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SPECTRAL ZETA FUNCTIONS FOR THE QUANTUM
RABI MODELS

SHINGO SUGIYAMA

Abstract. We introduce the Hurwitz-type spectral zeta functions for the
quantum Rabi models, and give their meromorphic continuation to the whole
complex plane with only one simple pole at s = 1. As an application, we give
the Weyl law for the quantum Rabi models. As a byproduct, we also give a
rationality of Rabi—Bernoulli polynomials introduced in this paper.

81. Introduction

The spectrum of a Hamiltonian has been studied in both physics and
mathematics, especially in spectral theory. One of the methods to do so
is to make use of spectral zeta functions. For a C-Hilbert space V and a
densely defined linear operator A:V — V| the multiset of all eigenvalues
of A in C is denoted by Spec(A). If Spec(A) is discrete, the spectral zeta
function of A is defined as

ORI S

A€Spec(A)

for s € C if it makes sense. For example, it is well known that, for the
harmonic oscillator h = (-2 + 2%) densely defined in L%*(R), the set
Spec(h) is given by {n+1/2|n € Z>¢} with multiplicity 1. From this, the
spectral zeta function of A is of the form

6(5) =3 (g = 2 066

where ((s) denotes the Riemann zeta function. This defining series is
absolutely convergent for Re(s) > 1, and has a meromorphic continua-
tion to the whole s-plane. Furthermore, the only pole s=1 of (x(s) is
simple, and (,(—2n) =0 holds for all nonnegative integers n. The points
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0,—2, —4, —6, ... are called trivial zeros of (;(s). The spectral zeta function
Ca(s) for an operator A encodes information on Spec(A) in its analytic
properties. For example, as seen in applications to the Weyl law for A, some
pole of (4(s) with real part maximal is related to an asymptotic behavior
of the spectral counting function of A:

NA(T)=#{ € Spec(A) |A<T}, T>0

(cf. [1], [18, Section 6.4] and [29, Section 14]). In a quite general setting,
Robert [27] studied spectral zeta functions for pseudodifferential operators
in R™, and later his result was generalized by Aramaki [1] to some infinite-
dimensional situations. As a remarkable example of spectral zeta functions of
matrix-valued pseudodifferential operators, we should mention that Ichinose
and Wakayama [8] investigated very quantitatively the spectral zeta function
(Q(a.5 (8) of the noncommutative harmonic oscillator

—02+22 [a 0

0 6]4-(338354-1/2) [(1) _01]

densely defined in L?(R) ®c C? with a >0 and 3 > 0 such that a8 > 1. In
[8], they gave a meromorphic continuation of (g, , (s) to the whole s-plane
and established a formula of (g, , (s), which includes information on its
poles and trivial zeros. By the formula, <Q<a, ﬁ)(s) has the only one pole
s =1, which is simple, and the following asymptotic formula holds:

a—+p
NQ s (T) ~Ress=1 (g, 4, (8)] = ———==T, (I = 0).

aBlaB —1)
Later, the formula in [8, Main theorem| was extended by Parmeggiani [18]
to the case where Q(q g) is replaced with a general globally elliptic N x N
self-adjoint regular partial differential system with polynomial coefficients
(PPDSs) in R™ of order 2 (cf. [18, Theorem 7.2.1]). For more details for
Q(a,3), see [19].

In this paper, we explore fine analysis of the Hurwitz-type spectral zeta
function for the quantum Rabi model with Hamiltonian H = Hgapi, and
give a meromorphic continuation to C and an asymptotic behavior of
spectral counting function Np(T') of H. Here, the quantum Rabi model
is a model describing an interaction of light and matter of a two-level atom
coupled to a single quantized photon of the electromagnetic field (cf. [3]).
The Hamiltonian for the quantum Rabi model, which is called the Rabi

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

54 S. SUGIYAMA

Hamiltonian, is given by
H = Hyapi = hwa'a + Ao, + hgo(al + a)

densely defined in L?(R) ®c C2. Here £ is the Dirac constant, a and a' are
the annihilation and creation operators for a Bosonic mode of frequency
w > 0, respectively, the symbols o, o, and o, are the Pauli matrices for
the two-level system, 2A > 0 is the difference of the two-level energies, and
g > 0 is the coupling constant for atom and photon. In [23] and [24], Rabi
introduced originally a semiclassical model, and Jaynes and Cummings [9]
fully quantized the Rabi model as H. It is known that every A € Spec(H)
is real and one of the three forms:

(1) A =axF — g% with multiplicity 1 (nondegenerate), where {x;}}>°, and
{z;; }°24, which are contained in C — Zx¢, are the zeros of G4 (x) and
of G_(x), respectively;

(2) A=n — g? for some n € Z>o with multiplicity 1 (nondegenerate);

(3) A=n — g? for some n € Z>; with multiplicity 2 (doubly degenerate);

(cf. [2, 3, 16, 17]). Here G4(x) is a meromorphic function with at most
simple poles at all n € Z>(, which Braak [2] gave as power series satis-
fying Spec(H) —{n — ¢* [n € Zzo} = {y — ¢° |y € R, G1(y)G-(y) =0} by
explicitly describing recurrence equations for the coefficients of G.i(x).
The eigenvalues in case (1) are called the regular spectrum, and those in
cases (2) and (3) are called the exceptional spectrum. We should mention
that Parmeggiani and Wakayama in [20] and [21] described a part of the
spectrum of the noncommutative harmonic oscillators Qo5 with af > 1,
which is similar to Braak’s work recalled as above.

Several mathematicians have studied the Rabi Hamiltonian H and
contributed theoretically to the field of quantum optics. As recent works,
Hirokawa and Hiroshima [7] proved that the ground state energy for H is
nondegenerate (i.e., the smallest eigenvalue of H has multiplicity 1), and
that the ground state energy for H has no crossing for all g and A. By a
representation theoretic approach, Wakayama and Yamasaki [33] captured
the doubly degenerate exceptional spectrum of H via finite-dimensional
representations of sly(R). Furthermore, Wakayama [32] pioneered a new
relation between the noncommutative harmonic oscillator (), g) and the
Rabi Hamiltonian H, through a confluence process by Heun’s picture.
Nevertheless it seems difficult to capture finer properties of the spectrum
of H.
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1.1 Main results
In what follows, we consider the Hurwitz-type spectral zeta function of H

(i) = Crant ()= Y

s
A€Spec(H) ()\ + T)

for 7 € C. Throughout this paper, we normalize H so that A = w = 1 without
loss of generality and both g and A are supposed to be arbitrary nonnegative
real numbers. For the mathematical definition of H, see Section 2.2. Then,
the defining series converges absolutely for Re(s) > 1 (see Proposition 3.1).
We give its meromorphic continuation as follows by using the method of the
parametrix of the heat equation investigated in [8].

THEOREM 1.1. For any g >0, A >0, and 7 €R such that T > g*> + A,
we have the following.

(1) There exists an explicitly computable sequence {Cp (k) }rezs, of com-
plex numbers such that, for any n > 2,

[e.9]

1 2 2¢%F 1
CH(S’T)_F(S){3—1+; K s+k—1

n—2
—i-ZC’H’T(k)-|-Z*—'1r1(,n({s’;7-)}7 Re(s)>1,

s+ k

where Fyy,(s;T) is a holomorphic function on Re(s) > —n/2. In par-
ticular, Cg(s; T) has a meromorphic continuation to C. Moreover, it is
holomorphic on C except for the only one simple pole s =1 with the
residue Ress—1 Cp(s; 1) = 2.

(2) We have Cp (k) € Q[g?, A2, 7] for any k € Z>y.

Theorem 1.1(1) solves Wakayama’s conjecture on a meromorphic contin-
uation of (g (s; 7) (see [31, Section 3]), and is regarded as an analogue of [18,
Theorem 7.2.1] and [8, Main theorem]. We remark that [18, Theorem 7.1.1],
which is a special case of [27], cannot be applied to the Rabi Hamiltonian
H since H is not classical in the sense of [18, Definition 3.2.19] although the
noncommutative harmonic oscillator (), g) is classical. By a general result
[27, Théoremes (6.3) et (6.4)] by Robert, we can obtain a meromorphicity of
Cr(s; 7) and its poles are contained in {1} U{1/2 —j|j € Z>o}. However,
Robert’s method by the parametrix of the resolvent does not seem to work
well in order to eliminate s =1/2 — j with j € Z>¢ from the possible poles.
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As for Theorem 1.1(2), we introduce a generalization of Bernoulli
polynomials as follows. By our proof of Theorem 1.1(1), we obtain that
a polynomial Ry(g, A;x) € Clg, A, z] for every k € Z>1 can be defined by
the relation

B )

(1.1)

Then, Theorem 1.1(2) implies that Ry(g, A; ) € Q[g?, A2, z]. If g= A =0,
the polynomial Ry(0,0; x) coincides with By(x) for every k € Z1, where
By(z) is the kth Bernoulli polynomial defined by

te®! :i By ()
et —1 prt k! ’

Thus we call Ri(g,A;z) the kth Rabi-Bernoulli polynomial. As in the
case of By(zx), the polynomial Ry(g, A; x) is monic, all the coefficients of
Ri(g, A; x) are rational, and its degree with respect to = equals exactly k
(see Proposition 5.3). Although we can compute explicitly Rabi-Bernoulli
polynomials by definition and integration, it seems difficult to give simple
formulas of them. We might expect some number theoretic properties of
quantum Rabi models, as Kimoto and Wakayama extracted from non-
commutative harmonic oscillators Q4 gy via (higher) Apéry-like numbers’
encoded in special values of (g, , (s) (cf. [10-15]).

Braak in [2] conjectured that the interval [n — g%, n + 1 — g?] for every
n € Zxo contains at most two eigenvalues of H, that the interval [n, n + 1]
for every n € Z has at most two zeros of G4 (z)G_(x), that two intervals
containing no zeros are not adjacent, and that two intervals containing two
zeros are also not adjacent. As an application of Theorem 1.1, we have the
Weyl law for H by using Tauberian theorem (cf. [1, Theorem 1.1] and [8,
Corollary 2.6]).

COROLLARY 1.2. We have
Ny (T)~2T, (T — o0).

This corollary supports Braak’s conjecture.

IThe definition of Apéry-like numbers Ji(n) in [10-13] was renewed in [14, 15].
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Here is a remark on zeta regularized products. The zeta regularized
product of Spec(A) for an operator A is defined by

[T A=ow (-~ gcaole)

AeSpec(A)

if Ca(s) is analytically continued to a function holomorphic around s =0.
The zeta regularized product of Spec(A) is applied to the existence of an
entire function whose zeros coincide with Spec(A) as a multiset, and plays
a pivotal role as a functional determinant det(A) :=[]yegpec(a) A (cf- [25],
[26] and [30]). Wakayama [31, Conjecture 1] conjectured that (z(s; 7) would
be meromorphic or holomorphic at s =0. Since (g (s;7) is holomorphic
at s=0 by Theorem 1.1 (or [27, Théoreme (6.4), a)]), we can actually
define the zeta regularized product []ycg,ec(s)(# — A) as an entire function
by [22, Theorem 1]. A formula of [ cgpec(s)(z —A) using Frn(s;T)
is given in Proposition 5.2. The comparison of []ycgpec(r)(2 —A) with
Gi(2+¢*)G_(2+ ¢*) may be an interesting problem (cf. [31, Conjec-
ture 1]).

This paper is organized as follows. After fixing our notation, we explain
the Rabi Hamiltonians H defined for any g > 0 and A > 0 describing the
quantum Rabi models in Section 2, referring mainly to [6], [18] and [29]. In
the same section, a lower bound of Spec(H) is given in Lemma 2.2, and the
maximal domain of H is given as B?(R) ®c C?, where B?(R) is a Shubin—
Sobolev space originally introduced by Shubin [29, Section 25] (the Russian
version of [29] was published in 1978). The convergence of the spectral zeta
functions for the quantum Rabi models is discussed in Section 3. In the
rest of Sections 3 and 4, we explore the method of the parametrix of the
heat equation from [8], by which a meromorphic continuation of (g (s; ) is
given in Section 5. The method is a finer analysis of the trace Tr K (¢) of the
heat operator K (t) =e *H+7) for any t >0 and sufficiently large 7 € R.
In Section 3, the heat operator K(t) is decomposed into the finite sum of
explicitly computable operators K,,(t) over m=1,...,n and the residual
operator Ry41(t) (see (3.2)). In the same section, K;(¢) is made explicit
and Tr R,,11(t) is estimated. In Section 4, we give the asymptotic series
expansion of Tr K, (t) for m > 2 as t — +0 in Theorem 4.1 with the aid of
the asymptotic series of €%/t as t — +0 in Lemma 4.2. The vanishing results
of coefficients of the asymptotic series of Tr K, (t), Lemmas 4.6-4.9, are key
ingredients of proving Theorem 4.1. Finally, we prove Theorem 1.1(1) in
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Section 5. Theorem 1.1(2) is also proved in Section 5.2 by a rationality
of Cp (k) (see Theorem 5.4). Lemmas 4.6-4.9 on vanishing results are
effectively used to prove Theorem 1.1(2). The first, second, and third Rabi-
Bernoulli polynomials Ry (g, A; x) for k € {1,2,3} are explicitly computed
in Section 6. For treating some matrix-valued exponential functions ¢ +—
exp(tX) for some 2-by-2 square matrices X, the commutativity of two
matrices [} {] and [} {] matches our computation from Sections 3-5, while
such a treatment is difficult in the case of the noncommutative harmonic
oscillator @4,y [8], which is described by noncommutative matrices [§ g]
and [} ']. However, difficulty in the case of the quantum Rabi models seems
to be inherent in the simultaneous use of three matrices [} 9], [§ %], and [9 §],
among which [§ %] and [{ }] are noncommutative.

§2. Preliminaries

2.1 Notation

For any a €Z, let Z>, denote the set of all n€Z such that n > a.
For complex-valued functions f; and fo on a set X, we write fi(t)=
O(f2(t)) if there exists a constant C' > 0 such that |fi(¢)| < C|f2(t)| for all
t € X. We write fi(t) < fa(t) if both f1(t) = O(f2(t)) and fo(t) = O(f1(t))
hold. Furthermore, if X = {t € R [t > 0}, we write fi(t) ~ fa(t)(t = c0) for
lim¢ o fi(t)/f2(t) = 1. We also write

f1 (t) ~0 Z Cjtj
7=0

if there exists a positive constant Cy for every N € Z>( such that

N .
A=) et!

j=0

Let S(R) be the Schwartz space on R and §(z — a) : S(R) — C the Dirac
delta distribution supported at a € R. By abuse of notation, d(z — a) is

<OtV (t = 40).

used as if it is an integrand.

For a C-Hilbert space V and a densely defined linear operator A: V — V,
let Spec(A) denote the multiset of eigenvalues of A in C. Suppose that
Spec(A) is discrete. Then, the norms ||Al|, on V for p € {1, 2} are defined

by
1/p
Al ={ T |A|p}

AESpec(A)
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as long as they make sense. For any N € {1,2}, we set L?(R;CV)=
L?(R) ®@c CV. The natural L?inner product on L?(R) is denoted by (-, -) 2.
Then, we endow L?(R; C?) with the L2-inner product (-, -) defined by

(2'1) <t(u17 u2)7 t(ullv u/2)> = <u17 u/1>L2 + <u2’ u/2>L2

for any w1, ug, u}, uhy € L?(R). We note that the Schwartz space S(R; CV) =
S(R) ®c CV on R is densely embedded in L?(R; CN) for any N € {1, 2}. If
A:L2(R; CN) — L2(R; CVN) for N € {1,2} is a densely defined differential
operator, then a dense domain of A is supposed to be the maximal domain
D(A) defined by

D(A) = {ue L*(R;C) | Au € L*(R; CM)},
where Au is the derivative of u as a tempered distribution on R.

2.2 Quantum Rabi models
Throughout this paper, we use the following 2-by-2 complex matrices

S S A

We note the relations IW =W I, IL=LI, and LW = -W L.
For real numbers >0, w >0, g >0, and A >0, let us define the Rabi
Hamiltonian H densely defined in L?(R; C?) by

H = Hyap; = hwa'a + Ao, + hgax(aT +a),

a:\z (ﬁx—l—\/fax),
aT:\Z (ﬁx—\/fax> ,
10

o, = Y] and o, =[? }]. Throughout this paper, we normalize H so that

where

h =w =1 without loss of generality, and use the following expression:

2 2
- —1
H:ax#[—i—AL%-\f?ngV,
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which is the Weyl quantization of

2 2
~1
€++I+AL+ V3gaW.

Then the operator H : L*(R; C?) — L?(R; C?) is unbounded, closed, and
symmetric (cf. [18, pp. 8-9]). Besides, H is a global pseudodifferential
operator of order 2 and elliptic in the sense of [18, Definition 3.2.19], that
is, |det H(x, &)| ~ /1 + 22 + 624, (22 4 €2 — 00). We remark that H is not
classical but semiregular classical in the sense of [18, Definition 3.2.19 and
Remark 3.2.4], and that H is actually classical in the sense of [6, Définition
1.5.1]. Here, when we use “classical” in the sense of [6, Définition 1.5.1], we
need to generalize notions for scalar-valued pseudodifferential operators in

H(xaf) =

[6, Chapitre 1] to matrix-valued ones. However, this procedure is easy to
perform by referring to [18, Chapter 3|.

ProrosiTION 2.1. The operator H is self-adjoint.

Proof. Since H is formally self-adjoint, the assertion follows from [18,
Proposition 3.3.10]. [

PROPOSITION 2.2. All eigenvalues X\ of H satisfy A > —g°> — A. In
particular, for any T €R such that 7> g?> + A, the operator H + 71 is
positive.

Proof. First, we see

92 2
(2.2) <W% U>
2 .

for any v € S(R) by the proof of [18, Theorem 2.2.1].
Let us take any A € Spec(H). Then A is real by the self-adjointness of H.
Set H'=UHU! with

V
N | =

(v, V)2

1 1
o_|vE v
1 1
V2 V2
Then,
—02 4+ 22 -1
oy wo| 2 8
—A M—ﬁgm
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holds by noting ULU™ ' =—-W and UWU !=L (cf. [7, (3.1)]). Since
Spec(H) coincides with Spec(H') as a multiset, A is contained in Spec(H’).
Put

-7+ 2% -1 —07 +v29)% 1
(24) Dy=—"—— T +V2gr = —= + (£ v29) - = — g%

2 2 2
Let u="(u1,us) be a fixed eigenvector with H'u = Au. We note that u is
taken as an element of S(R; C?) by [6, (1.9.2)]. By virtue of the inequality

(Diu, u) = —g*(u, u) by (2.2), a direct computation gives us

M, ) = < [f)g Bﬂ ” u>

= (Dyur,u1) 2 + (D_ug, ug) 2 — Alur, ug) 2 — Alug, u) 2
> —g*(ur, u1) 2 — g% (ug, ug)r2 — A([lur + uollF2 — urll72 — [luzl72)
2 —

g (| + luzllZ2) — Al ]2 + Ju2l72) = (=g* — A){u, u),

where || - ||z2 is the L?-norm on L?(R) induced from (-, -);2. This completes
the proof. 0

Set A2=1+2%-0? and B*R)={uecSR)|A*ueL*R)}, where
S'(R) denotes the space of tempered distributions on R and A?u is the
differential of u as a tempered distribution. Then B2?(R) is called a
Shubin-Sobolev space (cf. [29, Section 25]). The Shubin-Sobolev space
B?(R) contains S(R) obviously and has a Hilbert space structure with
inner product (u1, ug) g2 = (A%u1, A%uz) 2 for any uy, ug € B%(R). The space
B?(R) is dense and compactly embedded in L?(R) by [29, Proposition 25.4]
(see also [6, Proposition 1.6.11] and [18, Proposition 3.2.26]).

PROPOSITION 2.3. We have D(H) = B%(R) @¢ C2.

Proof. As we see that H is a globally elliptic pseudodifferential operator
of order 2 and that H is classical in the sense of [6, Définition 1.5.1], we
obtain the assertion by [6, Théoréme 1.6.4] (see also [18, Lemma 3.3.9]). []

Remark. By Proposition 2.3, the operator H has a compact resolvent,
and hence the spectrum of H coincides with the set Spec(H) of the
eigenvalues of H as a multiset, that is, the continuous and the residual
spectra of H are empty (cf. [28, Proposition 2.11] or [29, Theorem 26.3]).
In particular, Spec(H) is discrete. Such a discreteness also follows from the
location of zeros of G4 (x)G_(x) constructed in [2].
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LEMMA 2.4. Let 7 be a real number such that 7> g>+ A and let
O< AN SN, <A< <N, <+ be the sequence of all eigenvalues of
H + 7I. Then, we have \,, < n.

Proof. Let H' denote the Hamiltonian given by (2.3). By Spec(H) =
Spec(H') as a multiset, we may consider H' instead of H. Put

—92 +2%2 -1

B:E+AW:< 5

+T> I +V2gzL

as an operator in L?(R; C?) whose domain is D(H’). Then,

—02+ (z + \/59)2 B

1/2—g" + 7 0
B= 2

—0; + (v — V29)*
2

0 —1/2—¢*+71

is a positive self-adjoint operator and its nth eigenvalue \,(B) satisfies
An(B)=n as n— oo. Since the canonical injection D(H')=D(H) —
L?(R; C?) is compact by Proposition 2.3, both H’ and B have compact
resolvents. By H' = B — AW, we easily have

1 ull® < 2([|Bul® + [|AWu|®) <201 + A)(||Bul]* + [|ul|*)

for all u€ S(R;C?), where ||-|| is the L?mnorm on L?(R;C?) induced
from (-, -). Similarly we have also || Bul|? < 2(1 + A2)(||H'u||? + ||u||?) for all
u € S(R; C?). Therefore, by applying [18, Proposition 4.2.2] to H' and B,
we obtain the desired assertion. [

83. Spectral zeta functions

For any 7€ C, the Hurwitz-type spectral zeta function of the Rabi
Hamiltonian H is given as the formal series

Cr(s; 1) = Z # seC.

s )
AE€Spec(H) ()\ + T)
We check the convergence for some suitable choices of 7 and s. The following
is a consequence from Lemma 2.4.

PROPOSITION 3.1. For any fized T € C — Spec(—H), the series (i (s; T)
converges absolutely for Re(s) > 1. Furthermore, the series ((1;7) is diver-
gent.
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For the Rabi Hamiltonian H and 7 € C, we consider the heat operator
K(t) = e 47D on ¢ > 0. From now on, we fix 7 € R such that 7 > g% + A.
By Propositions 2.1 and 2.2, H + 71 is a self-adjoint operator and all its
eigenvalues are positive. Hence the Hurwitz-type spectral zeta function of
H has an integral expression

Crls; )= r(ls) /Ooo t57 1 Tr K (t) dt

as long as the integral on the left-hand side is absolutely convergent. Set

Zo(s):/o1 571 Tr K (t) dt, Zoo(s)z/loo 571 Tr K (t) dt.

LEMMA 3.2. The integral Zy(s) converges absolutely for Re(s) > 1, and
the integral Zo(s) converges absolutely for all s € C. In particular, the
function Z(s) has an analytic continuation to C. Furthermore, the integral
JoSt57 T K (t) dt converges absolutely for Re(s) > 1 and we have

Cir(si7) = F(ls) /OOO LTy K (f) dt = F(ls)(zo(s) +Zo(s), Re(s)> 1.

(3.1)

Proof. We follow the method given in the proof of [8, Proposition 2.1].
We remark that

Tr K(t) = Z e~ Ot < Z {1 +¢)/e}"

1+e€
AESpec(H) A€ESpec(H) {()\ T T)t}
= {(1+e)/e} Tyl + )t <00
for any e>0, where we use Proposition 3.1 and the inequality e ® <

(a/e)*b™? for all a, b > 0. Thus it is obvious that Zy(s) converges absolutely
for Re(s) > 1. Put o = Re(s) and take a € R such that a > max(o, 1). Then,

/ 15T K (4)] dt < / 3 L0/0) o o1 g
1 1

A€Spec(H) ()\ + T)

= Cy(a;T) / 777 gt < 0.
1
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Equalities (3.1) follow from

Lis) > (+n~>= Y / (AL)S?

AESpec(H) AE€Spec(H

:/ > e—(T“ﬁtsdt / 71 Tr K (¢) dt.

XeSpec(H

The change of integrals and series is justified when Re(s) > 1. 0

For the operator H + 71, we define an operator Ki(t) and its kernel
Kl (ta Z, y) by

(Kl()

/ / $ exp [—t (52 ; o x/igyW>] f(y) dy d¢

_ / Ki(t, 2, 9) f(y) dy

for any f € S(R;C?). We set Ry(t) = K(t) — K1(t). Then the equation
(O + H+71I)K(t)+ (0 + H+ 7I)Ra(t) =0 holds. Furthermore, we set
F(tyz,y)= (0 + Hy + 7I)Ro(t,z,y) = —(0y + Hy + 7I)K1(t, z,y), where
H, is the operator H acting on the z-variables. By K (¢, z,y) — 0(x — y)I
as t — +0, we have easily Ra(t) — 0I as t — +0. Therefore, by Duhamel’s
principle (cf. [4, pp. 202-204]), we have the following expression

t
Ro(t) = / e~ UWWHATD Py du,
0

where we put (F(u)f)(z) = [*_ F(u,z,y)f(y) dy for any f € S(R; C?).
LEMMA 3.3. We have

F(t z,y)
1 [ y? — g2
=— ez(m_y)5 [I +V2g(y — az)W}
2 J_
2 1 [ .
X exp [ <5 +y° I+ fgyW)] d¢ — 27r/ eil@=y)¢

x KT—;) I+AL] exp[ (52;?/ I+\fgyW>} dc.
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Proof. It follows from the definition of Kj(¢,x,y) and the expres-

sion [ F(t,2,y)f(y)dy= [ (=0, — H — 7I)K\(t, z, y) f(y) dy for any
feSR;C?). 0

The function Tr K (t) is analyzed as follows.

LEMMA 3.4. We have the following formulas:

2e9°t
Tr Ky (1) = et . t>0,
1 0 2k
P 2 1
51 Tr K, (t) dt = LS t} 1.
/0 r L) s—1+Z Kl s+k—1’ els) >

Proof. Since I and W are commutative, by [5, 3.323, 2.19], the function
K (t, x,y) can be described as

Kl(ta xz, y)
1 ‘ t&? ty?
=— e @=YE exp (—51') dé x exp <—yI> exp(—v2gtyW)
27 Jeer 2 2
1

— —(z—y)?/2t—ty?/2 —\ 2ty W).
NorT exp(—Vv2gtyW)

Hence we obtain

Tr Kq(t) = / tr K (¢, x, x) dz

—00
L[ e 2e9°t
= e 2 cosh(V2¢gtz) do = ,
V 27Tt /—oo ( g ) t
where we use [5, 3.546.2]. This completes the proof. [
3.1 Estimates of residual operators
Set
Fl (t7 xz, y)
1 [ 2_ .2 2, .2
S cle—yeY — T g exp | —t w[ +V2gyW || de,
2r J_ o 2 2
FQ(tv Zz, y)
1 0o 2 2
=5 e =VE2g(y — )W exp [—t (5 ;y I+ ﬁgyW)] dg,
—00
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F3(t7 Z, y)
00 2 2
_ zi @ VE(ZA)L exp [—t (g—;yI + ﬁgyW)] de,
™ —0o0
F4(t> Z, y)
0 2 2
_ L @) <1 — 7'> I exp [—t <§ +y I+ \/igyWﬂ dg,
o | o 2 2

and Fj(t) = [T Fj(t,z,y)f(y)dy for any feS(R;C?*) and any je
{1,2,3,4}. Then we see

F(t,x,y)=Fi(t,z,y) + F2(t, z, y) + F3(t, 2, y) + Fu(t, @, y)
and
F(t) = Fi(t) + Fo(t) + F3(t) + Fu(t).
We have the following by the same computation as in Lemma 3.4.

LEMMA 3.5. We have the following explicit formulas:

1 2 _ .2
Fi(t,z,y) = 2ﬂt%je—(x—y)2/2t—ty2/2 exp(—v2gty W),

Fa(t, 2, y) = —/3g(y — ) We~ @V /210212 i\ fagty ),

1
Fy(t, z,y) = m(—A)Le’(“y)mt*wz/Q exp(—V2gtyW),

1 1 2 2
— - —(z—y)*/2t—ty>/2 — W
Fy(t,z,y) Jort (2 7'> Ie exp(—V2gtyW).

LEMMA 3.6. For 0<t<1, we have ||Fi(t)+ Fa(t)||lo= Ot Y?) and
|F5(t) + Fu(t)]|2 = O(t~1/2).

Proof. Set 7'=1-1/2, F_(t,x,y)=F3(t,z,y)+ Fu(t,z,y), and
F_(t) = F5(t) + Fy4(t). Since the adjoint operator F_(t)* of F_(t) is

given by (F_(t)*f)(x) = [0 F_(t,y, x) f(y) dy, by noting WL = —LW and
Lemma 3.5, we obtain

1F- (2113

=Tr(F_(t)"F_(t)) = /_00 /_OO trF_(t, x, y)F_(t, z,y) dy dx
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o0 o0
:/ / tr |:21t(7',f + AL)e_(m_y)Q/Qt_tyz/2 exp(—V2gtyW)
oo J oo ™

x (7'I + AL)ef(miy)Q/Qt*wQ/2 exp(—V2gtyW)| dy dx

/ / - o~ (@—y)? /=ty (' + AL) (7' exp(—\/ﬁgtyW)
T

+ AL exp(ﬂgtyW)) exp(—V2gtyW)] dy dx

:/ / —(Z y)? /t—ty?

x tr[(7'T + AL) (7" exp(—2V2gtyW) + AL)] dy dx

:/ / eV (7 cosh (2 Bgty) + A7) dy d
_ _ s

/ / (z—y)?/t—ty? cosh(2v/2gty) dy dx

/ / —(z—y)?/t—ty? dy dz,

and hence we have ||F_(t)|]3 = t=1(77229°t 4+ A?) by the formulas

/ / —(z=y)?/t-ty? dy dx =,

/ / (z—y)?/t—ty? i?\fgty dy d$—71'€2gt

67

Next we set FL(t)=Fi(t)+ Fa(t) and Fi(t,z,y)=Fi(t,z,y)+

Fy(t, z,y). Combining IW = W1 with Lemma 3.5, we obtain

1P ()3 = / / WwF (t, 2, y) Py (6,7, 9) dy da

/ / Bt [{y

x e (@) t—ty? exp(—QﬁgtyW)] dy dx

— 2 2
5 I+V2g(y — x)W}
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0 o0 1 5 9 2 35‘2 2
_ L (e ety Yy _ —2V/2gty
I » [{ IR

+ {y — gy )}2em§w] dy dz.

Hence ||Fy(t)]|3 = O(t~!) follows from

. 2
/ / 1 —(x y)? /t—ty? { j:\fg( )} o F2V20ty dy dz

=3 t/ / emu v 1 (tu+2v:|:2\[g\[2 £2V29\00 gy iy
T

=0t . 0
/ /t ul /t U= —Um—2
X K1 t—up — - Up— 1)F(um_1)F(um_2) S F(ul) dUp—1 -+ - duq

for m > 2 and

t—u1 t—u1——Up—1
Rt // / K(t—u—- - up)

X F Un)F(un 1) F(ul) dun dunfl . dul

for n > 2, respectively. Then, by the same argument in [8, pp. 704-705], we
decompose K (t) as

(3.2) K(t +ZK )4 Rps1(t), neZs.

LEMMA 3.7. For any e € (0,1/2), there exists a positive constant C =
C(g, A, 7,€) such that
Tr Ra(t)| < CT,
7.(.71/2
Tr Ry ()] < O /2
e (Y
for any t € (0,1) and any n € Zxs.
Proof. We follow the method in [8, Proposition 2.3]. For any ¢ >0,
€ (0,t), and € > 0, we have
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||ef(t7u)(H+‘rI) H2

1/2
= ey
A€Spec(H)
(142€)/2 12
. 1+ 2¢ I 9= (1429)/2(; _ ;) =(1+20)/2
e ()\ + 7—)1+2E
A€Spec(H)

(1+2€)/2
_ (1 + 26> Cir(1 4 26, 7)1/20-(1420/2 (4 _ )=(1429)/2
e

We note that (g (14 2¢;7) is convergent by Proposition 3.1. By virtue
of Lemma 3.6, we have ||F(t)|lo < ||F1(t) + Fa(t)|l2 + || F3(t) + Fa(t)||2 =
O(t~1/2). Then, we estimate Tr Ry(t) = fot Tr(e~t-WHTD P(y)) du as

t t
ITr Ry(t)| = / I Tr(e~EWHFD py))| du < / e~ C=WHEATD By du
0 0

¢ t
< [l P de < [ - w2 d
0 0
=Ct °B(1/2 —€,1/2),
where C'=C(g, A, T, €) is a positive constant depending only on g, A, T,

and €. From this, |Tr Ry4+1(t)| for n>2 is majorized as |Tr R,4+1(t)| <
C"t"/Z#Q/il) in the same way as [8, Proposition 2.3]. [

84. Asymptotic expansions

In this section, we give the asymptotic series of Tr K,,(t) as t — +0,
which is used in Section 5. Recall that 7 € R is fixed so that 7 > g% + A as
in Section 3. The main result in this section is the following.

THEOREM 4.1. For any m € Z=a, there exists a sequence {cflm)}qezw of
complex numbers such that

Tr K (t) ~0 Y e,
q=0

Moreover, we have c((]m) =0ifg<m—2.
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For m € Zsy and € = (€;)j=1,..m—1 € {1, 2, 3,4}™ 1, we set

-----

t t—uy t—uyp——Um—2
Km7e(t) = / / Kl(t_ul_..._um_l)
0 0 0

’ FGm—1(um—1)F€m—2 (um—Q) By (UQ)Fel (ul) dum—1 - - - duy.

Then K,,(t) is decomposed as

Kn(t)= Y Knlt).

e€{1,2,3,4ym—1

Therefore, we only have to consider an asymptotic behavior of Tr K, ()
for each € € {1, 2, 3,4}™~ 1. By the change of variables uj = tu;-, it holds that

_— 1 pl—uf 1—u)——ul, o . .
Kpelt) =t / / / Ky(t(1 =y — -~y 1))
- F

€m—1

By putting Dy ={u € R™ ! u; >0(Vj=1,...,m—1), 37" uj <1},

we have
Tr Ky o(t) = tml/ du/ tr/
D1 20€R (2150 Zm—1)ER™ 1

X Ky(H(1— uy — - — tipy1), 200 Zm1)

(tul, |)F.

m—1 €m—2

(tul, o) - Fo, (tud) Fe, (tuh) dul, - - - duf.

m—2

: Fem_l (tumfla Zm—1, Zm72) co FEQ (tUQ, 22, Zl)
X F61 (tul, Z1, Zo) dZ() dZ1 s dZm_l.

By the definition of Fc(t,z,y) for e€ {1,2,3,4} and by the change of
variables \/fzj < zj and \/igj < &;, the integral above is transformed to

Tr Ky ()

m m—1
1
=¢ 1 / du / dé; dz;
Dm_l (61,,£m)€Rm ‘ng ] (207"'7Zm—1)€Rm ]gl ] (27T)m

X ei[(zo_zm—l)gm'i'(zm—l_Zm—2)§m—1+“‘+(21_ZO)fl]/t

tr | e (Omu——um—1) [(€2+22,_1)/2 4V 29V Ezm -1 W]
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m—1
X H Tej(zj_l/\/g, Zj/\/%)efuf [((55'*2;2'71)/2)1+\/§9\/52j—1W]
j=1
:t—l—r1(6)—(1/2)rg(e)/ du/ H déj/
D1 (€1,-8m)ER™ 554 (20,-,2m—1)ER™
m—1
1
X dz; —
o (2m)
m—1
X ei(zi—2j-1)(&—E&m) /t
j=1
X tr 67(171‘17"'7“7”_1) |:((£”QH+Z7%'L—1)/2)I+\/§g\/izrn—lw:|

m—1
(41) x H Tey(zjflazj)e_uj [((512+232'—1)/2)I+\/§9\/£zj—1W]
j=1

Here we put 7j(e) =#{j e {1,...,m — 1} | ¢; =k} for each k € {1, 2, 3, 4},

Tl(:l"vy):ngyQIa Tg(zv,y):ﬂg(x—y)W, T3($7y):_AL7 T4($7y):
(1/2 — 7)1, and

m—1
H Aj=Ap 1 A
j=1

for any 2-by-2 matrices Ay, ..., Ap—1. In order to expand integral (4.1), we
use the following given in [8, Lemma 3.3].

LEMMA 4.2. The function (x,y) — €%/t has the asymptotic series

. < 0F5(x)0k8(y)
izy/t kT Y k+1
Yt~ 2T ,;_0 ) 1 t

as a tempered distribution in R?.

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

72 S. SUGIYAMA

From this lemma (or [8, (4.7)]), by integration by parts, (4.1) is expanded
as

> > jhtetime

1 Lol 1 4m—2—r1 (€)—(1/2)r2 ()
05 2 Z_ T

m m—1
x / du / dé; / IT =
D1 (&1,---,€m)€ER™ j=1 (205--,2m—1)ER™ §=0

L

m—1
X (—1)505_,6(zj-1 — 25)
j=1
m—1
X (—D)Y6(&5 — &m)
j=1

m—1
 tr [euul---um1><<sa+za1>/2>1 [] b et/
j=1

m—1
(4.2) x e (mmmrmuno)V2V B W T T (2, 2p)em V20V W
7 )

Jj=1

Here, we remark that the symbol d(z; — zj—1) is always replaced with
d(zj—1 — z;) throughout this paper when 8?] is transformed to (—1)”82_1
by integration by parts. (The symbol 6(z; — zj—1) used in [8, (4.8), (4.17b),
(4.18), (4.19), (4.21), the first (4.22), and (4,23)] should be replaced with
d(zj—1 — z;j) if it is regarded as a tempered distribution supported at z;.)

Let us further analyze some factors in the integrand above. The following
is obvious.

LEMMA 4.3. For anyl € Z>y and u € (0, 1), we have

ke 6%/ = (—1)!(u/2)V/2 Hy(\/u/26)e™ "/,

where Hj(x) is the Ilth Hermite polynomial defined by Hj(x)=
(—1)'e™ (dhe™™").
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Let us consider a transformation of the ordered product

<—

m—1

—uivV29Vtzi AW
H ng(zj_l,zj)e iV20Vtzj-1 .
Jj=1

By the definition of T¢, (z, y), the product as above is described as

m—1 ij_l o ZJZ m—1 ( ) 1 7‘4(6)
IT 2252 4 4 TT Vaoteso - 5) g (=470 (<r+ 3)
7j=1 7j=1

6j:1 Gj:2

% tr | exp(—(1— w1 — - — tm_1)V2gVEom 1 W)

1
x [ Alej)e2aviuziaW
j=1

with A(1) =A(4)=1, A(2) =W, and A(3) = L. In the oriented product,
we cannot shift all terms of the form e™ (a € R) into the left because

of the noncommutativity of L and W. However, we can define a mapping
we:{l,...,m—1} —={0,1} by

m—1
H Alej) exp[—v2gv/tu;zj W]
j=1
m—1 m—1
(43) = exp —Z(—l)“’f(j)\@g\/fujzj_lW H A(Ej)
=1 j=1

because of WL = —LW. Set

Ae)= [] Aley).
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LEMMA 4.4. We have

{1} (if ro(€) is even and r3(€) is even),
Ale) € {£W}  (if ra(€) is odd and r3(e) is even),
{£L} (i ra(e)

(if r2(€)

(LW}

if ro(€) is even and r3(e) is odd),
if ra(€) is odd and r3(€) is odd).

Proof. It follows immediately from the relations W2 =L?=1 and
WL=-LW. [

By using the mapping w. and the Maclaurin expansion

vaw _y~ @
aVitWw _ Yk 2y 7k
e = Z ] tewW
k=0

for a € R and ¢t > 0, the right-hand side of (4.2) is rewritten as

ll+ AHlm—1

Z Z 75l1-|— AHlm—1+m—2—7r1(e)—(1/2)r2(c)

110 lm10

m m—
X du/ d&;
/Dm1 (&1,0--,&m)€ER™ H ! (20,-.-s2m—1)ER™ 1;[

j=1
m—1

x (—1)10% _,6(z-1 — %)
7=1
m—1

X (—1)"6(& — &m)

J

Il
—

m—1
< tr 6—(1—u1—~~—Um—1)(€%1+zgnfl)/2 H 3? @7“1532‘/267%232'71/2
J

m—1
x e~ (1mua——um_1)V2gVtzm 1 W H o~ V2gVE(=1)2e W)z W

J=1
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o0 jhttlmo

1 oo
:EZ Zﬁl '

1 !
m—1
o a @ [ dz
Dm—l (51,...,£m)€Rm ]:H1 (ZO,...,Zm—1)€Rm ]]1]

m—1
X { (—1)ljalzjj‘._l(5(2j71 — Zj)

it tlm—rtm—2-r (e)—(1/2)ra(e)

o
{—(1—u1 = = )V292m 1} ko g
X tr |: Z ol VETW

m—1 oo wile) .. k.
% Z (—Uj\/ig(—kll)' 3921) L ki /2yyks
j=1 k;=0 I’
m—1
(44) X H Te;(zj-1, 7))
j=1
As a consequence, by noting
m m—1 )
/ I d& 3 T 666 —&m) e tmmmmmim)n/2
(&1,--6m)ER™ j=1 j=1
m—1 )
x (uj/2)572 Hy, (\fuj /265)e 572
j=1
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m—

:/ e €12 H (uj/2)5/2Hy, (\/u; /2€) o dE
£eR

and the analysis made so far, we have the following asymptotic series.

THEOREM 4.5. For any m € Z=s and € € {1,2,3,4}™ ! we have

Tr K ()
il

0 2 2 2l 11! - - - ko)

(11,...,lm_1)ezg071 (K1, skeim ) €2,

> tll—i---~+lm_1+(1/2)(k1+~~~+km)+m—2—r1 (e)—(1/2)r2(€)
m—1

X / du/ H dz; H z] 0(zj-1 — %)
Dpm—1 ( j=1

204y Zm—1)ER™ =0

m—1
> ef(lfulf...—um,l)zfn_l/Q H e—ujz?71/2

j=1

H z;cil {—\/§g(1 —Up — - — Um—l)}km

X
<
’l

X
f—H
E
)
<
k)
\_/
&
-
>
~~
m
=
|
a]
M)
~
[\

X
2
[y
~
[\')
<
=
/N
N
[y
\
J\‘}
N———
QL
2%

m—1 m—1
X { (22, —22)/2 H V2g(zj-1 — 2)

]—1 €j=2
(4.5) x (=AY (1/2 — r)ra@gp[hitFhm A(¢)).
Here ry(e) is the cardinality of {je{l,...,m—1}|e; =k} for each

ke{l,2,3,4}, a mapping we: {1,...,m—1} = {0, 1} is defined by (4.3),
the function Hy (x) is the ljth Hermite polynomial defined in Lemma 4.3,
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and we set
m—1
Al =[] Ale)
j=1
with A(1) = A(4) =1, A(2)=W, and A(3) = L.
Let c(m’e) be the coefficient of

(ll7'~-7lm—1)7(k17'~-7k’m)

tll+"'+lm—1+(1/2)(k1+"‘+km)+m_2_7"1 (6)—(1/2)7’2 (6)

n (4.5). Then, we obtain the following series of vanishing results.

LEMMA 4.6. The coefficient CE m.e) o) vanishes if 11 +- - -

clm—1),(k1,skm
lin—1 18 odd.

7

_l’_

Proof. If 1 + -+ ly—1 is odd, by Hy (—z) = (—l)llej (x) the product

H;”:_ll Hy,(z) is an odd function in z, and hence we have

e 2T Hy( )d
/&R H (i /2€) de = 0.

This completes the proof.

. (me)
LEMMA 4.7. The coefficient Clltr 1), (k1o o)

km — 72(€) is odd. In particular, any coefficients of /t
any k € Z>o vanish.

2k+1

vanishes if k1 + - - -

i
_|_

of Tr K, (t) for

Proof. If ki+---+ky—ra(e) is odd, Lemma 4.4 yields that
Whittkm A(¢) is equal to =W or £LW, whose trace is zero. This completes

the proof.
LEMMA 4.8. We have Tr Ky, ((t) =0 if r3(€) is odd.

i

Proof. If r3(e) is odd, for any (ki,..., k)€ ZZ,, by Lemma 4.4,
Whit+km A(¢) is equal to £L or LW, whose trace is zero. From this

and (4.5), we have the desired assertion. [
LEMMA 4.9.  We have cEl m,e) o s (Roim) = =0 if there exists j€
{1....,m—1} such that €; € {1 2} and l; =0. In particular, we have

om 9

Cllt st )y (K1 yoenskom) — 0ifli+-+ln-1 <ri(e) +ra(e).
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Proof. We obtain the assertion by noting the factor §(zj_1 — z;)(zj_1 —

2j). il
By Lemmas 4.6-4.8, we have the following.
LEMMA 4.10.  For any m € Zsa, €€{1,2,3, 4} (I1,...,lm1,
ki, ..., kn) € Z;’g*l, we have
(m,e)

Cysedim—1), (K1)

jhttlm
= [
271'11! e lm_l!kil! e k ' D1 (Z07-~~7Zm—1)€Rm

m—1 m—
x [T dz H 2510(2j-1 = %)
=0 j=1

m—1
X 67(17’[1,17---711,»,”,1)272”_1/2 H e—ujz?71/2
Jj=1

X (H Z;»fil {—\/ig(l —Uup— = Um—l)}km
j=1

m—1

% {(—v2gu,(— )We(j)}kj/ e—6°/2
£eR

1

H

Jj=
{ ui/2)52Hy (1 Ju /2€) 3 d€

7=1
m—1 m—1
X (271 —2)/2 H V2g(zj-1 — z))
j=1 J=1
ej=1 €j=2

x A3 (1/2 — 7)ra©gr[pykitthm A(¢)).
Moreover, it is an element of Rlg?, A2, 7).

Proof. By Lemmas 4.6-4.8, we may assume that l; + -4 l_1,
ki+ -+ kmn —12(e) and r3(e) are all even. Then, the assertion follows
from H;nzjl(—l)lf =1, it Hmr e {41} and (—A)3() = A73(9), [

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

ZETA FOR QUANTUM RABI MODELS 79

Proof of Theorem 4.1. Let us take any m € Zso, €€ {1,2,3,4}, and
q €< %Z, and set

C((]m,e) _ Z

(ll ----- lm717k;17.“7k,,n)622273_1
litetlm—14(1/2) (k14 4km ) +m—2-71(e)—(1/2)r2(e)=¢

(4.6) x

and

(4.7) cgm) = Z cgm’e).
ec{1,2,34}m—1

(m,e€)

By virtue of Lemma 4.7, we have ¢4 ' =0 unless g € Z. Moreover,
if b4+t + 3k 4+ k) +m—2—1r1(e) — 2ra(e) <m — 2, we

have c(m’e) =0 with the aid of Lemma 4.9. Thus we obtain
(U yeeslm—1),(K1yeeeskom)
cém’€) =0 if ¢ < m — 2. This completes the proof. 0

§5. Meromorphic continuations

In this section, we prove Theorem 1.1. Recall that 7 is any fixed
real number such that 7> g% + A as in Section 3. Theorem 1.1(1) is a
consequence of the following theorem.

THEOREM 5.1.  There ewists a sequence {Cyr(k)}rezs, of complex
numbers such that

[e.9]

1 2 2¢%F 1
Culsim) = I'(s) {s—1+; kK s+k—1

n—2
+ Z C:;(:) + hi(s) + ha(s) + Zoo(s)}’ Re(s) > 1
k=0

for any n € Z>o. Here, Z(s) is the entire function treated in Lemma 3.2,
hi(s) is a holomorphic function on Re(s)>-—n such that hi(s)=
O(1/(Re(s) +n)) on the region Re(s) > —n, and ha(s) is a holomorphic
function on Re(s) > —n/2 such that ha(s)=O(1/(Re(s) +mn/2)) on the
region Re(s) > —n/2.

In particular, Cg(s;7) has a meromorphic continuation to C and
is holomorphic on C —{1}. Furthermore, s=1 is a simple pole with
Ress—1 Cu(s;7) = 2.
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Proof.  Recall (x(s;7)=(1/T(s)) [y~ ¢t Tr K(t) dt. Since Zoo(t)=
[Pt Tr K(t)dt is entire by Lemma 3.2, we only have to consider
fol ts=1 Tr K (t) dt. As for the first term of (3.2), Lemma 3.4 yields that

I 1 2 = 2¢%F 1
—— [ I K () dt = —— -
F(s)/o 1®) I'(s) <3—1+; k! s+k—1

is entire. As for the third term of (3.2), by Lemma 3.7, the integral
fol 571 Tr Ry, 41(t)| dt for Re(s) > —n/2 is majorized by

/1 tRe(s)—l—i—n/Q dt = 1
0 Re(s) +n/2

up to a positive constant, and hence the function hy(s)=
fol t>~1 Tr R, 41(t) dt is holomorphic on Re(s) > —n/2. By setting

k+2
(5.1) CHT Z C ,
Theorem 4.1 gives us
n n n—2
ZTer(t): Mt 1 o)
=2 qg=m—2
n—2
=Y Cp.(k)tt+0@™ "), (t—+0).
k=0

Then the integral of the second term of (3.2) is evaluated as

n n—2
/1 570 " T Ko (t) dt = /1 5! Z Cr(k)tF dt
0 m=2 0 k=0
/ tsl{ZTrK ZCHT }
0

As the first term is evaluated as >3- (Cp.,(k)/(s + k)) and the second
term as above is majorized by

1
1
tRe(s)—1+n dt =
/0 Re(s) +n
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up to a positive constant when Re(s) > —n, the integral

hl(s:/OtSI{ZT&"K ZCHT }

is holomorphic on Re(s) > —n. As a consequence, we have the theorem. []

By Theorem 5.1, the function (z(s;7) is holomorphic at s =0 for any
7 € R such that 7> g%+ A. Thus, [espec(m) (T +A) can be defined for
any 7 € C by [22, Theorem 1]. Here is a formula of the zeta regularized
product of Spec(H + 71).

PROPOSITION 5.2.  For any n € Z>2 and any real number T such that
7> g%+ A, we have

pu— —_ — 1 J—
[ ¢+y=exp ( 2+k§:2 k1) +v(29% +1—27)

AESpec(H)
n—2
. Ch2“0>xemmmw%
k=1

where v = —I"(1) is Euler’s constant.

Proof. By using Theorem 1.1(1), a direct computation gives us

oo = 243 20 g 4 O (0))
g o\ T)ls=0 = 2 Kk — 1) Y49 H,r
n—2 C (k‘)
+ Hk + Frn(0;7).
k=1

We shall compute Cy ~(0). By (4.6), (4.7), and (5.1), C ~(0) is expressed
as Cy,(0) = 0(2) S 082 <) Wwith

(2,6) _ (2,€)
“ = Z U (k1 ko)
(Lk1,k2)€Z2,
I+(1/2)(k1+k2)—r1(e)—(1/2)r2(€)=0

For e € {1, 2}, we have 082’1) —cé R by Lemma 6.1 below. For e =3,
Lemma 4.8 yields 082’3) =0. For ¢ =4, we have c((] 1921 by the proof

of Proposition 5.3 below. Hence, we obtain Cy ,(0) = 1 — 27, [
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5.1 Simple examples
We give an example of (g(s;7) in terms of the Hurwitz zeta function
C(s;a) =302 y(n+a)~* for a>0.

The case A =0: In the case A =0, we consider H' defined in (2.3) instead
of H. We have H' = B — 71, where B is the operator defined in the proof of
Lemma 2.4. Hence we have Spec(H) = Spec(B — 71) ={n — ¢* | n € Z>o}
with multiplicity 2 and

= 1
Cu(s;T)=2 —:2<(S;T—gz).
ne =20 Gy

2 + 7—)8
From this, the k&th Rabi-Bernoulli polynomial, which is defined by (1.1), is
given by Ry(g,0;2) = Bp(x — ¢?) for any k € Zs1, where By (z) is the kth
Bernoulli polynomial as in the Introduction.

The case g =0: Another simple example is the case g =0. Assume A > 0.
In this case, the expression

=i+t -1

Hl
2

I+AL
gives us Spec(H) ={n+ A |n€Z>o} U{n — A|n € Z>o} with multiplicity
1. As a result, we obtain

oo 1 1
5 =X AT T A
=((sT+A)+ (57— A)

e e}

and Ri(0, A;z) = 1(By(z + A) + By(z — A)) for any k € Zx1.

As we see as above, Ry(g, A; x) is monic and its degree is equal to k as
a polynomial in z when ¢ =0 or A =0. We have the following for general
g=>0and A >0.

PROPOSITION 5.3.  For any k € Z>1, the degree of Ryp(g,A;x) with
respect to x is equal to k. Furthermore, Ri(g, A; ) is monic as a polynomial
m .

Proof. By (5.1), it suffices to analyze Cp (k) = Efan clgm). With the

aid of (4.6) and (4.7), it suffices to study the term for e=(4,...,4) €
{1,2,3,4}*! appearing in c,(ﬁkﬁ). Put 0,1 =1(0,...,0) € Z;”()_l and
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4y 1= (4,...,4)€{1,2,3,4}™ ! for any m € Z>5. By Lemma 4.10, we
easily obtain

(k+2,4p41) _ (k+2,4541) _ / k+1 _ k+1
c =c = du(1/2 — 7 X 2= 1/2—71 ,

k Ok +1,0k42 D ( / ) (k: + 1)!( / )
and thus we are done. N

5.2 Rationality of coefficients
In this subsection, we shall prove Theorem 1.1(2) by combining (4.6),
(4.7), and (5.1) with the following theorem.

THEOREM 5.4. For anym € Z=s, € € {1,2,3,4y" ! and (I1, ..., lm_1,
ki, ... k)€ Zi’g*l, we have
(m,e) 2 A2
U ),rri) € QLIS AT 7]

We remark that Cp (k) € R[g?, A2, 7] is obvious from combining (4.6),
(4.7), and (5.1) with Lemma 4.10. The following two lemmas will be used
later in order to prove Theorem 5.4.

LEMMA 5.5.  For any polynomial P(u1,..., Um-1,&) € Qui,...,
Um—1, ], we have

/ 6_52/2P(u1, cey Um—1, &) dE € V2mQluy, . . ., Up—1].
£eR
Proof. By the formula

/ e_§2/2£2n d¢ = 2n+1/2 /OO e—xxn—l/Q dr
§ER

0
(5.2) = "2 (n 4+ 1/2) = (2n — D)IV2x
for any n € Z>(, we obtain the desired assertion. [
LEMMA 5.6. For any polynomial P(ui, ..., un—1) € Qu1, ..., um—1],
we have

/ P(ul,...,um_l) AUp—1 + - - duy € Q,
Dm—l

where D,,_1 is the subset of R™~1 defined in Section 4.
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Proof. The assertion follows from the formula

m—1 Hm—l a.!
/ Hu;l] dUup—1 -+ - dug = P 1] L 0
D7n71 ]:1 (Z )

-1 a;t+tm—1

for any (a1, ..., am-1) € Z;"gl (cf. [5, 4.634%)). [

Let us take any m€Zss, e€€{1,2,3,4}" ' and (I1,...,ln 1,
ki,...,km )EZQm 1 We may assume that I; + - - - + L1, k1 + - - - + km +
r2(€), and r3(e) are all even by Lemmas 4.6-4.8.

We show a refined formula of CEZ:?,Zm_n,(kl,...,km)‘ Set Dj(€) =01,

Dy(€) =6c2, and Dsy(€) =de 3+ 64 for any e € {1,2,3,4}, where 6, is
the Kronecker delta. For our purpose, we calculate the following integral

appearing in the formula of cg “ ) in Lemma 4.10:

I 15 7lm 1) (k17 7

/ H dzy | e~ um )2 /2
(207 »Zm l)eRm

m— m— k

H j 6(zj—1 — %) H R 1/2]1
(5.3) X {Dl(ey)(zj2 1= 25)/2+ Dz(fj)(Zj—l = 2j) + D3a(€)) }-
First, let us consider the zp-integral. By a direct computation, we have

/ dZ()(S(Z() — 21)32)
z0€ER
x [0/ 25 {Dy(e1)(z5 — 21)/2 + Daler) (0 = 21) + Daa(er)}]
= /ZOGR d(z0 — 21)6_“%/2131(16})1 (u1; 20) dzg = e U121/2P(1€}€)1 (u1; 21),

where we set

Pl(l k?)l (u1§ Zl)

I
— Z (l1> (—l)ll_a(ul/Q)(ll_a)/2Hl1—a(\/,LT/ZZO)

a

g [(kk_l' 26 D1(e1)(2 — 21)/2 + Dale1) (20 — 1) + Dsa(er)}
1 a)
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" <a>(;ﬁ_k;'+1)' 2T Di(e1)z0 + Daer)}

54) + (5) Gt

Then, Pl(gk)l (u1; z1) € Qluq, 1] follows easily. Thus, (5.3) is evaluated as

1,

m—1
/ [] «
(Zla---7zm71)6Rm71 ]:1

m—
_ —(l—ug——um—1)22,_,/2 k
X H _10(zj—1—25) p e e Eme

Z20=Z21

H T2 (Dy(e)(22, — 2)/2
=2

(5.5) + Da(e;) (21 — 25) + Daae)} | e ™3P (urs 1),

Next let us consider the z;-integral
[ dlea =y fe et
z1€R

x {D1(e2) (22 — 23)/2 + Dale2) (21 — 22) + Daale2) }PLY) (urs 21)] dzn.

We set
(€1,€2) .
(lll,lz?)(klvkz)(ul’ u2; 22)
= e<u1+“2>2?/2a§§ [67(1”1“‘2)2%/2?11€2 {D1(e2)(2} — 23)/2
(56) + Ds(€2) (21 — 22) + Daale2)} P (un; 20)] |r=
Then, plerez) (u1, ug; z9) is contained in Quq, ug, 22]. Thus (5.5) is

(I1,02,) (k1,k2)
transformed to

m—1 m—1
L
/ , H de H azj715(2j71 — Zj)
(’227"'72”771*1)6]1{7”7 ]:2 ]:3

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

86 S. SUGIYAMA

—(1—u1 = —Um—1)22,_ /2 km
X e m=1)Zm—1/Symm

m—1
a2 2 k;
< ] e 51227 {D1(e) (23, — 23)/2
j=3

+ DQ(Ej)(Zj_l — Zj) + D34(€j)}

—(u14un)z2 €1,€
(5.7) x e turtee) 2/2P((111,l22)7)(k1,k2)(u1’ u2; 22)-

In general, we define a polynomial P((leltf";ijé,)(kl,...,kj)(“1’ Ce U3 25) €

Qlu, . .., uj, z;] by (5.4) and the recurrence relation

(617"'76.7') e
(11,...,53-),(1617...,@)(ula s UG5 Z5)

_ (ur4-~4u;)22_ /2 qli—1 —(urd-tuy)22_, /2 ks
7{6 J1/%5—1 (aijl) e J1/%5—1 Zj—l

x (D1(ej) (231 — 23)/2 + Da(€;)(zj-1 — 2j) + Daa(e2))

(€1,ns€5—1)
(5.8) X P(lll,“.,ljj_ll),(kl,.‘.,k]-_l)(U’l? sy =15 Zj—l)]}

Zj-1=%j

In a similar fashion to computations for (5.5) and (5.7), integral (5.3) can
be described as

/ et )2 /2
szleR

—(u1+~--+um71)272n71/2 (€)
xe P(ll7~~'alm—1)7(k17~~akm—1)

X (ula <oy Um—15 mel) dzm—1
22 €
(59) = /ER e” /QkaP((ll),...,lm—l)7(k17...,km—1)(ul’ e Ume; 2) dz.
z

Hence we obtain the following refined expression of Lemma 4.10.

LEMMA 5.7. For any m € Zso, e€{1,2,3,4}™ 1 and (I1,...,lm_1,
ki,..., kn)€ Z;’g_l, we have
(m,e)
sl —1), (k1 oo ki)
PR -

Tl Ly eyl Ee)
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X

m—1

k

/ du(l —ug — - — Upy_1)Fm Hu]
Dmfl ]'21

e %°/2 ykm ple) .
X /E]R P(lly 7lm 1) (k17‘_.7km71)(u17 T uTn_l’ Z) dZ
z

m—1
<[ T w2 a2 e
£€R i
m—1
> (_1)we(])k’g (_1>k1+'“+km
j=1

(\[g)kl—i— +km+r2(e)Ar3 1/2 _ T)r4(e)tr[Wk1+ +I<:mA( )]

Here P(( ) Dk ”7km_1)(u1, cey Um—1;2) € Qug, ...y um—1, 2] is the
polynomzal determined by (5.4) and (5.8).

Proof of Theorem 5.4. It is obvious that

m—

H /2l/Hl uj/2§)€Q[u1,...,um_1,§]

from the fact that H;, is an even (resp. odd) function if I; is even
(resp. odd). Combining this with Lemma 5.5, there exists a polynomial

Q1(u1, ..., Un_1) such that
/ e H 31252 Hy, (1 u;/26) de
€€R i

—\/7Q1( y, Um— 1)6 V2 Q[ul,...,um_l].
Thus, by Lemma 5.7, the coefficient CEZZE)lm () is contained in
m—1

(2m)~ 1 / du(l —uy — - — Upyq)*m H o
Dm—l

_22 m .
» /ZER6 /2 P(() oy (1 <<t 13 2) d2

X V21 Q1 (U1, . ..y 1) X (\fzg)’“ﬁ"'*’fm*m(f)N3<f>(1 /2 —7)Q.
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Moreover, by Lemma 5.5, there exists a polynomial Q2(u1, . .., um—1) such
that

—22/2 _km pl€) .
/ e 12, P(ll,...,lm71)7(k?1,---7km—1)(ul’ ceey U1 2) dz
z€R
=V 27rQ2(u1, Cey um_l) S V27TQ[U1, cee um_l].

(m.€)

(o1 )s (K1 o) 1S CONtAINE 0

Finally, ¢

m—1
_ 2 ks
(2m) Yor / 1—up—---— um,l)km | | uj’
Dmfl i—1
J

2
X HQj(u17"'7um—1) dum_1-~-du1
7=1

« (\@g)k1+-~-+km+r2(G)Arg(e)(1/2 . 7_)7‘4(6)@
C (\/ig)k1+--~+km+r2(e)Am(e)(1/2 _ 7)7"4(6)(@

by virtue of Lemma 5.6. Consequently, we obtain Theorem 5.4. 0

86. Examples of Rabi—Bernoulli polynomials

It seems difficult to give a simple formula of Ry(g, A;z) for a gen-
eral k € Z>i, although we can explicitly compute it for any fixed k by
definition. In this section, we give simple formulas of Ry(g, A;x) for
ke {1,2,3}. By Proposition 5.2, the first Rabi-Bernoulli polynomial is
given by Ri(g, A;x) =2 — 1/2 — ¢* = By(z — ¢%).

For preparation, we give another vanishing result on Tr K3 ((¢) in addition
to Lemmas 4.6-4.9. By Lemma 4.8, we have Tr K 3(t) =0 for ¢ =3, that

is, 0(52’3) =0 for all ¢ € Z>(. Such a vanishing is still true for € € {1, 2}.

LEMMA 6.1. We have Tr K9 1(t) =0 and Tr Kp2(t) =0. In particu-
lar, we have 0512’1) = 0512’2) =0 for any q € Z>o. In particular, Tr K5(t) =

Tr Ko 4(t) holds.

Proof. We give a proof only in the case ¢ = 1. The case ¢ =2 is proved
in a similar fashion. By using Lemmas 3.4 and 3.5, the trace of Ky (t) is
evaluated as
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t
T‘I‘KQJ(t):/ d’LL/
0 (zo,zl)€R2

)e (20—21)%/2(t—u)—(t—u)z}/2 exp(—v2g(t — u)z W)
— U

89

X
-+
=
| — |
)
3
=~

1 22— 23 —(21—20)%/2u—uz2
» e~ (F1=20)7[2u—uzg/2 o\ /20uz0 W) | dzo dzy.
\/% 2 p( ! ’ ) ’ 1

By the change of variables (zg, z1) — (21, 20) and wr—t —u, we obtain
Tr Ko 1(t) = — Tr K31 (t). This completes the proof. []

A simple formula for k = 2 is given by a direct computation as follows
PROPOSITION 6.2. We have

Ra(g, A; x)—ac —(1—|—2g ):):+1/6+g +g 1L A%=

Proof. We shall compute Cg ~(1) = ch) + cg ). First, we observe the first
term 0(2) Y c§2’€). By (4.7), we have

(2,€)

(29 _ 3 (20

Bo(x — g%) + A2

(ke k2)”
(l1,k1,k2)€Z>0
li+(1/2)(k1+k2)—r1(e)=(1/2)ra(e)=1
In the case of € € {1, 2}, both values ng,l) and cg ) vanish by Lemma 6.1.
For € = 3, we have cl@’zz ko) = 0 by Lemma 4.8. For € =4, the integer /; in
29

Cly k1 k) satisfies [; € {0, 1}. In the case of [ = 1, the value c(z(i) ) Vanishes
by Lemma 4.6. When /1 =0, by noting k; + k2 = 2, we have

1
(2,4) _ d ~23/2,2 4o £\ /20(1 — k2 (_\/20u)*1
€0, (k1 ,k2) 27?]{71!]{72!/0 u/zoe]Re 2y dz2of \[g( u) }72( \[gu)
x / e €12 dg(1/2 — )tx(I)
£eR
1
= ———B(ki + 1, ko + 1)2¢%(1 — 2
k1!k2! (1+72+)g( T)
! 2¢%(1 — 27) 12(1 27)
= —-———-- — LT ) = — — 2T s
(by + hy + 1)1 39
which leads us to 052’4) :Cé?(é??) + 82(11)1) + (2(3)0) =g¢*(1 —27). By the
argument as above, we finally obtain
(6.1) P = g2(1 - 27).
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Next let us consider the case m = 3. In this case, with the aid of Lemmas 4.6—

(3,€)

4.8 and (4.7), only the following cases survive among all C(ll,lz) (kv ko ks) such

that ll + l2 + k21+k272+k?, - 7'1(6) — %’I“Q(e) =0:

(1) 66{(3,3),(4,4)} and l1:l2:k1:k2:k3:0.
(2) 6:(1,1), 11212:1andk1:k2:k320.

In case (1), the coefficient involved is evaluated as

1 1—uy
Eg S)) (0,0,0) — (QW)_I/ dul/ du2/ e 28/
0 0 20€R

x / e €2 de AT (1/2 — 1)+ Otr(T)
£eR
= A"(E)(1/2 — 7)ra(9),

In case (2), we have P(gl(ll)l()o 0)(u1,u2, z) =22 by (5.4) and (5.6). Thus,

Lemma 5.7 yields

1—uq
E’S(S)OO (2m) 12/ dul/ dUQ/ e 1222 4y

X / e €2y une? deétr(l) =—1/12
£eR
with the aid of (5.2). Hence,
(6.2) A =AZ+(1/2-1)2 - 1/12

holds. As a consequence, we obtain the desired assertion by (6.1) and (6.2).

i

Next let us compute the third Rabi-Bernoulli polynomial R3(g, A; x).
By definition, R3(g, A;7) = —¢® — 3Ch +(2) and Cy - (2) = cg ) (3) + cé )

hold with
Cgm) _ Z cgm,e)
6€{1,2,3,4}m_1
and
(m,e) (m €)
62 - Z (lly lm— 1) (klv -k )

l,eslm—1,k1,..,km €Zx0
ll+~“+lm_1+(k1+~~+km)/2+m—2—7”1 (6)—(1/2)7‘2 (6)22
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LEMMA 6.3. We have

1 1
B=(og) (377)

Proof. By Lemmas 4.8 and 6.1, we easily have cg 9=0 for any

e €{1,2,3}. When € =4, by Lemma 4.6, (I1, k1, k2) in cl(17 k1 ) = 0 satisfies

l1€{0,2} and ky + ko =4 — 20;. If [; =0 and ky + ko =4, Wehave

1
(2,4) . 1 ks, k e~ ? /2 4
Co,(k1,ka) — 27Tk:1!k32!/o dull = u)Pu™ /ZGR *

y / /2 4e(Vag) (—1)4(1/2 — 7)te()

If 1 =2 and k1 = ko =0, we have

(2 4)
2,(0,0) 271'2‘

722/2P ;2)dz

where we use PQ(%) (u; 2) = (u/2)Ha(y/u/22) = u(uz? — 1). Hence we obtain

4

2,4 g 1 1 /1 1 1

a= 3 5(2‘7)‘30@‘) (9‘30)(‘7)- ]
k1,k2€Z50

k1+ko=4

LEMMA 6.4. We have

2
3 1 1 1
P = — 5P+ (2 - T> +39°A%

Proof. We give a proof by computing 053’6) for all e. By Lemma 4.8, we

only have to consider the cases e = (1, 1), (1, 2), (1,4), (2,1), (2,2), (2,4),
3,

(3,3), (4,1), (4,2), (4,4). We shall give expressions of all CEZLIL) (k1 ko sks)

such that I + lo + 2128k 41— (¢) — Lry(e) = 2 in the following way.

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

92 S. SUGIYAMA

For e =(1,1), we may assume [y =ly =1 and k1 + ko + k3 =2 by Lem-
mas 4.6 and 4.9, and thus we compute

(3,(L,1))
(1,1),(k1,k2,k3)

,L'Q

. . . ks, ki, k —22/2 _4
= Srklealie /DQ du(l —uy — u2) B uy us? /ZeRe z dz
- / e~ urus€? de(v2g)*r (1)
£eR

(k1 + 1) (k2 + 1)92'

60
Hence we have
3,(1,1 —(k1+1)(ka+1 1
HEV 3 ( 62)( )92:_492_

k1,k2,k3€Z>0
k1+ko+k3z=2

For e =(1,2), the numbers (l1,l2) and (ki, ko, k3) satisfy [; =l =1 and
k14 ko + k3 =1 by Lemmas 4.6 and 4.9. Then, we have

(3.012)
(1,1),(k1,k2,k3)

= (2m) 142 / du(l —uy — u2)k3u’flu§2 / e #1222 dz
Do z€R

X / e uqupe? de(—1)1(v29)%tr (1)
£eR

(k1 + 1) (k2 + 1)92

30
with the aid of P((12,711)),(k1,k2)(u1’ ug; 29) = z§1+k2+1. Hence we obtain
3,(1,2 ki+1)(ky +1 1
30:2) _ Z (k1 ;g )92:72_

k1,k2,k3€Z>0
k1+ko+ks=1

For e = (1,4), we may assume (l1,l2) and (ki, k2, k3) satisfy I; =1y =1 and

(k1, ko, k3) =03 by Lemmas 4.6 and 4.9. By noting P((117714))702(U1,’U,2; z9) =

1 — (u1 + uz)z3 and P((Ql’g))oz(ul, ug; 29) = 1 — 2u; 23, we have

https://doi.org/10.1017/nmj.2016.62 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.62

93

ZETA FOR QUANTUM RABI MODELS

(3,(1,4))
€(1,1),03

2
- du/ 6_22/2(1 —u12? —upz?) dz
21 Jp, z€R

€, 0oe? _ _ (i
X/&Re uiugg” d§(1/2 — 1)tr(l) = 50 <2 T>

and

(3,(1,4))
€(2,0),05

i2 )
_ —_—— —Zz /2 1 _ 2 2
272! /D2 du /zeRe ( u12°) dz
—£2 2 1 /1
x [ e Cumede(1/2 -l == (5-7)
£€R 60 \ 2

Hence we obtain c§3’(1’4)) =0.
For e =(2,1), we may assume [y =ly =1 and k; + ko + k3 =1 by Lem-

mas 4.6 and 4.9. By a direct computation, we have
)= (2m) 14 / du(l —u; — uQ)kE‘ulfluSZ / e /222 dz
Do z€R

X / e urusg? dé(—1)(V2g)?tr (1)
£eR

= N

(k1 +1)(k2+1) ,
30 g

and hence we obtain
(k1 +1)(ka+1) 5 1,

3,(2,1
a*= X 30 g =67

k1,k2,k3€Z >0
ki1+ko+k3z=1

For e=(2,2), we may assume [} =lp =1 and k1 =ka=k3 =0 by Lem-

mas 4.6 and 4.9. Noting P((12,712)),(0,0) (u1, ug2; z) = 1, we obtain

2
(3,22) _ * du/ e~ /2 dz/ 6762/2"&1’11/252 dé(V/29)*tx(I)
Do z€R £eR

(1,1),05 ~ 91

L,

For e = (2,4), all cg’l(i ’i )()k1 ko g CODCETNEd Vanish by Lemmas 4.6 and 4.9.
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For € = (3, 3), we may assume [; =ly =0 and k1 + k2 + k3 = 2. Then we

have
(3,(3:3)) _ 1 N T o—2/2,2
€(0,0), (k1 ,ka,ks) — 2k Voo Vles] /D2 du(1l —up — ug)™uy us /ZER dz
2
< [ e ag ST 10§ (Vag2a%u(r)
¢eR e
=59 (1),
and hence we obtain
1 1
C§3,(3,3)) _ Z 6(_1)k292A2 _ 592A2'
k1,k2,k3€Zx>0
k1+ka+k3=2

For e=(4,1), we may assume [;+1lp=2 and (ki ks, k3) =03 by
Lemma 4.6. Furthermore, we may assume [y # 0 by Lemma 4.9. Then, a
direct computation gives us

,(4,1)) 22
11 0)3 277/ du/ 12(—uy2%) dz

« /&R 2y 00 de(1)2 — 7)te() = %(1/2 _7)

and
3,(4,1 2
cgoém? = 50 e F2{1 = 2(uy + ug)2%} dz
<[ (/D uaf) de(1/2 ~ ()
£eER
1
=—-—(1/2 -
and hence we obtain 0537(4,1)) =0. For e = (4, 2), all B %2) concerned

(U1,l2), (K1, k2 ,k3)
vanish in the same way as in the case e =(2,4). For e=(4,4), we may

assume [1 =l =0 and k1 + ko + k3 = 2 by Lemma 4.6, and a direct compu-
tation gives us
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(3.(1.0)
(0,0),(1917/(&2,]63)

1 2
- du(l = us — ks, ki1, k2 / —22/2,2 4
27['/431!/432!/433! /[)2 U( “ U2) 1t zeR ‘ :

X/ e /2 de(V29)2(1/2 — 7)*tx(1)
EER

Thus we have 0(3 @4 — g3 (1/2 —7)2
Finally, by the Consuieratlon as above, we obtain the formula as desired.

[
LEMMA 6.5. We have

3
236 (5-3) ()

Proof. Consider cE?‘lel)Q ), (kv ko kg eg)- V€ INAY assume r1(e) + r2(e) =0,

by which e € {3,4} holds, and also that 73(¢) is even by Lemma 4.8. A
direct computation gives us

4.e 1 2 2 rale ale
683734 =30 b, du/ e /2 dz/geRe £/2 dEA 3()(1/2_7.) a( )trA(e)

r4(€)
_ Lanse (1 _T) 4'
3 2

(4,444 43,3 4,(3,4,3 4,(3,3,4
Thus we obtain 0837(04 ) = %(% 7)3 and 083 (04 ) = 083’(04 ) = 6837(04 )

= 2A%(§ = 7). If r1(€) + r2(€) € {1, 3}, then all cgl 227[3) (ko s y) VOTSH
by Lemmas 4.6 and 4.9. If ri(e) 4+ ra(e) =2, the only case ri(e) =2,
ro(€) =0 survives, and in such a case, by Lemmas 4.6 and 4.9, it is suffi-
cient to consider the only case ((I1, l2,13),€) € {((1,1,0), (1, 1,4)), ((1,0, 1),
(1,4,1)),((0,1,1),(4,1,1))} and (k1, k2, k3, ka) = 04. A direct computation
gives us

o = 5 m/ ﬁﬂ?@/e%%wﬁﬁw%ﬂMD
e z€ER EER

__ /1
~ e \2 7
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with the aid of P(11’11’04))03 (u1,ug, ug; z) = 22, and in a similar fashion, we
obtain cg;l:(()ff)lz(l)l) = ngf&(l)l) = —45(3 — 7). Finally, we have the formula as
desired. [

PROPOSITION 6.6. We have

3 1
Rs(g, Ajz) = 23 — (392 + 2> 2 + (394 + 392 +3A% + 2) z — ¢"

34 12 3 2 2 A2
_2A 22 _ 2A2 - 2A
29 739 T3 g

= Bs(z — g%) + 3A%By(z — ¢%) + 29° A%
Proof. Tt follows immediately from Lemmas 6.3-6.5. 0
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