 25.4]

(see also [6, Proposition 1.6.11] and [18, Proposition 3.2.26]).

Proposition 2.3. We have D(H) =B2(R)⊗C C2.

Proof. As we see that H is a globally elliptic pseudodifferential operator

of order 2 and that H is classical in the sense of [6, Définition 1.5.1], we

obtain the assertion by [6, Théorème 1.6.4] (see also [18, Lemma 3.3.9]).

Remark. By Proposition 2.3, the operator H has a compact resolvent,

and hence the spectrum of H coincides with the set Spec(H) of the

eigenvalues of H as a multiset, that is, the continuous and the residual

spectra of H are empty (cf. [28, Proposition 2.11] or [29, Theorem 26.3]).

In particular, Spec(H) is discrete. Such a discreteness also follows from the

location of zeros of G+(x)G−(x) constructed in [2].
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Lemma 2.4. Let τ be a real number such that τ > g2 + ∆ and let

0< λ′1 6 λ′2 6 λ′3 6 · · ·6 λ′n 6 · · · be the sequence of all eigenvalues of

H + τI. Then, we have λ′n � n.

Proof. Let H ′ denote the Hamiltonian given by (2.3). By Spec(H) =

Spec(H ′) as a multiset, we may consider H ′ instead of H. Put

B =H ′ + ∆W =

(
−∂2

x + x2 − 1

2
+ τ

)
I +
√

2gxL

as an operator in L2(R; C2) whose domain is D(H ′). Then,

B =


−∂2

x + (x+
√

2g)2

2
− 1/2− g2 + τ 0

0
−∂2

x + (x−
√

2g)2

2
− 1/2− g2 + τ


is a positive self-adjoint operator and its nth eigenvalue λn(B) satisfies

λn(B)� n as n→∞. Since the canonical injection D(H ′) =D(H) ↪→
L2(R; C2) is compact by Proposition 2.3, both H ′ and B have compact

resolvents. By H ′ =B −∆W , we easily have

‖H ′u‖2 6 2(‖Bu‖2 + ‖∆Wu‖2) 6 2(1 + ∆2)(‖Bu‖2 + ‖u‖2)

for all u ∈ S(R; C2), where || · || is the L2-norm on L2(R; C2) induced

from 〈·, ·〉. Similarly we have also ‖Bu‖2 6 2(1 + ∆2)(‖H ′u‖2 + ‖u‖2) for all

u ∈ S(R; C2). Therefore, by applying [18, Proposition 4.2.2] to H ′ and B,

we obtain the desired assertion.

§3. Spectral zeta functions

For any τ ∈ C, the Hurwitz-type spectral zeta function of the Rabi

Hamiltonian H is given as the formal series

ζH(s; τ) =
∑

λ∈Spec(H)

1

(λ+ τ)s
, s ∈ C.

We check the convergence for some suitable choices of τ and s. The following

is a consequence from Lemma 2.4.

Proposition 3.1. For any fixed τ ∈ C− Spec(−H), the series ζH(s; τ)

converges absolutely for Re(s)> 1. Furthermore, the series ζ(1; τ) is diver-

gent.
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For the Rabi Hamiltonian H and τ ∈ C, we consider the heat operator

K(t) = e−t(H+τI) on t > 0. From now on, we fix τ ∈ R such that τ > g2 + ∆.

By Propositions 2.1 and 2.2, H + τI is a self-adjoint operator and all its

eigenvalues are positive. Hence the Hurwitz-type spectral zeta function of

H has an integral expression

ζH(s; τ) =
1

Γ(s)

∫ ∞
0

ts−1 TrK(t) dt

as long as the integral on the left-hand side is absolutely convergent. Set

Z0(s) =

∫ 1

0
ts−1 TrK(t) dt, Z∞(s) =

∫ ∞
1

ts−1 TrK(t) dt.

Lemma 3.2. The integral Z0(s) converges absolutely for Re(s)> 1, and

the integral Z∞(s) converges absolutely for all s ∈ C. In particular, the

function Z∞(s) has an analytic continuation to C. Furthermore, the integral∫∞
0 ts−1 TrK(t) dt converges absolutely for Re(s)> 1 and we have

ζH(s; τ) =
1

Γ(s)

∫ ∞
0

ts−1 TrK(t) dt=
1

Γ(s)
(Z0(s) + Z∞(s)), Re(s)> 1.

(3.1)

Proof. We follow the method given in the proof of [8, Proposition 2.1].

We remark that

TrK(t) =
∑

λ∈Spec(H)

e−(λ+τ)t 6
∑

λ∈Spec(H)

{(1 + ε)/e}1+ε

{(λ+ τ)t}1+ε

= {(1 + ε)/e}1+εζH(1 + ε; τ)t−1−ε <∞

for any ε > 0, where we use Proposition 3.1 and the inequality e−b 6
(a/e)ab−a for all a, b > 0. Thus it is obvious that Z0(s) converges absolutely

for Re(s)> 1. Put σ = Re(s) and take a ∈ R such that a >max(σ, 1). Then,∫ ∞
1
|ts−1 TrK(t)| dt 6

∫ ∞
1

∑
λ∈Spec(H)

(a/e)a

(λ+ τ)a
t−a × tσ−1 dt

= ζH(a; τ)

∫ ∞
1

tσ−a−1 dt <∞.
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Equalities (3.1) follow from

Γ(s)
∑

λ∈Spec(H)

(λ+ τ)−s =
∑

λ∈Spec(H)

∫ ∞
0

e−t
(

t

λ+ τ

)s dt
t

=

∫ ∞
0

∑
λ∈Spec(H)

e−(τ+λ)tts
dt

t
=

∫ ∞
0

ts−1 TrK(t) dt.

The change of integrals and series is justified when Re(s)> 1.

For the operator H + τI, we define an operator K1(t) and its kernel

K1(t, x, y) by

(K1(t)f)(x)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

ei(x−y)ξ exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
f(y) dy dξ

=

∫ ∞
−∞

K1(t, x, y)f(y) dy

for any f ∈ S(R; C2). We set R2(t) =K(t)−K1(t). Then the equation

(∂t +H + τI)K1(t) + (∂t +H + τI)R2(t) = 0 holds. Furthermore, we set

F (t, x, y) = (∂t +Hx + τI)R2(t, x, y) =−(∂t +Hx + τI)K1(t, x, y), where

Hx is the operator H acting on the x-variables. By K1(t, x, y)→ δ(x− y)I

as t→+0, we have easily R2(t)→ 0I as t→+0. Therefore, by Duhamel’s

principle (cf. [4, pp. 202–204]), we have the following expression

R2(t) =

∫ t

0
e−(t−u)(H+τI)F (u) du,

where we put (F (u)f)(x) =
∫∞
−∞ F (u, x, y)f(y) dy for any f ∈ S(R; C2).

Lemma 3.3. We have

F (t, x, y)

=
1

2π

∫ ∞
−∞

ei(x−y)ξ

[
y2 − x2

2
I +
√

2g(y − x)W

]
× exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ − 1

2π

∫ ∞
−∞

ei(x−y)ξ

×
[(
τ − 1

2

)
I + ∆L

]
exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ.
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Proof. It follows from the definition of K1(t, x, y) and the expres-

sion
∫∞
−∞ F (t, x, y)f(y) dy =

∫∞
−∞(−∂t −H − τI)K1(t, x, y)f(y) dy for any

f ∈ S(R; C2).

The function TrK1(t) is analyzed as follows.

Lemma 3.4. We have the following formulas:

TrK1(t) =
2eg

2t

t
, t > 0,∫ 1

0
ts−1 TrK1(t) dt=

2

s− 1
+
∞∑
k=1

2g2k

k!

1

s+ k − 1
, Re(s)> 1.

Proof. Since I and W are commutative, by [5, 3.323, 2.10], the function

K1(t, x, y) can be described as

K1(t, x, y)

=
1

2π

∫
ξ∈R

ei(x−y)ξ exp

(
− tξ

2

2
I

)
dξ × exp

(
− ty

2

2
I

)
exp(−

√
2gtyW )

=
1√
2πt

e−(x−y)2/2t−ty2/2 exp(−
√

2gtyW ).

Hence we obtain

TrK1(t) =

∫ ∞
−∞

trK1(t, x, x) dx

=
1√
2πt

∫ ∞
−∞

e−tx
2/22 cosh(

√
2gtx) dx=

2eg
2t

t
,

where we use [5, 3.546.2]. This completes the proof.

3.1 Estimates of residual operators

Set

F1(t, x, y)

=
1

2π

∫ ∞
−∞

ei(x−y)ξ y
2 − x2

2
I exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ,

F2(t, x, y)

=
1

2π

∫ ∞
−∞

ei(x−y)ξ
√

2g(y − x)W exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ,
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F3(t, x, y)

=
1

2π

∫ ∞
−∞

ei(x−y)ξ(−∆)L exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ,

F4(t, x, y)

=
1

2π

∫ ∞
−∞

ei(x−y)ξ

(
1

2
− τ
)
I exp

[
−t
(
ξ2 + y2

2
I +
√

2gyW

)]
dξ,

and Fj(t) =
∫∞
−∞ Fj(t, x, y)f(y) dy for any f ∈ S(R; C2) and any j ∈

{1, 2, 3, 4}. Then we see

F (t, x, y) = F1(t, x, y) + F2(t, x, y) + F3(t, x, y) + F4(t, x, y)

and

F (t) = F1(t) + F2(t) + F3(t) + F4(t).

We have the following by the same computation as in Lemma 3.4.

Lemma 3.5. We have the following explicit formulas:

F1(t, x, y) =
1√
2πt

y2 − x2

2
Ie−(x−y)2/2t−ty2/2 exp(−

√
2gtyW ),

F2(t, x, y) =
1√
2πt

√
2g(y − x)We−(x−y)2/2t−ty2/2 exp(−

√
2gtyW ),

F3(t, x, y) =
1√
2πt

(−∆)Le−(x−y)2/2t−ty2/2 exp(−
√

2gtyW ),

F4(t, x, y) =
1√
2πt

(
1

2
− τ
)
Ie−(x−y)2/2t−ty2/2 exp(−

√
2gtyW ).

Lemma 3.6. For 0< t < 1, we have ‖F1(t) + F2(t)‖2 =O(t−1/2) and

‖F3(t) + F4(t)‖2 =O(t−1/2).

Proof. Set τ ′ = τ − 1/2, F−(t, x, y) = F3(t, x, y) + F4(t, x, y), and

F−(t) = F3(t) + F4(t). Since the adjoint operator F−(t)∗ of F−(t) is

given by (F−(t)∗f)(x) =
∫∞
−∞ F−(t, y, x)f(y) dy, by noting WL=−LW and

Lemma 3.5, we obtain

‖F−(t)‖22

= Tr(F−(t)∗F−(t)) =

∫ ∞
−∞

∫ ∞
−∞

trF−(t, x, y)F−(t, x, y) dy dx
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=

∫ ∞
−∞

∫ ∞
−∞

tr

[
1

2πt
(τ ′I + ∆L)e−(x−y)2/2t−ty2/2 exp(−

√
2gtyW )

× (τ ′I + ∆L)e−(x−y)2/2t−ty2/2 exp(−
√

2gtyW )

]
dy dx

=

∫ ∞
−∞

∫ ∞
−∞

1

2πt
e−(x−y)2/t−ty2tr [(τ ′I + ∆L) (τ ′ exp(−

√
2gtyW )

+ ∆L exp(
√

2gtyW )) exp(−
√

2gtyW )] dy dx

=

∫ ∞
−∞

∫ ∞
−∞

1

2πt
e−(x−y)2/t−ty2

× tr[(τ ′I + ∆L)(τ ′ exp(−2
√

2gtyW ) + ∆L)] dy dx

=

∫ ∞
−∞

∫ ∞
−∞

1

2πt
e−(x−y)2/t−ty2 × 2{τ ′2 cosh(2

√
2gty) + ∆2} dy dx

=
τ ′2

πt

∫ ∞
−∞

∫ ∞
−∞

e−(x−y)2/t−ty2 cosh(2
√

2gty) dy dx

+
∆2

πt

∫ ∞
−∞

∫ ∞
−∞

e−(x−y)2/t−ty2 dy dx,

and hence we have ‖F−(t)‖22 = t−1(τ ′2e2g2t + ∆2) by the formulas∫ ∞
−∞

∫ ∞
−∞

e−(x−y)2/t−ty2 dy dx= π,∫ ∞
−∞

∫ ∞
−∞

e−(x−y)2/t−ty2e±2
√

2gty dy dx= πe2g2t.

Next we set F+(t) = F1(t) + F2(t) and F+(t, x, y) = F1(t, x, y) +

F2(t, x, y). Combining IW =WI with Lemma 3.5, we obtain

‖F+(t)‖22 =

∫ ∞
−∞

∫ ∞
−∞

trF+(t, x, y)F+(t, x, y) dy dx

=

∫ ∞
−∞

∫ ∞
−∞

1

2πt
tr

[{
y2 − x2

2
I +
√

2g(y − x)W

}2

× e−(x−y)2/t−ty2 exp(−2
√

2gtyW )

]
dy dx
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=

∫ ∞
−∞

∫ ∞
−∞

1

2πt
e−(x−y)2/t−ty2 ×

[{
y2 − x2

2
+
√

2g(y − x)

}2

e−2
√

2gty

+

{
y2 − x2

2
−
√

2g(y − x)

}2

e2
√

2gty

]
dy dx.

Hence ‖F+(t)‖22 =O(t−1) follows from∫ ∞
−∞

∫ ∞
−∞

1

2πt
e−(x−y)2/t−ty2

{
y2 − x2

2
±
√

2g(x− y)

}2

e∓2
√

2gty dy dx

=
1

2πt

∫ ∞
−∞

∫ ∞
−∞

e−u
2−v2 u

2

4
(tu+ 2v ± 2

√
2g
√
t)2e±2

√
2g
√
tv du dv

=O(t−1).

Set

Km(t) =

∫ t

0

∫ t−u1

0
· · ·
∫ t−u1−···−um−2

0

×K1(t− u1 − · · · um−1)F (um−1)F (um−2) · · · F (u1) dum−1 · · · du1

for m> 2 and

Rn+1(t) =

∫ t

0

∫ t−u1

0
· · ·
∫ t−u1−···−un−1

0
K(t− u1 − · · · un)

× F (un)F (un−1) · · · F (u1) dun dun−1 · · · du1

for n> 2, respectively. Then, by the same argument in [8, pp. 704–705], we

decompose K(t) as

K(t) =K1(t) +

n∑
m=2

Km(t) +Rn+1(t), n ∈ Z>1.(3.2)

Lemma 3.7. For any ε ∈ (0, 1/2), there exists a positive constant C =

C(g,∆, τ, ε) such that

|TrR2(t)|6 Ct−ε,

|TrRn+1(t)|6 Cn
πn/2

Γ(n/2 + 1)
tn/2

for any t ∈ (0, 1) and any n ∈ Z>2.

Proof. We follow the method in [8, Proposition 2.3]. For any t > 0,

u ∈ (0, t), and ε > 0, we have
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‖e−(t−u)(H+τI)‖2

=

 ∑
λ∈Spec(H)

e−2(t−u)(λ+τ)

1/2

6

(
1 + 2ε

e

)(1+2ε)/2
 ∑
λ∈Spec(H)

1

(λ+ τ)1+2ε

1/2

2−(1+2ε)/2(t− u)−(1+2ε)/2

=

(
1 + 2ε

e

)(1+2ε)/2

ζH(1 + 2ε; τ)1/22−(1+2ε)/2(t− u)−(1+2ε)/2.

We note that ζH(1 + 2ε; τ) is convergent by Proposition 3.1. By virtue

of Lemma 3.6, we have ‖F (t)‖2 6 ‖F1(t) + F2(t)‖2 + ‖F3(t) + F4(t)‖2 =

O(t−1/2). Then, we estimate TrR2(t) =
∫ t

0 Tr(e−(t−u)(H+τI)F (u)) du as

|TrR2(t)| =

∫ t

0
|Tr(e−(t−u)(H+τI)F (u))| du6

∫ t

0
‖e−(t−u)(H+τI)F (u)‖1 du

6
∫ t

0
‖e−(t−u)(H+τI)‖2‖F (u)‖2 du6 C

∫ t

0
(t− u)−1/2−εu−1/2 du

= Ct−εB(1/2− ε, 1/2),

where C = C(g,∆, τ, ε) is a positive constant depending only on g,∆, τ ,

and ε. From this, |TrRn+1(t)| for n> 2 is majorized as |TrRn+1(t)|6
Cntn/2 πn/2

Γ(n/2+1) in the same way as [8, Proposition 2.3].

§4. Asymptotic expansions

In this section, we give the asymptotic series of TrKm(t) as t→+0,

which is used in Section 5. Recall that τ ∈ R is fixed so that τ > g2 + ∆ as

in Section 3. The main result in this section is the following.

Theorem 4.1. For any m ∈ Z>2, there exists a sequence {c(m)
q }q∈Z>0

of

complex numbers such that

TrKm(t)∼0

∞∑
q=0

c(m)
q tq.

Moreover, we have c
(m)
q = 0 if q <m− 2.
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For m ∈ Z>2 and ε= (εj)j=1,...,m−1 ∈ {1, 2, 3, 4}m−1, we set

Km,ε(t) =

∫ t

0

∫ t−u1

0
· · ·
∫ t−u1−···−um−2

0
K1(t− u1 − · · · − um−1)

· Fεm−1(um−1)Fεm−2(um−2) · · · Fε2(u2)Fε1(u1) dum−1 · · · du1.

Then Km(t) is decomposed as

Km(t) =
∑

ε∈{1,2,3,4}m−1

Km,ε(t).

Therefore, we only have to consider an asymptotic behavior of TrKm,ε(t)

for each ε ∈ {1, 2, 3, 4}m−1. By the change of variables uj = tu′j , it holds that

Km,ε(t) = tm−1

∫ 1

0

∫ 1−u′1

0
· · ·
∫ 1−u′1−···−u′m−2

0
K1(t(1− u′1 − · · · − u′m−1))

· Fεm−1(tu′m−1)Fεm−2(tu′m−2) · · · Fε2(tu′2)Fε1(tu′1) du′m−1 · · · du′1.

By putting Dm−1 = {u ∈ Rm−1 | uj > 0(∀j = 1, . . . , m− 1),
∑m−1

j=1 uj 6 1},
we have

TrKm,ε(t) = tm−1

∫
Dm−1

du

∫
z0∈R

tr

∫
(z1,...,zm−1)∈Rm−1

×K1(t(1− u1 − · · · − um−1), z0, zm−1)

· Fεm−1(tum−1, zm−1, zm−2) · · · Fε2(tu2, z2, z1)

× Fε1(tu1, z1, z0) dz0 dz1 · · · dzm−1.

By the definition of Fε(t, x, y) for ε ∈ {1, 2, 3, 4} and by the change of

variables
√
tzj ↔ zj and

√
tξj ↔ ξj , the integral above is transformed to

TrKm,ε(t)

= t−1

∫
Dm−1

du

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj

∫
(z0,...,zm−1)∈Rm

m−1∏
j=1

dzj
1

(2π)m

× ei[(z0−zm−1)ξm+(zm−1−zm−2)ξm−1+···+(z1−z0)ξ1]/t

× tr

e−(1−u1−···−um−1)
[
((ξ2m+z2m−1)/2)I+

√
2g
√
tzm−1W

]
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×

←−−−
m−1∏
j=1

Tεj (zj−1/
√
t, zj/

√
t)e−uj

[
((ξ2j+z2j−1)/2)I+

√
2g
√
tzj−1W

]
= t−1−r1(ε)−(1/2)r2(ε)

∫
Dm−1

du

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj

∫
(z0,...,zm−1)∈Rm

×
m−1∏
j=1

dzj
1

(2π)m

×
m−1∏
j=1

ei(zj−zj−1)(ξj−ξm)/t

× tr

e−(1−u1−···−um−1)
[
((ξ2m+z2m−1)/2)I+

√
2g
√
tzm−1W

]

×

←−−−
m−1∏
j=1

Tεj (zj−1, zj)e
−uj
[
((ξ2j+z2j−1)/2)I+

√
2g
√
tzj−1W

] .(4.1)

Here we put rj(ε) = #{j ∈ {1, . . . , m− 1} | εj = k} for each k ∈ {1, 2, 3, 4},
T1(x, y) = x2−y2

2 I, T2(x, y) =
√

2g(x− y)W , T3(x, y) =−∆L, T4(x, y) =

(1/2− τ)I, and
←−−−
m−1∏
j=1

Aj =Am−1 · · ·A1

for any 2-by-2 matrices A1, . . . , Am−1. In order to expand integral (4.1), we

use the following given in [8, Lemma 3.3].

Lemma 4.2. The function (x, y) 7→ eixy/t has the asymptotic series

eixy/t ∼0 2π
∞∑
k=0

ik
∂kxδ(x)∂ky δ(y)

k!
tk+1

as a tempered distribution in R2.
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From this lemma (or [8, (4.7)]), by integration by parts, (4.1) is expanded

as

TrKm,ε(t)

∼0
1

2π

∞∑
l1=0

· · ·
∞∑

lm−1=0

il1+···+lm−1

l1! · · · lm−1!
tl1+···+lm−1+m−2−r1(ε)−(1/2)r2(ε)

×
∫
Dm−1

du

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj

∫
(z0,...,zm−1)∈Rm

m−1∏
j=0

dzj

×


m−1∏
j=1

(−1)lj∂
lj
zj−1δ(zj−1 − zj)


×


m−1∏
j=1

(−1)ljδ(ξj − ξm)


× tr

e−(1−u1−···−um−1)((ξ2m+z2m−1)/2)I

m−1∏
j=1

∂
lj
ξj
e−uj((ξ

2
j+z2j−1)/2)I



× e−(1−u1−···−um−1)
√

2g
√
tzm−1W

←−−−
m−1∏
j=1

Tεj (zj−1, zj)e
−uj
√

2g
√
tzj−1W

 .(4.2)

Here, we remark that the symbol δ(zj − zj−1) is always replaced with

δ(zj−1 − zj) throughout this paper when ∂
lj
zj is transformed to (−1)lj∂

lj
zj−1

by integration by parts. (The symbol δ(zj − zj−1) used in [8, (4.8), (4.17b),

(4.18), (4.19), (4.21), the first (4.22), and (4,23)] should be replaced with

δ(zj−1 − zj) if it is regarded as a tempered distribution supported at zj .)

Let us further analyze some factors in the integrand above. The following

is obvious.

Lemma 4.3. For any l ∈ Z>0 and u ∈ (0, 1), we have

∂lξe
−uξ2/2 = (−1)l(u/2)l/2Hl(

√
u/2ξ)e−uξ

2/2,

where Hl(x) is the lth Hermite polynomial defined by Hl(x) =

(−1)lex
2
(∂lxe

−x2).

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.62


ZETA FOR QUANTUM RABI MODELS 73

Let us consider a transformation of the ordered product

←−−−
m−1∏
j=1

Tεj (zj−1, zj)e
−uj
√

2g
√
tzj−1W .

By the definition of Tεj (x, y), the product as above is described as


m−1∏
j=1
εj=1

z2
j−1 − z2

j

2



m−1∏
j=1
εj=2

√
2g(zj−1 − zj)

 (−∆)r3(ε)

(
−τ +

1

2

)r4(ε)

× tr

 exp(−(1− u1 − · · · − um−1)
√

2g
√
tzm−1W )

×

←−−−
m−1∏
j=1

A(εj)e
−
√

2g
√
tujzj−1W


with A(1) =A(4) = I, A(2) =W , and A(3) = L. In the oriented product,

we cannot shift all terms of the form eaW (a ∈ R) into the left because

of the noncommutativity of L and W . However, we can define a mapping

ωε : {1, . . . , m− 1}→ {0, 1} by

←−−−
m−1∏
j=1

A(εj) exp[−
√

2g
√
tujzj−1W ]

= exp

− m−1∑
j=1

(−1)ωε(j)
√

2g
√
tujzj−1W

←−−−m−1∏
j=1

A(εj)(4.3)

because of WL=−LW . Set

A(ε) =

←−−−
m−1∏
j=1

A(εj).
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Lemma 4.4. We have

A(ε) ∈


{±I} (if r2(ε) is even and r3(ε) is even),

{±W} (if r2(ε) is odd and r3(ε) is even),

{±L} (if r2(ε) is even and r3(ε) is odd),

{±LW} (if r2(ε) is odd and r3(ε) is odd).

Proof. It follows immediately from the relations W 2 = L2 = I and

WL=−LW .

By using the mapping ωε and the Maclaurin expansion

ea
√
tW =

∞∑
k=0

ak

k!
tk/2W k

for a ∈ R and t > 0, the right-hand side of (4.2) is rewritten as

1

2π

∞∑
l1=0

· · ·
∞∑

lm−1=0

il1+···+lm−1

l1! · · · lm−1!
tl1+···+lm−1+m−2−r1(ε)−(1/2)r2(ε)

×
∫
Dm−1

du

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj

∫
(z0,...,zm−1)∈Rm

m−1∏
j=0

dzj

×


m−1∏
j=1

(−1)lj∂
lj
zj−1δ(zj−1 − zj)


×


m−1∏
j=1

(−1)ljδ(ξj − ξm)


× tr

e−(1−u1−···−um−1)(ξ2m+z2m−1)/2

m−1∏
j=1

∂
lj
ξj
e−ujξ

2
j /2e−ujz

2
j−1/2


× e−(1−u1−···−um−1)

√
2g
√
tzm−1W

m−1∏
j=1

e−uj
√

2g
√
t(−1)ωε(j)zj−1W

×

←−−−
m−1∏
j=1

Tεj (zj−1, zj)


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=
1

2π

∞∑
l1=0

· · ·
∞∑

lm−1=0

il1+···+lm−1

l1! · · · lm−1!
tl1+···+lm−1+m−2−r1(ε)−(1/2)r2(ε)

×
∫
Dm−1

du

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj

∫
(z0,...,zm−1)∈Rm

m−1∏
j=0

dzj

×


m−1∏
j=1

(−1)lj∂
lj
zj−1δ(zj−1 − zj)


×


m−1∏
j=1

δ(ξj − ξm)

 e−(1−u1−···−um−1)ξ2m/2e−(1−u1−···−um−1)z2m−1/2

×

m−1∏
j=1

e−ujz
2
j−1/2


×


m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξj)e

−ujξ2j /2


× tr

 ∞∑
km=0

{−(1− u1 − · · · − um−1)
√

2gzm−1}km
km!

√
t
km
W km

×


m−1∏
j=1

∞∑
kj=0

(−uj
√

2g(−1)ωj(ε)zj−1)kj

kj !
tkj/2W kj


×

←−−−
m−1∏
j=1

Tεj (zj−1, zj)

 .(4.4)

As a consequence, by noting

∫
(ξ1,...,ξm)∈Rm

m∏
j=1

dξj


m−1∏
j=1

δ(ξj − ξm)

 e−(1−u1−···−um−1)ξ2m/2

×


m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξj)e

−ujξ2j /2


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=

∫
ξ∈R

e−ξ
2/2


m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξ)

 dξ

and the analysis made so far, we have the following asymptotic series.

Theorem 4.5. For any m ∈ Z>2 and ε ∈ {1, 2, 3, 4}m−1, we have

TrKm,ε(t)

∼0

∑
(l1,...,lm−1)∈Zm−1

>0

∑
(k1,...,km)∈Zm>0

il1+···+lm−1

2πl1! · · · lm−1!k1! · · · km!

× tl1+···+lm−1+(1/2)(k1+···+km)+m−2−r1(ε)−(1/2)r2(ε)

×
∫
Dm−1

du

∫
(z0,...,zm−1)∈Rm

m−1∏
j=0

dzj


m−1∏
j=1

(−1)lj∂
lj
zj−1δ(zj−1 − zj)


× e−(1−u1−···−um−1)z2m−1/2

m−1∏
j=1

e−ujz
2
j−1/2


×

 m∏
j=1

z
kj
j−1

 {−√2g(1− u1 − · · · − um−1)}km

×
m−1∏
j=1

{−
√

2guj(−1)ωε(j)}kj
∫
ξ∈R

e−ξ
2/2

×


m−1∏
j=1

(uj/2)lj/2Hlj

(√
uj/2ξ

) dξ

×


m−1∏
j=1
εj=1

(z2
j−1 − z2

j )/2



m−1∏
j=1
εj=2

√
2g(zj−1 − zj)


× (−∆)r3(ε)(1/2− τ)r4(ε)tr[W k1+···+kmA(ε)].(4.5)

Here rk(ε) is the cardinality of {j ∈ {1, . . . , m− 1} | εj = k} for each

k ∈ {1, 2, 3, 4}, a mapping ωε : {1, . . . , m− 1}→ {0, 1} is defined by (4.3),

the function Hlj (x) is the ljth Hermite polynomial defined in Lemma 4.3,
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and we set

A(ε) =

←−−−
m−1∏
j=1

A(εj)

with A(1) =A(4) = I, A(2) =W , and A(3) = L.

Let c
(m,ε)
(l1,...,lm−1),(k1,...,km) be the coefficient of

tl1+···+lm−1+(1/2)(k1+···+km)+m−2−r1(ε)−(1/2)r2(ε)

in (4.5). Then, we obtain the following series of vanishing results.

Lemma 4.6. The coefficient c
(m,ε)
(l1,...,lm−1),(k1,...,km) vanishes if l1 + · · ·+

lm−1 is odd.

Proof. If l1 + · · ·+ lm−1 is odd, by Hlj (−x) = (−1)ljHlj (x) the product∏m−1
j=1 Hlj (x) is an odd function in x, and hence we have

∫
ξ∈R

e−ξ
2/2

m−1∏
j=1

Hlj (
√
uj/2ξ) dξ = 0.

This completes the proof.

Lemma 4.7. The coefficient c
(m,ε)
(l1,...,lm−1),(k1,...,km) vanishes if k1 + · · ·+

km − r2(ε) is odd. In particular, any coefficients of
√
t
2k+1

of TrKm,ε(t) for

any k ∈ Z>0 vanish.

Proof. If k1 + · · ·+ km − r2(ε) is odd, Lemma 4.4 yields that

W k1+···+kmA(ε) is equal to±W or±LW , whose trace is zero. This completes

the proof.

Lemma 4.8. We have TrKm,ε(t) = 0 if r3(ε) is odd.

Proof. If r3(ε) is odd, for any (k1, . . . , km) ∈ Zm>0, by Lemma 4.4,

W k1+···+kmA(ε) is equal to ±L or ±LW , whose trace is zero. From this

and (4.5), we have the desired assertion.

Lemma 4.9. We have c
(m,ε)
(l1,...,lm−1),(k1,...,km) = 0 if there exists j ∈

{1. . . . , m− 1} such that εj ∈ {1, 2} and lj = 0. In particular, we have

c
(m,ε)
(l1,...,lm−1),(k1,...,km) = 0 if l1 + · · ·+ lm−1 < r1(ε) + r2(ε).
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Proof. We obtain the assertion by noting the factor δ(zj−1 − zj)(zj−1 −
zj).

By Lemmas 4.6–4.8, we have the following.

Lemma 4.10. For any m ∈ Z>2, ε ∈ {1, 2, 3, 4}m−1, (l1, . . . , lm−1,

k1, . . . , km) ∈ Z2m−1
>0 , we have

c
(m,ε)
(l1,...,lm−1),(k1,...,km)

=
il1+···+lm−1

2πl1! · · · lm−1!k1! · · · km!

∫
Dm−1

du

∫
(z0,...,zm−1)∈Rm

×
m−1∏
j=0

dzj


m−1∏
j=1

∂
lj
zj−1δ(zj−1 − zj)


× e−(1−u1−···−um−1)z2m−1/2

m−1∏
j=1

e−ujz
2
j−1/2


×

 m∏
j=1

z
kj
j−1

 {−√2g(1− u1 − · · · − um−1)}km

×
m−1∏
j=1

{−
√

2guj(−1)ωε(j)}kj
∫
ξ∈R

e−ξ
2/2

×


m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξ)

 dξ

×


m−1∏
j=1
εj=1

(z2
j−1 − z2

j )/2



m−1∏
j=1
εj=2

√
2g(zj−1 − zj)


×∆r3(ε)(1/2− τ)r4(ε)tr[W k1+···+kmA(ε)].

Moreover, it is an element of R[g2,∆2, τ ].

Proof. By Lemmas 4.6–4.8, we may assume that l1 + · · ·+ lm−1,

k1 + · · ·+ km − r2(ε) and r3(ε) are all even. Then, the assertion follows

from
∏m−1
j=1 (−1)lj = 1, il1+···+lm−1 ∈ {±1} and (−∆)r3(ε) = ∆r3(ε).
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Proof of Theorem 4.1. Let us take any m ∈ Z>2, ε ∈ {1, 2, 3, 4}, and

q ∈ 1
2Z, and set

c(m,ε)
q =

∑
(l1,...,lm−1,k1,...,km)∈Z2m−1

>0

l1+···+lm−1+(1/2)(k1+···+km)+m−2−r1(ε)−(1/2)r2(ε)=q

× c(m,ε)
(l1,...,lm−1),(k1,...,km)(4.6)

and

c(m)
q =

∑
ε∈{1,2,3,4}m−1

c(m,ε)
q .(4.7)

By virtue of Lemma 4.7, we have c
(m,ε)
q = 0 unless q ∈ Z. Moreover,

if l1 + · · ·+ lm−1 + 1
2(k1 + · · ·+ km) +m− 2− r1(ε)− 1

2r2(ε)<m− 2, we

have c
(m,ε)
(l1,...,lm−1),(k1,...,km) = 0 with the aid of Lemma 4.9. Thus we obtain

c
(m,ε)
q = 0 if q <m− 2. This completes the proof.

§5. Meromorphic continuations

In this section, we prove Theorem 1.1. Recall that τ is any fixed

real number such that τ > g2 + ∆ as in Section 3. Theorem 1.1(1) is a

consequence of the following theorem.

Theorem 5.1. There exists a sequence {CH,τ (k)}k∈Z>0
of complex

numbers such that

ζH(s; τ) =
1

Γ(s)

{
2

s− 1
+

∞∑
k=1

2g2k

k!

1

s+ k − 1

+

n−2∑
k=0

CH,τ (k)

s+ k
+ h1(s) + h2(s) + Z∞(s)

}
, Re(s)> 1

for any n ∈ Z>2. Here, Z∞(s) is the entire function treated in Lemma 3.2,

h1(s) is a holomorphic function on Re(s)>−n such that h1(s) =

O(1/(Re(s) + n)) on the region Re(s)>−n, and h2(s) is a holomorphic

function on Re(s)>−n/2 such that h2(s) =O(1/(Re(s) + n/2)) on the

region Re(s)>−n/2.

In particular, ζH(s; τ) has a meromorphic continuation to C and

is holomorphic on C− {1}. Furthermore, s= 1 is a simple pole with

Ress=1 ζH(s; τ) = 2.
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Proof. Recall ζH(s; τ) = (1/Γ(s))
∫∞

0 ts−1 TrK(t) dt. Since Z∞(t) =∫∞
1 ts−1 TrK(t) dt is entire by Lemma 3.2, we only have to consider∫ 1
0 t

s−1 TrK(t) dt. As for the first term of (3.2), Lemma 3.4 yields that

1

Γ(s)

∫ 1

0
ts−1 TrK1(t) dt=

1

Γ(s)

(
2

s− 1
+
∞∑
k=1

2g2k

k!

1

s+ k − 1

)

is entire. As for the third term of (3.2), by Lemma 3.7, the integral∫ 1
0 |t

s−1 TrRn+1(t)| dt for Re(s)>−n/2 is majorized by∫ 1

0
tRe(s)−1+n/2 dt=

1

Re(s) + n/2

up to a positive constant, and hence the function h2(s) =∫ 1
0 t

s−1 TrRn+1(t) dt is holomorphic on Re(s)>−n/2. By setting

CH,τ (k) =
k+2∑
m=2

c
(m)
k ,(5.1)

Theorem 4.1 gives us

n∑
m=2

TrKm(t) =

n∑
m=2

n−2∑
q=m−2

c(m)
q tq +O(tn−1)

=
n−2∑
k=0

CH,τ (k)tk +O(tn−1), (t→+0).

Then the integral of the second term of (3.2) is evaluated as∫ 1

0
ts−1

n∑
m=2

TrKm(t) dt =

∫ 1

0
ts−1

n−2∑
k=0

CH,τ (k)tk dt

+

∫ 1

0
ts−1

{
n∑

m=2

TrKm(t)−
n−2∑
k=0

CH,τ (k)tk

}
dt.

As the first term is evaluated as
∑n−2

k=0 (CH,τ (k)/(s+ k)) and the second

term as above is majorized by∫ 1

0
tRe(s)−1+n dt=

1

Re(s) + n

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.62


ZETA FOR QUANTUM RABI MODELS 81

up to a positive constant when Re(s)>−n, the integral

h1(s) =

∫ 1

0
ts−1

{
n∑

m=2

TrKm(t)−
n−2∑
k=0

CH,τ (k)tk

}
dt

is holomorphic on Re(s)>−n. As a consequence, we have the theorem.

By Theorem 5.1, the function ζH(s; τ) is holomorphic at s= 0 for any

τ ∈ R such that τ > g2 + ∆. Thus,
∏∐
λ∈Spec(H)(τ + λ) can be defined for

any τ ∈ C by [22, Theorem 1]. Here is a formula of the zeta regularized

product of Spec(H + τI).

Proposition 5.2. For any n ∈ Z>2 and any real number τ such that

τ > g2 + ∆, we have

∏∐
λ∈Spec(H)

(τ + λ) = exp

(
−2 +

∞∑
k=2

2g2k

k!(k − 1)
+ γ(2g2 + 1− 2τ)

+
n−2∑
k=1

CH,τ (k)

k

)
× eFH,n(0;τ),

where γ =−Γ′(1) is Euler’s constant.

Proof. By using Theorem 1.1(1), a direct computation gives us

d

ds
ζH(s; τ)|s=0 = −2 +

∞∑
k=2

2g2k

k!(k − 1)
+ γ{2g2 + CH,τ (0)}

+
n−2∑
k=1

CH,τ (k)

k
+ FH,n(0; τ).

We shall compute CH,τ (0). By (4.6), (4.7), and (5.1), CH,τ (0) is expressed

as CH,τ (0) = c
(2)
0 =

∑4
ε=1 c

(2,ε)
0 with

c
(2,ε)
0 =

∑
(l,k1,k2)∈Z3

>0

l+(1/2)(k1+k2)−r1(ε)−(1/2)r2(ε)=0

c
(2,ε)
l,(k1,k2).

For ε ∈ {1, 2}, we have c
(2,1)
0 = c

(2,2)
0 = 0 by Lemma 6.1 below. For ε= 3,

Lemma 4.8 yields c
(2,3)
0 = 0. For ε= 4, we have c

(2,4)
0 = 1− 2τ by the proof

of Proposition 5.3 below. Hence, we obtain CH,τ (0) = 1− 2τ .
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5.1 Simple examples

We give an example of ζH(s; τ) in terms of the Hurwitz zeta function

ζ(s; a) =
∑∞

n=0(n+ a)−s for a > 0.

The case ∆ = 0: In the case ∆ = 0, we consider H ′ defined in (2.3) instead

of H. We have H ′ =B − τI, where B is the operator defined in the proof of

Lemma 2.4. Hence we have Spec(H) = Spec(B − τI) = {n− g2 | n ∈ Z>0}
with multiplicity 2 and

ζH(s; τ) = 2
∞∑
n=0

1

(n− g2 + τ)s
= 2ζ(s; τ − g2).

From this, the kth Rabi–Bernoulli polynomial, which is defined by (1.1), is

given by Rk(g, 0; x) =Bk(x− g2) for any k ∈ Z>1, where Bk(x) is the kth

Bernoulli polynomial as in the Introduction.

The case g = 0: Another simple example is the case g = 0. Assume ∆> 0.

In this case, the expression

H ′ =
−∂2

x + x2 − 1

2
I + ∆L

gives us Spec(H) = {n+ ∆ | n ∈ Z>0} ∪ {n−∆ | n ∈ Z>0} with multiplicity

1. As a result, we obtain

ζH(s; τ) =
∞∑
n=0

1

(n+ ∆ + τ)s
+
∞∑
n=0

1

(n−∆ + τ)s

= ζ(s; τ + ∆) + ζ(s; τ −∆)

and Rk(0,∆; x) = 1
2(Bk(x+ ∆) +Bk(x−∆)) for any k ∈ Z>1.

As we see as above, Rk(g,∆; x) is monic and its degree is equal to k as

a polynomial in x when g = 0 or ∆ = 0. We have the following for general

g > 0 and ∆ > 0.

Proposition 5.3. For any k ∈ Z>1, the degree of Rk(g,∆; x) with

respect to x is equal to k. Furthermore, Rk(g,∆; x) is monic as a polynomial

in x.

Proof. By (5.1), it suffices to analyze CH,τ (k) =
∑k+2

m=2 c
(m)
k . With the

aid of (4.6) and (4.7), it suffices to study the term for ε= (4, . . . , 4) ∈
{1, 2, 3, 4}k+1 appearing in c

(k+2)
k . Put 0m−1 = (0, . . . , 0) ∈ Zm−1

>0 and
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4m−1 = (4, . . . , 4) ∈ {1, 2, 3, 4}m−1 for any m ∈ Z>2. By Lemma 4.10, we

easily obtain

c
(k+2,4k+1)
k = c

(k+2,4k+1)
0k+1,0k+2

=

∫
Dk+1

du(1/2− τ)k+1 × 2 =
2

(k + 1)!
(1/2− τ)k+1,

and thus we are done.

5.2 Rationality of coefficients

In this subsection, we shall prove Theorem 1.1(2) by combining (4.6),

(4.7), and (5.1) with the following theorem.

Theorem 5.4. For any m ∈ Z>2, ε ∈ {1, 2, 3, 4}m−1, and (l1, . . . , lm−1,

k1, . . . , km) ∈ Z2m−1
>0 , we have

c
(m,ε)
(l1,...,lm−1),(k1,...,km) ∈Q[g2,∆2, τ ].

We remark that CH,τ (k) ∈ R[g2,∆2, τ ] is obvious from combining (4.6),

(4.7), and (5.1) with Lemma 4.10. The following two lemmas will be used

later in order to prove Theorem 5.4.

Lemma 5.5. For any polynomial P (u1, . . . , um−1, ξ) ∈Q[u1, . . . ,

um−1, ξ], we have∫
ξ∈R

e−ξ
2/2P (u1, . . . , um−1, ξ) dξ ∈

√
2πQ[u1, . . . , um−1].

Proof. By the formula∫
ξ∈R

e−ξ
2/2ξ2n dξ = 2n+1/2

∫ ∞
0

e−xxn−1/2 dx

= 2n+1/2Γ(n+ 1/2) = (2n− 1)!!
√

2π(5.2)

for any n ∈ Z>0, we obtain the desired assertion.

Lemma 5.6. For any polynomial P (u1, . . . , um−1) ∈Q[u1, . . . , um−1],

we have ∫
Dm−1

P (u1, . . . , um−1) dum−1 · · · du1 ∈Q,

where Dm−1 is the subset of Rm−1 defined in Section 4.
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Proof. The assertion follows from the formula∫
Dm−1

m−1∏
j=1

u
aj
j

 dum−1 · · · du1 =

∏m−1
j=1 aj !

(
∑m−1

j=1 aj +m− 1)!
∈Q

for any (a1, . . . , am−1) ∈ Zm−1
>0 (cf. [5, 4.6348]).

Let us take any m ∈ Z>2, ε ∈ {1, 2, 3, 4}m−1, and (l1, . . . , lm−1,

k1, . . . , km) ∈ Z2m−1
>0 . We may assume that l1 + · · ·+ lm−1, k1 + · · ·+ km +

r2(ε), and r3(ε) are all even by Lemmas 4.6–4.8.

We show a refined formula of c
(m,ε)
(l1,...,lm−1),(k1,...,km). Set D1(ε) = δε,1,

D2(ε) = δε,2, and D34(ε) = δε,3 + δε,4 for any ε ∈ {1, 2, 3, 4}, where δa,b is

the Kronecker delta. For our purpose, we calculate the following integral

appearing in the formula of c
(m,ε)
(l1,...,lm−1),(k1,...,km) in Lemma 4.10:

∫
(z0,...,zm−1)∈Rm

m−1∏
j=0

dzj

 e−(1−u1−···−um−1)z2m−1/2zkmm−1

×
m−1∏
j=1

(−1)lj∂
lj
zj−1δ(zj−1 − zj)

m−1∏
j=1

e−ujz
2
j−1/2z

kj
j−1

× {D1(εj)(z
2
j−1 − z2

j )/2 +D2(εj)(zj−1 − zj) +D34(εj)}.(5.3)

First, let us consider the z0-integral. By a direct computation, we have∫
z0∈R

dz0δ(z0 − z1)∂l1z0

× [e−u1z
2
0/2zk10 {D1(ε1)(z2

0 − z2
1)/2 +D2(ε1)(z0 − z1) +D34(ε1)}]

=

∫
z0∈R

δ(z0 − z1)e−u1z
2
0/2P

(ε1)
l1,k1

(u1; z0) dz0 = e−u1z
2
1/2P

(ε1)
l1,k1

(u1; z1),

where we set

P
(ε1)
l1,k1

(u1; z1)

=

l1∑
a=0

(
l1
a

)
(−1)l1−a(u1/2)(l1−a)/2Hl1−a(

√
u1/2z0)

×
[

k1!

(k1 − a)!
zk1−a0 {D1(ε1)(z2

0 − z2
1)/2 +D2(ε1)(z0 − z1) +D34(ε1)}
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+

(
a

1

)
k1!

(k1 − a+ 1)!
zk1−a+1

0 {D1(ε1)z0 +D2(ε1)}

+

(
a

2

)
k1!

(k − a+ 2)!
zk1−a+2

0 D1(ε1)

] ∣∣∣∣
z0=z1

.(5.4)

Then, P
(ε1)
l1,k1

(u1; z1) ∈Q[u1, z1] follows easily. Thus, (5.3) is evaluated as

∫
(z1,...,zm−1)∈Rm−1

m−1∏
j=1

dzj

×


m−1∏
j=2

(−1)lj∂
lj
zj−1δ(zj−1 − zj)

 e−(1−u1−···−um−1)z2m−1/2zkmm−1

×

m−1∏
j=2

e−ujz
2
j−1/2z

kj
j−1 {D1(εj)(z

2
j−1 − z2

j )/2

+ D2(εj)(zj−1 − zj) +D34(εj)}

 e−u1z21/2P ε1l1,k1(u1; z1).(5.5)

Next let us consider the z1-integral∫
z1∈R

δ(z2 − z1)∂l2z1 [e−(u1+u2)z21/2zk21

× {D1(ε2)(z2
1 − z2

2)/2 +D2(ε2)(z1 − z2) +D34(ε2)}P (ε1)
l1,k1

(u1; z1)] dz1.

We set

P
(ε1,ε2)
(l1,l2,)(k1,k2)(u1, u2; z2)

= e(u1+u2)z21/2∂l2z1 [e−(u1+u2)z21/2zk21 {D1(ε2)(z2
1 − z2

2)/2

+D2(ε2)(z1 − z2) +D34(ε2)} P (ε1)
l1,k1

(u1; z1)] |z1=z2 .(5.6)

Then, P
(ε1,ε2)
(l1,l2,)(k1,k2)(u1, u2; z2) is contained in Q[u1, u2, z2]. Thus (5.5) is

transformed to∫
(z2,...,zm−1)∈Rm−2

m−1∏
j=2

dzj


m−1∏
j=3

∂
lj
zj−1δ(zj−1 − zj)


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× e−(1−u1−···−um−1)z2m−1/2zkmm−1

×

m−1∏
j=3

e−ujz
2
j−1/2z

kj
j−1 {D1(εj)(z

2
j−1 − z2

j )/2

+ D2(εj)(zj−1 − zj) +D34(εj)}


× e−(u1+u2)z22/2P

(ε1,ε2)
(l1,l2),(k1,k2)(u1, u2; z2).(5.7)

In general, we define a polynomial P
(ε1,...,εj)

(l1,...,lj),(k1,...,kj)
(u1, . . . , uj ; zj) ∈

Q[u1, . . . , uj , zj ] by (5.4) and the recurrence relation

P
(ε1,...,εj)

(l1,...,lj),(k1,...,kj)
(u1, . . . , uj ; zj)

=
{
e(u1+···+uj)z2j−1/2(∂

lj−1
zj−1)

[
e−(u1+···+uj)z2j−1/2z

kj
j−1

× (D1(εj)(z
2
j−1 − z2

j )/2 +D2(εj)(zj−1 − zj) +D34(ε2))

× P
(ε1,...,εj−1)

(l1,...,lj−1),(k1,...,kj−1)(u1, . . . , uj−1; zj−1)
]} ∣∣∣∣

zj−1=zj

.(5.8)

In a similar fashion to computations for (5.5) and (5.7), integral (5.3) can

be described as∫
zm−1∈R

e−(1−u1−···−um−1)z2m−1/2zkmm−1

× e−(u1+···+um−1)z2m−1/2P
(ε)
(l1,...,lm−1),(k1,...,km−1)

× (u1, . . . , um−1; zm−1) dzm−1

=

∫
z∈R

e−z
2/2zkmP

(ε)
(l1,...,lm−1),(k1,...,km−1)(u1, . . . , um−1; z) dz.(5.9)

Hence we obtain the following refined expression of Lemma 4.10.

Lemma 5.7. For any m ∈ Z>2, ε ∈ {1, 2, 3, 4}m−1, and (l1, . . . , lm−1,

k1, . . . , km) ∈ Z2m−1
>0 , we have

c
(m,ε)
(l1,...,lm−1),(k1,...,km)

=
il1+···+lm−1

2πl1! · · · lm−1!k1! · · · km!
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×
∫
Dm−1

du(1− u1 − · · · − um−1)km

m−1∏
j=1

u
kj
j


×
∫
z∈R

e−z
2/2zkmP

(ε)
(l1,...,lm−1),(k1,...,km−1)(u1, . . . , um−1; z) dz

×
∫
ξ∈R

e−ξ
2/2


m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξ)

 dξ

×


m−1∏
j=1

(−1)ωε(j)kj

 (−1)k1+···+km

× (
√

2g)k1+···+km+r2(ε)∆r3(ε)(1/2− τ)r4(ε)tr[W k1+···+kmA(ε)].

Here P
(ε)
(l1,...,lm−1),(k1,...,km−1)(u1, . . . , um−1; z) ∈Q[u1, . . . , um−1, z] is the

polynomial determined by (5.4) and (5.8).

Proof of Theorem 5.4. It is obvious that

m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξ) ∈Q[u1, . . . , um−1, ξ]

from the fact that Hlj is an even (resp. odd) function if lj is even

(resp. odd). Combining this with Lemma 5.5, there exists a polynomial

Q1(u1, . . . , um−1) such that∫
ξ∈R

e−ξ
2/2

m−1∏
j=1

(uj/2)lj/2Hlj (
√
uj/2ξ) dξ

=
√

2πQ1(u1, . . . , um−1) ∈
√

2πQ[u1, . . . , um−1].

Thus, by Lemma 5.7, the coefficient c
(m,ε)
(l1,...,lm−1),(k1,...,km) is contained in

(2π)−1

∫
Dm−1

du(1− u1 − · · · − um−1)km

m−1∏
j=1

u
kj
j


×
∫
z∈R

e−z
2/2zkmP

(ε)
(l1,...,lm−1),(k1,...,km−1)(u1, . . . , um−1; z) dz

×
√

2πQ1(u1, . . . , um−1)× (
√

2g)k1+···+km+r2(ε)∆r3(ε)(1/2− τ)r4(ε)Q.
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Moreover, by Lemma 5.5, there exists a polynomial Q2(u1, . . . , um−1) such

that ∫
z∈R

e−z
2/2zkmP

(ε)
(l1,...,lm−1),(k1,...,km−1)(u1, . . . , um−1; z) dz

=
√

2πQ2(u1, . . . , um−1) ∈
√

2πQ[u1, . . . , um−1].

Finally, c
(m,ε)
(l1,...,lm−1),(k1,...,km) is contained in

(2π)−1
√

2π
2
∫
Dm−1

(1− u1 − · · · − um−1)km

m−1∏
j=1

u
kj
j


×


2∏
j=1

Qj(u1, . . . , um−1)

 dum−1 · · · du1

× (
√

2g)k1+···+km+r2(ε)∆r3(ε)(1/2− τ)r4(ε)Q

⊂ (
√

2g)k1+···+km+r2(ε)∆r3(ε)(1/2− τ)r4(ε)Q

by virtue of Lemma 5.6. Consequently, we obtain Theorem 5.4.

§6. Examples of Rabi–Bernoulli polynomials

It seems difficult to give a simple formula of Rk(g,∆; x) for a gen-

eral k ∈ Z>1, although we can explicitly compute it for any fixed k by

definition. In this section, we give simple formulas of Rk(g,∆; x) for

k ∈ {1, 2, 3}. By Proposition 5.2, the first Rabi–Bernoulli polynomial is

given by R1(g,∆; x) = x− 1/2− g2 =B1(x− g2).

For preparation, we give another vanishing result on TrK2,ε(t) in addition

to Lemmas 4.6–4.9. By Lemma 4.8, we have TrK2,3(t) = 0 for ε= 3, that

is, c
(2,3)
q = 0 for all q ∈ Z>0. Such a vanishing is still true for ε ∈ {1, 2}.

Lemma 6.1. We have TrK2,1(t) = 0 and TrK2,2(t) = 0. In particu-

lar, we have c
(2,1)
q = c

(2,2)
q = 0 for any q ∈ Z>0. In particular, TrK2(t) =

TrK2,4(t) holds.

Proof. We give a proof only in the case ε= 1. The case ε= 2 is proved

in a similar fashion. By using Lemmas 3.4 and 3.5, the trace of K2,1(t) is

evaluated as
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TrK2,1(t) =

∫ t

0
du

∫
(z0,z1)∈R2

× tr

[
1√

2π(t− u)
e−(z0−z1)2/2(t−u)−(t−u)z21/2 exp(−

√
2g(t− u)z1W )

× 1√
2πu

z2
0 − z2

1

2
e−(z1−z0)2/2u−uz20/2 exp(−

√
2guz0W )

]
dz0 dz1.

By the change of variables (z0, z1) 7→ (z1, z0) and u 7→ t− u, we obtain

TrK2,1(t) =− TrK2,1(t). This completes the proof.

A simple formula for k = 2 is given by a direct computation as follows.

Proposition 6.2. We have

R2(g,∆; x) = x2 − (1 + 2g2)x+ 1/6 + g2 + g4 + ∆2 =B2(x− g2) + ∆2.

Proof. We shall compute CH,τ (1) = c
(2)
1 + c

(3)
1 . First, we observe the first

term c
(2)
1 =

∑4
ε=1 c

(2,ε)
1 . By (4.7), we have

c
(2,ε)
1 =

∑
(l1,k1,k2)∈Z3

>0

l1+(1/2)(k1+k2)−r1(ε)−(1/2)r2(ε)=1

c
(2,ε)
l1,(k1,k2).

In the case of ε ∈ {1, 2}, both values c
(2,1)
1 and c

(2,2)
1 vanish by Lemma 6.1.

For ε= 3, we have c
(2,3)
l1,(k1,k2) = 0 by Lemma 4.8. For ε= 4, the integer l1 in

c
(2,4)
l1,(k1,k2) satisfies l1 ∈ {0, 1}. In the case of l1 = 1, the value c

(2,4)
1,(k1,k2) vanishes

by Lemma 4.6. When l1 = 0, by noting k1 + k2 = 2, we have

c
(2,4)
0,(k1,k2) =

1

2πk1!k2!

∫ 1

0
du

∫
z0∈R

e−z
2
0/2z2

0 dz0{−
√

2g(1− u)}k2(−
√

2gu)k1

×
∫
ξ∈R

e−ξ
2/2 dξ(1/2− τ)tr(I)

=
1

k1!k2!
B(k1 + 1, k2 + 1)2g2(1− 2τ)

=
1

(k1 + k2 + 1)!
2g2(1− 2τ) =

1

3
g2(1− 2τ),

which leads us to c
(2,4)
1 = c

(2,4)
0,(0,2) + c

(2,4)
0,(1,1) + c

(2,4)
0,(2,0) = g2(1− 2τ). By the

argument as above, we finally obtain

c
(2)
1 = g2(1− 2τ).(6.1)
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Next let us consider the case m= 3. In this case, with the aid of Lemmas 4.6–

4.8 and (4.7), only the following cases survive among all c
(3,ε)
(l1,l2),(k1,k2,k3) such

that l1 + l2 + k1+k2+k3
2 − r1(ε)− 1

2r2(ε) = 0:

(1) ε ∈ {(3, 3), (4, 4)} and l1 = l2 = k1 = k2 = k3 = 0.

(2) ε= (1, 1), l1 = l2 = 1 and k1 = k2 = k3 = 0.

In case (1), the coefficient involved is evaluated as

c
(3,ε)
(0,0),(0,0,0) = (2π)−1

∫ 1

0
du1

∫ 1−u1

0
du2

∫
z0∈R

e−z
2
0/2

×
∫
ξ∈R

e−ξ
2/2 dξ∆r3(ε)(1/2− τ)r4(ε)tr(I)

= ∆r3(ε)(1/2− τ)r4(ε).

In case (2), we have P
3,(1,1)
(1,1),(0,0)(u1, u2; z) = z2 by (5.4) and (5.6). Thus,

Lemma 5.7 yields

c
(3,(1,1))
(1,1),(0,0,0) = (2π)−1i2

∫ 1

0
du1

∫ 1−u1

0
du2

∫
z∈R

e−z
2/2z2 dz

×
∫
ξ∈R

e−ξ
2/2u1u2ξ

2 dξtr(I) =−1/12

with the aid of (5.2). Hence,

c
(3)
1 = ∆2 + (1/2− τ)2 − 1/12(6.2)

holds. As a consequence, we obtain the desired assertion by (6.1) and (6.2).

Next let us compute the third Rabi–Bernoulli polynomial R3(g,∆; x).

By definition, R3(g,∆; τ) =−g6 − 3CH,τ (2) and CH,τ (2) = c
(2)
2 + c

(3)
2 + c

(4)
2

hold with

c
(m)
2 =

∑
ε∈{1,2,3,4}m−1

c
(m,ε)
2

and

c
(m,ε)
2 =

∑
l1,...,lm−1,k1,...,km∈Z>0

l1+···+lm−1+(k1+···+km)/2+m−2−r1(ε)−(1/2)r2(ε)=2

c
(m,ε)
(l1,...,lm−1),(k1,...,km).
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Lemma 6.3. We have

c
(2)
2 =

(
g4 − 1

30

) (
1

2
− τ
)
.

Proof. By Lemmas 4.8 and 6.1, we easily have c
(2,ε)
2 = 0 for any

ε ∈ {1, 2, 3}. When ε= 4, by Lemma 4.6, (l1, k1, k2) in c
(2,4)
l1,(k1,k2) 6= 0 satisfies

l1 ∈ {0, 2} and k1 + k2 = 4− 2l1. If l1 = 0 and k1 + k2 = 4, we have

c
(2,4)
0,(k1,k2) =

1

2πk1!k2!

∫ 1

0
du(1− u)k2uk1

∫
z∈R

e−z
2/2z4 dz

×
∫
ξ∈R

e−ξ
2/2 dξ(

√
2g)4(−1)4(1/2− τ)tr(I)

=
g4

5

(
1

2
− τ
)
.

If l1 = 2 and k1 = k2 = 0, we have

c
(2,4)
2,(0,0) =

i2

2π2!

∫ 1

0
du

∫
z∈R

e−z
2/2P

(4)
2,0 (u; z) dz

×
∫
ξ∈R

e−ξ
2/2(u/2)H2(

√
u/2ξ) dξ(1/2− τ)tr(I)

= − 1

30

(
1

2
− τ
)
,

where we use P
(4)
2,0 (u; z) = (u/2)H2(

√
u/2z) = u(uz2 − 1). Hence we obtain

c
(2,4)
2 =

∑
k1,k2∈Z>0

k1+k2=4

g4

5

(
1

2
− τ
)
− 1

30

(
1

2
− τ
)

=

(
g4 − 1

30

) (
1

2
− τ
)
.

Lemma 6.4. We have

c
(3)
2 =− 1

12
g2 + g2

(
1

2
− τ
)2

+
1

3
g2∆2.

Proof. We give a proof by computing c
(3,ε)
2 for all ε. By Lemma 4.8, we

only have to consider the cases ε= (1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4),

(3, 3), (4, 1), (4, 2), (4, 4). We shall give expressions of all c
(3,ε)
(l1,l2),(k1,k2,k3)

such that l1 + l2 + k1+k2+k3
2 + 1− r1(ε)− 1

2r2(ε) = 2 in the following way.
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For ε= (1, 1), we may assume l1 = l2 = 1 and k1 + k2 + k3 = 2 by Lem-

mas 4.6 and 4.9, and thus we compute

c
(3,(1,1))
(1,1),(k1,k2,k3)

=
i2

2πk1!k2!k3!

∫
D2

du(1− u1 − u2)k3uk11 u
k2
2

∫
z∈R

e−z
2/2z4 dz

×
∫
ξ∈R

e−ξ
2
u1u2ξ

2 dξ(
√

2g)2tr(I)

=−(k1 + 1)(k2 + 1)

60
g2.

Hence we have

c
(3,(1,1))
2 =

∑
k1,k2,k3∈Z>0

k1+k2+k3=2

−(k1 + 1)(k2 + 1)

60
g2 =−1

4
g2.

For ε= (1, 2), the numbers (l1, l2) and (k1, k2, k3) satisfy l1 = l2 = 1 and

k1 + k2 + k3 = 1 by Lemmas 4.6 and 4.9. Then, we have

c
(3,(1,2))
(1,1),(k1,k2,k3)

= (2π)−1i2
∫
D2

du(1− u1 − u2)k3uk11 u
k2
2

∫
z∈R

e−z
2/2z2 dz

×
∫
ξ∈R

e−ξ
2
u1u2ξ

2 dξ(−1)1(
√

2g)2tr(I)

=
(k1 + 1)(k2 + 1)

30
g2

with the aid of P
(2,1)
(1,1),(k1,k2)(u1, u2; z2) = zk1+k2+1

2 . Hence we obtain

c
(3,(1,2))
2 =

∑
k1,k2,k3∈Z>0

k1+k2+k3=1

(k1 + 1)(k2 + 1)

30
g2 =

1

6
g2.

For ε= (1, 4), we may assume (l1, l2) and (k1, k2, k3) satisfy l1 = l2 = 1 and

(k1, k2, k3) = 03 by Lemmas 4.6 and 4.9. By noting P
(1,4)
(1,1),02

(u1, u2; z2) =

1− (u1 + u2)z2
2 and P

(1,4)
(2,0),02

(u1, u2; z2) = 1− 2u1z
2
2 , we have
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c
(3,(1,4))
(1,1),03

=
i2

2π

∫
D2

du

∫
z∈R

e−z
2/2(1− u1z

2 − u2z
2) dz

×
∫
ξ∈R

e−ξ
2
u1u2ξ

2 dξ(1/2− τ)tr(I) =− 1

60

(
1

2
− τ
)

and

c
(3,(1,4))
(2,0),03

=
i2

2π2!

∫
D2

du

∫
z∈R

e−z
2/2(1− 2u1z

2) dz

×
∫
ξ∈R

e−ξ
2
u1u2ξ

2 dξ(1/2− τ)tr(I) =
1

60

(
1

2
− τ
)
.

Hence we obtain c
(3,(1,4))
2 = 0.

For ε= (2, 1), we may assume l1 = l2 = 1 and k1 + k2 + k3 = 1 by Lem-

mas 4.6 and 4.9. By a direct computation, we have

c
(3,(2,1))
(1,1),(k1,k2,k3) = (2π)−1i2

∫
D2

du(1− u1 − u2)k3uk11 u
k2
2

∫
z∈R

e−z
2/2z2 dz

×
∫
ξ∈R

e−ξ
2
u1u2ξ

2 dξ(−1)(
√

2g)2tr(I)

=
(k1 + 1)(k2 + 1)

30
g2,

and hence we obtain

c
3,(2,1)
2 =

∑
k1,k2,k3∈Z>0

k1+k2+k3=1

(k1 + 1)(k2 + 1)

30
g2 =

1

6
g2.

For ε= (2, 2), we may assume l1 = l2 = 1 and k1 = k2 = k3 = 0 by Lem-

mas 4.6 and 4.9. Noting P
(2,2)
(1,1),(0,0)(u1, u2; z) = 1, we obtain

c
(3,(2,2))
(1,1),03

=
i2

2π

∫
D2

du

∫
z∈R

e−z
2/2 dz

∫
ξ∈R

e−ξ
2/2u1u2ξ

2 dξ(
√

2g)2tr(I)

= − 1

6
g2.

For ε= (2, 4), all c
(3,(2,4))
(l1,l2),(k1,k2,k3) concerned vanish by Lemmas 4.6 and 4.9.
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For ε= (3, 3), we may assume l1 = l2 = 0 and k1 + k2 + k3 = 2. Then we

have

c
(3,(3,3))
(0,0),(k1,k2,k3) =

1

2πk1!k2!k3!

∫
D2

du(1− u1 − u2)k3uk11 u
k2
2

∫
z∈R

e−z
2/2z2 dz

×
∫
ξ∈R

e−ξ
2/2 dξ


2∏
j=1

(−1)ω(3,3)(j)kj

 (
√

2g)2∆2tr(I)

=
1

6
g2∆2(−1)k2 ,

and hence we obtain

c
(3,(3,3))
2 =

∑
k1,k2,k3∈Z>0

k1+k2+k3=2

1

6
(−1)k2g2∆2 =

1

3
g2∆2.

For ε= (4, 1), we may assume l1 + l2 = 2 and (k1, k2, k3) = 03 by

Lemma 4.6. Furthermore, we may assume l2 6= 0 by Lemma 4.9. Then, a

direct computation gives us

c
(3,(4,1))
(1,1),03

=
i2

2π

∫
D2

du

∫
z∈R

e−z
2/2(−u1z

2) dz

×
∫
ξ∈R

e−ξ
2/2u1u2ξ

2 dξ(1/2− τ)tr(I) =
1

30
(1/2− τ)

and

c
(3,(4,1))
(0,2),03

=
i2

2π2!

∫
D2

du

∫
z∈R

e−z
2/2{1− 2(u1 + u2)z2} dz

×
∫
ξ∈R

(u2/2)H2(
√
u2/2ξ) dξ(1/2− τ)tr(I)

= − 1

30
(1/2− τ),

and hence we obtain c
(3,(4,1))
2 = 0. For ε= (4, 2), all c

(3,(4,2))
(l1,l2),(k1,k2,k3) concerned

vanish in the same way as in the case ε= (2, 4). For ε= (4, 4), we may

assume l1 = l2 = 0 and k1 + k2 + k3 = 2 by Lemma 4.6, and a direct compu-

tation gives us
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c
(3,(4,4))
(0,0),(k1,k2,k3)

=
1

2πk1!k2!k3!

∫
D2

du(1− u1 − u2)k3uk11 u
k2
2

∫
z∈R

e−z
2/2z2 dz

×
∫
ξ∈R

e−ξ
2/2 dξ(

√
2g)2(1/2− τ)2tr(I)

=
1

6
g2

(
1

2
− τ
)2

.

Thus we have c
(3,(4,4))
2 = g2(1/2− τ)2.

Finally, by the consideration as above, we obtain the formula as desired.

Lemma 6.5. We have

c
(4)
2 =

1

3

(
1

2
− τ
)3

+

(
∆2 − 1

20

) (
1

2
− τ
)
.

Proof. Consider c
(4,ε)
(l1,l2,l3),(k1,k2,k3,k4). We may assume r1(ε) + r2(ε) = 0,

by which ε ∈ {3, 4}3 holds, and also that r3(ε) is even by Lemma 4.8. A

direct computation gives us

c
(4,ε)
03,04

=
1

2π

∫
D3

du

∫
z∈R

e−z
2/2 dz

∫
ξ∈R

e−ξ
2/2 dξ∆r3(ε)(1/2− τ)r4(ε)trA(ε)

=
1

3
∆r3(ε)

(
1

2
− τ
)r4(ε)

.

Thus we obtain c
(4,(4,4,4))
03,04

= 1
3(1

2 − τ)3 and c
(4,(4,3,3))
03,04

= c
(4,(3,4,3))
03,04

= c
(4,(3,3,4))
03,04

= 1
3∆2(1

2 − τ). If r1(ε) + r2(ε) ∈ {1, 3}, then all c
(4,ε)
(l1,l2,l3),(k1,k2,k3,k4) vanish

by Lemmas 4.6 and 4.9. If r1(ε) + r2(ε) = 2, the only case r1(ε) = 2,

r2(ε) = 0 survives, and in such a case, by Lemmas 4.6 and 4.9, it is suffi-

cient to consider the only case ((l1, l2, l3), ε) ∈ {((1, 1, 0), (1, 1, 4)), ((1, 0, 1),

(1, 4, 1)), ((0, 1, 1), (4, 1, 1))} and (k1, k2, k3, k4) = 04. A direct computation

gives us

c
(4,(1,1,4))
(1,1,0),04

=
i2

2π

∫
D3

du

∫
z∈R

e−z
2/2z2 dz

∫
ξ∈R

e−ξ
2/2u1u2ξ

2 dξ(1/2− τ)tr(I)

= − 1

60

(
1

2
− τ
)
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with the aid of P
(1,1,4)
(1,1,0),03

(u1, u2, u3; z) = z2, and in a similar fashion, we

obtain c
(4,(1,4,1))
(1,0,1),04

= c
(4,(4,1,1))
(0,1,1),04

=− 1
60(1

2 − τ). Finally, we have the formula as

desired.

Proposition 6.6. We have

R3(g,∆; x) = x3 −
(

3g2 +
3

2

)
x2 +

(
3g4 + 3g2 + 3∆2 +

1

2

)
x− g6

− 3

2
g4 − 1

2
g2 − 3

2
∆2 − g2∆2

= B3(x− g2) + 3∆2B1(x− g2) + 2g2∆2.

Proof. It follows immediately from Lemmas 6.3–6.5.

Acknowledgments. The author would like to thank Professor Masato

Wakayama for giving him the interest in spectral zeta functions and the

quantum Rabi models, and a lot of useful comments and suggestions. He

would also like to thank Professor Kazufumi Kimoto for fruitful discussion

and for informing him about papers [11] and [14], and preprints [10] and [15].

Thanks are also due to Professor Yoshinori Yamasaki for useful comments

and careful reading of the earlier draft. The author would like to thank

Cid Reyes-Bustos for pointing out grammatical errors and Professor Fumio

Hiroshima for useful discussion.

References

[1] J. Aramaki, Complex powers of vector valued operators and their application to
asymptotic behavior of eigenvalues, J. Funct. Anal. 87 (1989), 294–320.

[2] D. Braak, Integrability of the Rabi model, Phys. Rev. Lett. 107 (2011),
100401–100404.

[3] D. Braak, “Analytic solutions of basic models in quantum optics”, in Applications
+ Practical Conceptualization + Mathematics = fruitful Innovation - Proceedings of
the Forum of Mathematics for Industry 2014, Mathematics for Industry 11 (eds. R.
Anderssen et al.) Springer, 2015, 75–92.

[4] R. Courant and D. Hilbert, Methods of Mathematical Physics, Partial Differential
Equations II, Interscience, New York, 1962.

[5] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 7th ed.,
Academic Press, Inc., 2007.
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[10] K. Kimoto, Higher Apéry-like numbers arising from special values of the spectral zeta
function for the non-commutative harmonic oscillator, preprint, 2009, https://arxiv
.org/pdf/0901.0658v2.pdf.

[11] K. Kimoto, “Arithmetics derived from the non-commutative harmonic oscillator”, in
Casimir Force, Casimir Operators and the Riemann Hypothesis, (eds. G. van Dijk
and M. Wakayama) de Gruyter, 2010, 199–210.
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