COMMUTATOR LENGTH OF ABELIAN-BY-NILPOTENT GROUPS

by MEHRI AKHAVAN-MALAYERI ${ }^{1}$ and AKBAR RHEMTULLA ${ }^{2}$

(Received 14 June, 1996)

Abstract

Let G be a group and $G^{\prime}=[G, G]$ be its commutator subgroup. Denote by $c(G)$ the minimal number such that every element of G^{\prime} can be expressed as a product of at most $c(G)$ commutators. The exact values of $c(G)$ are computed when G is a free nilpotent group or a free abelian-by-nilpotent group. If G is a free nilpotent group of rank $n \geq 2$ and class $c \geq 2, c(G)=[n / 2]$ if $c=2$ and $c(G)=n$ if $c>2$. If G is a free abelian-by-nilpotent group of rank $n \geq 2$ then $c(G)=n$.

1. Introduction. For an element g in the derived subgroup $G^{\prime}=[G, G]$ of a group G we write $c(g)$ to denote the least integer such that g can be written as a product of $c(g)$ commutators and we put

$$
c(G)=\sup \left\{c(g) ; g \in G^{\prime}\right\}
$$

Let $F_{n, t}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $M_{n, t}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be respectively the free nilpotent group of rank n and class t and the free metabelian nilpotent group of rank n and class t. P. W. Stroud, in his Ph.D. thesis [3] in 1966, proved that for all t, every element of the commutator subgroup $F_{n, 1}^{\prime}$ can be expressed as a product of n commutators. In 1985 H . Allambergenov and V. A. Romankov [1] proved that $c\left(M_{n, t}\right)$ is precisely n provided $n \geq 2$, $t \geq 4$ or $n \geq 3, t \geq 3$. They did this by producing an element d_{n} in $\gamma_{t}\left(M_{n, t}\right)$ that cannot be written as a product of fewer than n commutators. For the case $n=2, c=3$ they proved that every element of $\gamma_{3}\left(M_{2.3}\right)$ is a commutator, and claimed that $c\left(M_{2,3}\right)$ is one. We will show that the element $\left[x_{1}, x_{2}\right]^{2}$ cannot be written as a commutator in the group $M_{2,3}=F_{2.3}=\left\langle x_{1}, x_{2}\right\rangle$. This is done in Theorem 1. Thus $c\left(F_{2,3}\right)=2$ and $c\left(F_{n, r}\right)=c\left(M_{n, s}\right)=n$, for all $n \geq 2$ and $t \geq 3$.

In [2] C. Bavard and G. Meigniez considered the same problem for the n-generator free metabelian group M_{n}. They show that the minimum number $c\left(M_{n}\right)$ of commutators required to express an arbitrary element of the derived subgroup M_{n}^{\prime} satisfies the inequality

$$
[n / 2] \leq c\left(M_{n}\right) \leq n,
$$

where [$n / 2$] is the greatest integer part of $n / 2$. Since $F_{n, 3}$ groups are metabelian, the result of Allambergenov and Romankov [1] shows that $c\left(M_{n}\right) \geq n$, for $n \geq 3$, and Theorem 1 of this paper deals with the remaining case $n=2$. We have $c\left(M_{n}\right)=n$, for all $n \geq 2$. Finally, we extend results in [1] and [2] to the larger class of abelian-by-nilpotent groups and show in Theorem 2 that $c(G)=n$ if G is a (non-abelian) free abelian-by-nilpotent group of rank n.

[^0]The main results of this paper are as follows.
Theorem 1. Let $F_{2,3}=\left\langle x_{1}, x_{2}\right\rangle$ be the free nilpotent group of class 3 on free generators x_{1}, x_{2}. Then $c\left(F_{2,3}\right)=2$.

Theorem 2. Let $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a non-abelian free abelian-by-nilpotent group freely generated by x_{1}, \ldots, x_{n}. Then $c(G)=n$. If A is an abelian normal subgroup of G and G / A is nilpotent, then every element of g^{\prime} is a product of n commutators $\left[x_{1}, g_{1}\right]^{a_{1}}\left[x_{2}, g_{2}\right]^{a_{2}} \ldots\left[x_{n}, g_{n}\right]^{a_{n}}$, for suitable g_{1}, \ldots, g_{n} in G and a_{1}, \ldots, a_{n} in A.

If $F_{n, 2}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is the free nilpotent group of class two, then $c\left(F_{n, 2}\right)=n / 2$, if n is even and $(n-1) / 2$, if n is odd. This result appears in [1].

We know of no example of a finite group G of rank n where $c(G)>n$. Nor do we know of any example of a solvable group G of rank n where $c(G)>n$.
4. Proofs. We begin by establishing a technical result required in the proof of Theorem 1.

Lemma 1. The following system of three equations in variables $s_{1}, s_{2}, r_{1}, r_{2}, \alpha$ and β has no integer solution:

$$
\begin{gather*}
r_{2} s_{1}-r_{1} s_{2}=2 \tag{1}\\
\frac{s_{1} r_{2}\left(r_{2}-1\right)}{2}-\frac{r_{1} s_{2}\left(s_{2}-1\right)}{2}+r_{2} s_{2}\left(s_{1}-r_{1}\right)-\alpha r_{2}+\beta s_{2}=0 \tag{2}\\
\frac{r_{2} s_{2}\left(s_{1}-1\right)}{2}-\frac{r_{1} s_{2}\left(r_{1}-1\right)}{2}-\alpha r_{1}+\beta s_{1}=0 \tag{3}
\end{gather*}
$$

Proof. Put $c_{1}=\alpha r_{2}-\beta s_{2}, c_{2}=\alpha r_{1}-\beta s_{1}$. Then

$$
\alpha=\frac{\left|\begin{array}{ll}
c_{1} & -s_{2} \\
c_{2} & -s_{1}
\end{array}\right|}{\left|\begin{array}{ll}
r_{2} & -s_{2} \\
r_{1} & -s_{1}
\end{array}\right|}=\frac{s_{1} c_{1}-s_{2} c_{2}}{2}, \quad \beta=\frac{\left|\begin{array}{ll}
r_{2} & c_{1} \\
r_{1} & c_{2}
\end{array}\right|}{-2}=\frac{r_{1} c_{1}-r_{2} c_{2}}{2} .
$$

Hence we need $s_{1} c_{1}-s_{2} c_{2}$ and $r_{1} c_{1}-r_{2} c_{2}$ to be even:

$$
\begin{aligned}
& c_{1}=\frac{s_{1} r_{2}\left(r_{2}-1\right)}{2}-\frac{r_{1} s_{2}\left(s_{2}-1\right)}{2}+r_{2} s_{2}\left(s_{1}-r_{1}\right), \\
& c_{2}=\frac{r_{2} s_{1}\left(s_{1}-1\right)}{2}-\frac{r_{1} s_{2}\left(r_{1}-1\right)}{2} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
2 c_{1} & =s_{1} r_{2}^{2}-s_{1} r_{2}-r_{1} s_{2}^{2}+r_{1} s_{2}+2 s_{1} r_{2} s_{2}-2 r_{1} r_{2} s_{2}, \\
& =r_{2}\left(s_{1} r_{2}-r_{1} s_{2}\right)-\left(s_{1} r_{2}-r_{1} s_{2}\right)-s_{2}\left(r_{1} s_{2}-s_{1} r_{2}\right)-r_{1} r_{2} s_{2}+s_{1} r_{2} s_{2}, \\
& =-2+2\left(r_{2}+s_{2}\right)-r_{2} s_{2}\left(r_{1}-s_{1}\right) .
\end{aligned}
$$

Also we have

$$
2 c_{2}=s_{1}^{2} r_{2}-s_{1} r_{2}-r_{1}^{2} s_{2}+r_{1} s_{2}=-2+s_{1}^{2} r_{2}-r_{1}^{2} s_{2}
$$

Hence we need to satisfy the following conditions:

$$
\begin{gather*}
r_{2} s_{1}-r_{1} s_{2}=2 \tag{1}\\
2 c_{1}=-2+2\left(r_{2}+s_{2}\right)-r_{2} s_{2}\left(r_{1}-s_{1}\right) \tag{4}\\
2 c_{2}=-2+s_{1}^{2} r_{2}-r_{1}^{2} s_{2} \tag{5}\\
s_{1} c_{1}+s_{2} c_{2} \equiv r_{1} c_{1}+r_{2} c_{2} \equiv 0(\bmod 2) \tag{6}
\end{gather*}
$$

Case 1. $r_{1} s_{2}=2 k$, for some integer k. Then

$$
\begin{aligned}
& c_{1}=-1+\left(r_{2}+s_{2}\right)-k r_{2}+(1+k) s_{2} \\
& c_{2}=-1+(1+k) s_{1}-k r_{1} .
\end{aligned}
$$

Further

$$
\begin{equation*}
0 \equiv s_{1} c_{1}+s_{2} c_{2} \equiv s_{1}+s_{1} s_{2}+s_{2}(\bmod 2) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \equiv r_{1} c_{1}+r_{2} c_{2} \equiv r_{1}+r_{1} r_{2}+r_{2}(\bmod 2) \tag{8}
\end{equation*}
$$

From (7) and (8), it follows that r_{1}, r_{2}, s_{1} and s_{2} are all even. But then $r_{1} s_{2}-r_{2} s_{1}$ is divisible by 4 , contradicting (1).

Case 2. $r_{1} s_{2}$ is odd. It follows from (1) that $r_{1}, r_{2}, s_{1}, s_{2}$ are all odd.

$$
\begin{aligned}
s_{1} c_{1}+s_{2} c_{2}= & \frac{1}{2} s_{1}^{2} r_{2}\left(r_{2}-1\right)-\frac{1}{2} s_{1} r_{1} s_{2}\left(s_{2}-1\right)+s_{1} s_{2} r_{2}\left(s_{1}-r_{1}\right) \\
& +\frac{1}{2} s_{2} r_{2} s_{1}\left(s_{1}-1\right)-\frac{1}{2} s_{2}^{2} r_{1}\left(r_{1}-1\right) \\
= & \frac{1}{2}\left(s_{1} r_{2}-s_{2} r_{1}\right)\left(s_{1} r_{2}+s_{2} r_{1}\right) \\
& -\frac{1}{2} s_{1}\left(s_{1} r_{2}-r_{1} s_{2}\right)-\frac{1}{2} s_{1} s_{2}\left(r_{1} s_{2}-r_{2} s_{1}\right) \\
& -\frac{1}{2} s_{2}\left(r_{2} s_{1}-s_{2} r_{1}\right)+s_{1} s_{2} r_{2}\left(s_{1}-r_{1}\right) \\
= & \left(s_{1} r_{2}+s_{2} r_{1}\right)-s_{1}+s_{1} s_{2}-s_{2}+s_{1} s_{2} r_{2}\left(s_{1}-r_{1}\right),
\end{aligned}
$$

which is odd and contradicts (7).
We shall use the following well known identities for groups which are nilpotent of class 3.

Lemma 2. Let $G=\langle x, y\rangle$ be nilpotent of class 3. Then, for all integers r, s the following hold:

$$
\begin{gathered}
{\left[x^{r}, y\right]=[x, y]^{r}[x, y, x]^{r(r-1) / 2}} \\
{\left[x^{r}, y^{s}\right]=[x, y]^{r s}[x, y, x]^{r s(r-1) / 2}[x, y, y]^{r s(s-1) / 2}}
\end{gathered}
$$

Proofs of Theorem 1. Let h, g be any two elements of $F_{2,3} \backslash \gamma_{3}\left(F_{2,3}\right)$. We study the form of the element $[h, g]$. Since $\gamma_{3}\left(F_{2.3}\right)$ lies in the center of $F_{2,3}$ we may express h as
$x_{1}^{r_{1}} x_{2}^{r_{2}}\left[x_{2}, x_{1}\right]^{\beta}$ and g as $x_{1}^{s_{1}} x_{2}^{s_{2}}\left[x_{2}, x_{1}\right]^{\alpha}$. Put $z=\left[x_{2}, x_{1}\right], y_{1}=z^{\beta}$ and $y_{2}=z^{\alpha}$. Then

$$
\begin{aligned}
{[h, g]=} & {\left[x_{1}^{r_{1}} x_{2}^{r_{2}}, x_{1}^{s_{1}} x_{2}^{s_{2}}\right]\left[x_{1}^{\left.r_{1} x_{2}^{r_{2}}, y_{2}\right]\left[y_{1}, x_{1}^{s_{1}} x_{2}^{s_{2}}\right]}\right.} \\
= & {\left[x_{1}^{\left.\left.r_{1}^{r_{2}} x_{2}^{2}, x_{2}^{s_{2}}\right]\left[x_{1}^{r_{1}} x_{2}^{r_{2}}, x_{1}^{s_{2}}\right]\right]\left[x_{1}^{r_{1}} x_{2}^{r_{2}}, x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\left[x_{1}^{r_{1}}, y_{2}\right]\left[x_{2}^{r_{2}}, y_{2}\right]\left[y_{1}, x_{2}^{s_{2}}\right]\left[y_{1}, x_{1}^{s_{1}}\right]}=\right.} \\
= & {\left[x_{1}^{r_{1}}, x_{2}^{s_{2}}\right]\left[x_{1}^{r_{1}}, x_{2}^{s_{2}}, x_{2}^{r_{2}}\right]\left[x_{2}^{r_{2}}, x_{1}^{s_{1}}\right]\left[x_{2}^{r_{2}}, x_{1}^{s_{1}}, x_{2}^{s_{2}}\right]\left[x_{1}, z\right]^{\alpha r_{1}} } \\
& \times\left[x_{2}, z\right]^{\alpha r_{2}}\left[z, x_{2}\right]^{\beta s_{2}}\left[z, x_{1}\right]^{\beta s_{1}} \\
= & {\left[x_{1}, x_{2}\right]^{r_{s} s_{2}}\left[x_{1}, x_{2}, x_{1}\right]^{s_{2} r_{1}\left(r_{1}-1\right) / 2}\left[x_{1}, x_{2}, x_{2}\right]^{r_{1} s_{2}\left(s_{2}-1\right) / 2}\left[x_{1}, x_{2}, x_{2}\right]^{r_{1} r_{2} s_{2}} } \\
& \times\left[x_{2}, x_{1}\right]_{2}^{r_{2} s_{1}}\left[x_{2}, x_{1}, x_{2}\right]^{s_{1} r_{2}\left(r_{2}-1\right) / 2}\left[x_{1}, x_{1}, x_{1}\right]^{r_{2} s_{1}\left(s_{1}-1\right) / 2}\left[x_{2}, x_{1}, x_{2}\right]^{r_{1} s_{1} s_{2}} \\
& \times\left[x_{2}, x_{1}, x_{1}\right]^{-\alpha r_{1}+\beta s_{1}}\left[x_{1}, x_{1}, x_{2}\right]^{-\alpha r_{2}+\beta s_{2}}= \\
= & {\left[x_{2}, x_{1}\right]^{\lambda}\left[x_{2}, x_{1}, x_{2}\right]^{\mu}\left[x_{2}, x_{1}, x_{1}\right]^{v}, }
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda=r_{2} s_{1}-r_{1} s_{2}, \\
& \mu=\frac{s_{1} r_{2}\left(r_{2}-1\right)}{2}-\frac{r_{1} s_{2}\left(s_{2}-1\right)}{2}-r_{1} r_{2} s_{2}+r_{2} s_{1} s_{2}+\beta s_{2}-\alpha r_{2}, \\
& v=\frac{r_{2} s_{1}\left(s_{1}-1\right)}{2}-\frac{s_{2} r_{1}\left(r_{1}-1\right)}{2}+\beta s_{1}-\alpha r_{1} .
\end{aligned}
$$

Since $\left[x_{2}, x_{1}\right],\left[x_{2}, x_{1}, x_{2}\right]$ and $\left[x_{2}, x_{1}, x_{1}\right]$ are the basic commutators and the group under consideration is the free nilpotent class 3 group, it follows that if $[h, g]=\left[x_{2}, x_{1}\right]^{2}$ then $\lambda=2, \mu=v=0$. But, by Lemma 1 , there are no integers $\alpha, \beta, r_{1}, s_{1}, r_{2}, s_{2}$ for this set of equations to hold and we conclude that $c\left(F_{2,3}\right) \geq 2$. Since $c\left(F_{2,3}\right) \leq 2$ by [1] or [2], we obtain the equality.

The proof of Theorem 2 makes use of the following two results. The first is elementary; the second is a result of Peter Stroud [4]. We shall include the proofs since Stroud's result never got published, except in his Ph.D. thesis, due to his untimely death. In the case of a finite group G, Brian Hartley [3] has given a bound for $c(G)$ in terms of the Fitting length of G. His proof incorporates Stroud's proof given below.

Lemma 3. Let A be a normal subgroup of $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. If A is abelian or A lies in the second center $\zeta_{2}(G)$ of G, then every element of $[G, A]$ has the form $\prod_{i=1}^{n}\left[x_{i}, a_{i}\right]$, where $a_{i} \in A$.

Proof. Consider $[g, d]$, where $d \in A$ and $g=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{i},}^{\varepsilon_{r}}$, where $\varepsilon_{i} \in\{1,-1\}$. Write $x_{i_{1}}=x, \varepsilon_{1}=\varepsilon$ and $g=x^{\varepsilon} y$. Then $[g, d]=\left[x^{\varepsilon} y, d\right]=\left[x, d^{\varepsilon}\right][y, d]$, if $A \leq \zeta_{2}(G)$, and $[g, d]=$ $\left[x^{\xi}, d\right]\left[x^{\varepsilon}, d, y\right][y, d]=\left[x^{\varepsilon}, d\right]\left[y, d\left[d, x^{\varepsilon}\right]\right]$, if A is abelian. If $\varepsilon=-1$, then use $\left[x^{-1}, d\right]=$ $\left[x, x d^{-1} x^{-1}\right]$.

Iterate the process r times to obtain $[g, d]=\prod_{j=1}^{r}\left[x_{i j}, d_{i}\right]$ with $d_{j} \in A$. Finally use the identity $\left[x, d_{1}\right]\left[x, d_{2}\right]=\left[x, d_{1} d_{2}\right]$ to see that every $\Pi\left[g_{i}, d_{i}\right], d_{i} \in A$ has the form $\prod_{i=1}^{n}\left[x_{i}, a_{i}\right]$, where $a_{i} \in A$.

Lemma (P. Stroud). Let $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a nilpotent group. Then every element of the commutator subgroup G^{\prime} is a product of n commutators $\left[x_{1}, g_{1}\right] \ldots\left[x_{n}, g_{n}\right]$, for suitable g_{i} in G.

Proof. Use induction on the nilpotency class of G. If G is abelian, then $G^{\prime}=1$ and the result is clear. Next let $G \in \mathcal{N}_{r+1}$, nilpotent of class $r+1$, and assume the result for groups in the class \mathcal{N}_{r}. Let $\Gamma=\gamma_{r+1}(G)=\left[\gamma_{r}(G), G\right]$. Then an element g of G^{\prime} has the form $g=\left[x_{1}, h_{1}\right] \ldots\left[x_{n}, h_{n}\right] d$, for some $d \in \Gamma$. By Lemma 3, we have

$$
g=\left[x_{1}, h_{1}\right] \ldots\left[x_{n}, h_{n}\right]\left[x_{1}, a_{1}\right] \ldots\left[x_{n}, a_{n}\right]=\prod_{i=1}^{n}\left[x_{i}, h_{1} a_{i}\right] .
$$

Proof of Theorem 2. By hypothesis, there exists a normal abelian subgroup A of G such that G / A is nilpotent. By Lemma 3, $[A, G]=\left\{\left[x_{1}, a_{1}\right] \ldots\left[x_{n}, a_{n}\right] ; a_{i} \in A\right\}$ and, since $G /[A, G]$ is nilpotent, using Stroud's result, every element $g \in G^{\prime}$ has the form

$$
\begin{aligned}
g & =\left(\prod_{i=1}^{n}\left[x_{i}, g_{i}\right]\right)\left(\prod_{i=1}^{n}\left[x_{i}, a_{i}\right]\right), \text { with } a_{i} \in A \\
& =\prod_{i=1}^{n}\left(\left[x_{i}, a_{i}\right]\left[x_{i}, g_{i}\right]^{d_{i}}\right), \text { for suitable } d_{i} \in A
\end{aligned}
$$

Now $\left[x_{i}, g_{i} a_{i}\right]=\left[x_{i}, a_{i}\right]\left[x_{i}, g_{i}\right]^{a_{i}}=\left(\left[x_{i}, a_{i}\right]\left[x_{i}, g_{i}\right]\right)^{a_{i}}$.
Thus $\left[x_{i}, a_{i}\right]\left[x_{i}, g_{i}\right]=\left[x_{i}, g_{i} a_{i}\right]^{a_{i}^{-1}}$ and $g=\prod_{i=1}^{n}\left[x_{i}, g_{i} a_{i}\right]^{d, a_{i}^{-1}}$, with $d_{i} a_{i}^{-1} \in A$. Thus $c(G) \leq n$ and every element of G^{\prime} has the required form. Since G is free abelian-by-nilpotent and non-abelian, the free metabelian group on n-generators is a quotient of G and hence so is the free nilpotent-class-three group on n generators. By Theorem 1 for the case when $n=2$ and by [1] for $n>2$ we have $c(G) \geq n$. This shows that $c(G)=n$ and completes the proof.

REFERENCES

1. Kh. S. Allambergenov and V. A. Romankov, Product of commutators in groups, Dokl. Akad. Nauk. UzSSR (1984), No. 4, 14-15 (Russian).
2. C. Bavard and G. Meigniez, Commutateurs dans les groupes métabéliens, Indag. Math. N.S. 3(2) (1992), 129-135.
3. B. Hartley, Subgroups of finite index in profinite groups, Math Z. 168 (1979), 71-76.
4. P. Stroud, Ph.D. Thesis (Cambridge, 1966).

Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
E-mail address: akbar@malindi.math.ualberta.ca.

[^0]: 'The first author is grateful to the Ministry of Culture and Higher Education of I. R. of Iran and the University of Alberta for their financial support.
 ${ }^{2}$ Research partially supported by NSERC.

