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Abstract
Objective: Cluster analysis is widely applied to identify dietary patterns. A new
method based on Gaussian mixture models (GMM) seems to be more flexible
compared with the commonly applied k-means and Ward’s method. In the present
paper, these clustering approaches are compared to find the most appropriate one
for clustering dietary data.
Design: The clustering methods were applied to simulated data sets with different
cluster structures to compare their performance knowing the true cluster
membership of observations. Furthermore, the three methods were applied to
FFQ data assessed in 1791 children participating in the IDEFICS (Identification and
Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and
Infants) Study to explore their performance in practice.
Results: The GMM outperformed the other methods in the simulation study in 72 %
up to 100 % of cases, depending on the simulated cluster structure. Comparing the
computationally less complex k-means and Ward’s methods, the performance of
k-means was better in 64–100 % of cases. Applied to real data, all methods
identified three similar dietary patterns which may be roughly characterized as a
‘non-processed’ cluster with a high consumption of fruits, vegetables and
wholemeal bread, a ‘balanced’ cluster with only slight preferences of single foods
and a ‘junk food’ cluster.
Conclusions: The simulation study suggests that clustering via GMM should be
preferred due to its higher flexibility regarding cluster volume, shape and
orientation. The k-means seems to be a good alternative, being easier to use while
giving similar results when applied to real data.
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Various associations have been reported between dietary
intakes and health outcomes, particularly obesity, CVD
and cancer(1–4). It is likely that, in most instances, diet–
disease associations may not be explained by the con-
sumption of a single food or nutrient, but rather by the
overall dietary behaviour of a person(5). Dietary data are
often assessed by means of FFQ that query retrospectively
the consumption frequencies of a selected set of food
items over a specified period of time, typically a week, a
month or a year. Depending on the number of queried
food items, there may be a large number of possibly
intercorrelated variables that need to be considered when
trying to assess the effect of dietary habits on health out-
comes. To cope with this high-dimensional data and
in order to analyse various food items simultaneously,

multivariate techniques are required that have been
adopted to the field of dietary pattern analysis by nutri-
tional epidemiologists in recent years(5).

It can be assumed that dietary patterns are expressed in
FFQ data as disjoint groups of individuals with similar
dietary habits. The segmentation of observations into such
groups is referred to as cluster analysis and has frequently
and successfully been applied to identify dietary patterns
(see Newby and Tucker for a comprehensive review(6)).

A variety of clustering methods has been proposed in the
literature(7). The majority is based on measurements of
similarity or dissimilarity between pairs of observations and
does not assume an underlying statistical model. For this
reason, we refer to these approaches as ‘heuristic’ methods
in the following. The basic idea of heuristic methods is to
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assign similar observations to the same cluster and less
similar observations to different clusters. The most com-
monly applied heuristic clustering algorithms in dietary pat-
tern analysis are the k-means algorithm and Ward’s
minimum variance method(5). A major drawback of these
two methods is their tendency to create spherical clusters of
equal volume, implying the assumption of uncorrelated
consumption frequencies with equal within-cluster variances
for all food items in all clusters. This assumption may lead to
biased clustering solutions when not being met by the true
cluster structure. Recently, Fahey et al.(8) argued that these
assumptions may be too restrictive in dietary pattern analysis
and proposed a different approach based on Gaussian
mixture models (GMM), which assumes the observed data to
be generated from a mixture of different probability dis-
tributions, each one representing a different cluster. The
cluster membership of an observation can be derived from
the model parameters. This approach is more flexible than
the standard heuristic methods as it allows clusters of dif-
ferent volumes and shapes and is able to account for within-
cluster correlations between the variables(9).

The present paper aims to compare the commonly
applied k-means algorithm, Ward’s method and the new
GMM approach in order to find the most appropriate
method for clustering dietary data and hence for the
identification of dietary patterns.

The following section of the paper summarizes the
methodological background. In the subsequent sections,
the three methods are applied to simulated data to assess their
performance in retrieving the true cluster structure as well as
to real FFQ data to explore their performance in practice.

Theoretical background: clustering methods

Let x1,…, xn∈Rp be a set of p-dimensional observations,
e.g. a sample of food consumption frequencies of p food
groups collected from n respondents. In the presence of
distinct dietary patterns in the population, these can be
expected to be expressed in the data as disjoint groups of
observations C1,…,Cg⊂ {x1,…,xn} – so-called clusters –

where observations from the same group are more similar to
one another than observations from different groups. A set of
clusters C1,...,Cg obtained by some clustering method is
called a clustering solution. Let us for instance assume there
exist three clusters (g=3): a cluster C1 of respondents with
very low meat consumption but high consumption of fruits
and vegetables compared with the other clusters might
represent a vegetarian dietary pattern, while C2 and C3 might
represent different kinds of non-vegetarian dietary patterns.

Heuristic clustering methods
The most frequently applied clustering methods in
dietary pattern analysis are the k-means algorithm and
Ward’s minimum variance method(5) as both methods are
convenient to use and implemented in most statistical
software packages.

The k-means algorithm starts from an initial set of g∈N

cluster meansm1,...,mg∈R p, i.e. cluster-specific mean values
of the p food groups. A clustering of the observations
x1 ,...,xn is obtained through the following two-step iteration:

1. Obtain a clustering C1,...,Cg of the data by assigning
each observation to the closest mean.

2. Update the cluster means by re-calculating them based
on the new assignment.

These steps are repeated until the clustering C1,...,Cg no
longer changes, which means that each observation is
assigned to the cluster with the closest mean.

However, the clustering solution obtained with the
k-means algorithm depends strongly on the initially
assigned means m1,...,mg. To obtain a solution with high
within-cluster homogeneity, the k-means algorithm should
be initialized with several different sets of initial cluster
means(10). Then, the solution that minimizes the sum of
squared distances of the observations to their corre-
sponding cluster means (within-cluster sum of squares
SSQw) should be selected since the SSQw can be con-
sidered a measure of within-cluster homogeneity where
smaller values indicate higher homogeneity.

Ward’s minimum variance method is a hierarchical
clustering algorithm that starts from the clustering {x1},…,
{xn}, meaning that each observation represents one cluster.
Subsequently, the two clusters that will lead to the smallest
increase of SSQw are combined. The idea behind this
approach is to combine the observations presumably
leading to homogeneous clusters where the SSQw again
serves as a measure for the homogeneity. The process of
combining clusters stops as soon as a predefined number
of clusters is reached.

A major drawback of these two methods is their ten-
dency to create spherical clusters of equal volume(8),
which leads to biased clustering solutions when this
assumption is not met by the data. This drawback is
visualized in Fig. 1 based on an exemplary three-cluster
situation with clusters of unequal volume and shape.
Figure 1(a) shows the true cluster membership of the
observations, whereas Fig. 1(b) to (d) demonstrate solutions
obtained from applying k-means, Ward’s method and GMM
(see following subsection). Obviously, in this example, the
GMM solution reflects the true situation best. Another lim-
itation of Ward’s method is its tendency to create clusters
with an equal number of observations(11), which is an
unrealistic assumption in dietary pattern analysis.

Gaussian mixture models
In order to overcome these limitations and to allow for
clusters of variable volume, shape and orientation, Fraley
and Raftery(9) proposed a model-based approach using
finite mixture models. This clustering approach assumes
the observed data to be generated by a mixture of g∈N

different p-dimensional normal distributions representing
different clusters.
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Let K be a non-observable random variable with values
1,..., g describing the true cluster membership and let X be
a p-dimensional random vector describing the consumption
frequencies of p food items. For each cluster k, the obser-
vations are assumed to be derived from a p-dimensional
normal distribution. Then the probability density function of
X, which is required to calculate the probability of an
observation belonging to a given cluster, can be obtained as
the weighted sum of all g normal distributions:

f x jψð Þ ¼
Xg

k¼1

πkhðx jμk;ΣkÞ;

where h(x | μk, Σk) denotes the p-dimensional normal pro-
bability density and ψ ¼ ðπ1; ¼ πg; μ1; ¼ μg;Σ1; ¼ΣgÞ
denotes the vector of all unknown parameters. ψ includes
the mean vector μk∈R p, k= 1,...,g, i.e. the mean con-
sumption frequencies of the p food items in cluster k,
the covariance matrix Σk∈R p× p, i.e. the variances/
covariances of the p food items in cluster k; as well as the
mixing proportions πk, which can be interpreted as the
probability of being assigned to cluster k.

The unknown true parameter vector ψ can be estimated
by the maximum likelihood method, using the iterative
Expectation-Maximization (EM) algorithm(12) as described
in McLachlan et al.(13); see also Biernacki et al.(14) for the
generation of good initial values. A clustering solution can
then be obtained by simply assigning each observation xi
to the cluster k

_

i to which it belongs with the highest
probability, where the latter follows from Bayes’ Theorem.
If there is more than one cluster fulfilling this property, xi
is randomly assigned to one of these clusters.

In the context of GMM, the selection of an appropriate
number of clusters g∈N may be treated as a model
selection problem. Fraley and Raftery(9) suggested to fit
GMM with different numbers of clusters and to choose the
model with the largest Bayesian Information Criterion.

One useful feature of GMM is the fact that they enable
the user to place constraints on the geometrical properties
of the clusters, e.g. to specify a desired degree of flexibility
in terms of cluster volume, shape and orientation or to
take advantage of pre-existing knowledge about these
properties. This can be accomplished by different para-
meterizations of the covariance matrices Σk and by
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Fig. 1 A simulated two-dimensional data set with three clusters (represented by ●, □ and +) of variable volumes and shapes (‘true
clusters’, a) as well as the clustering solutions obtained with the k-means algorithm (b), Ward’s method (c) and a Gaussian mixture model
(GMM, d)
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restricting some of the parameters to be equal for all
clusters k= 1,..., g as described by Banfield and Raftery(15).
In the subsequent applications of the GMM, ten models
putting different restrictions on the covariance matrix were
estimated, including models with consumption frequency
variances being allowed to vary within and/or across
clusters as well as models (not) allowing for covariances
among the consumption frequencies. Parameter estima-
tion for these models is implemented in the R package
mclust developed by Fraley and Raftery(16).

Simulation study

The performances of the GMM approach, k-means and
Ward’s method were first compared by means of a simu-
lation study. All subsequent analyses were performed
using the open-source statistical programming language R
available at http://cran.r-project.org/(17).

Design
Three cluster geometries were investigated as illustrated in
Fig. 2 based on an exemplary two-dimensional data set:
spherical clusters with equal volume (Fig. 2(a)), ellipsoidal
clusters with variable volume, shape and orientation
(Fig. 2(b)) and cube-shaped clusters with equal volume
and orientation (Fig. 2(c)). For each geometry, 10 000 data
sets with twenty variables were generated using the
function genRandomCluster() from the R package
clusterGeneration(18). This function can be used to
generate clustered data with a specified degree of
between-cluster separation(19) ranging from −1 (no
separation) to 1 (clearly separated clusters). A separation
value of −0·1 was chosen in order to create strongly
overlapping cluster structures which seemed to reflect the
most realistic data structure.

For each data set, clustering solutions were obtained
using the GMM with automatic model selection via the
Bayesian Information Criterion (ten models putting

different restrictions on the covariance matrix)(16), the k-
means algorithm (1000 starting values) and Ward’s method
using SSQw as a measure for the cluster homogeneity. All
algorithms were initialized with the true number of clus-
ters. The obtained clustering solutions were compared
with the true cluster structure using the adjusted Rand
index (ARI)(20), which measures the agreement of two
clustering solutions. The values of the ARI range from −1
to 1 where a value of 1/−1 indicates perfect agreement/
disagreement, with 0 being the expected value of the ARI
if the observations are assigned to the clusters at random.

Results
Comparing the three clustering algorithms based on
simulated data with spherical clusters of equal volume, the
clustering solutions obtained from a GMM were more
similar to the true cluster structure than those obtained
from the k-means algorithm or Ward’s method for more
than 72 % of all simulated data sets, as indicated in Table 1.
For data sets with clusters of variable volume, shape and
orientation, in more than 90 % of all cases the GMM
achieved a higher agreement with the true cluster structure
compared with the two heuristic methods.

Table 2 summarizes mean and percentile values of
the ARI. The mean and median ARI of the clustering
solutions obtained from the GMM are higher than those of
the solutions obtained from the k-means algorithm or
Ward’s method for all three cluster geometries, indicating
better agreement of the GMM with the true cluster struc-
ture for the majority of simulated data sets.

Application to real data: FFQ data from the
IDEFICS Study

All three clustering methods were applied to dietary data
collected in the IDEFICS (Identification and Prevention of
Dietary and Lifestyle-induced Health Effects in Children and
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Fig. 2 Exemplary two-dimensional data set for each of the three cluster geometries: (a) spherical, equal volume; (b) variable
volume, shape and orientation; and (c) cube-shaped, equal volume and orientation (●, □, ▲ and + represent different clusters)
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Infants) Study to explore their performance in practice. IDE-
FICS is a European longitudinal multicentre study that aimed
to investigate the causes of diet- and lifestyle-related diseases
such as overweight and obesity in children and infants
from eight European countries (Belgium, Cyprus, Estonia,
Germany, Hungary, Italy, Spain and Sweden). In the present
analysis, only the German IDEFICS sub-sample was con-
sidered. All study procedures were conducted according to
the principles expressed in the Declaration of Helsinki and
ethical approval was obtained from the local ethics committee.
Parents provided written informed consent for all examina-
tions. Each child was informed orally about the modules by
field workers and asked for his/her consent immediately
before examination. Details on the design and purpose of the
IDEFICS Study can be obtained from Ahrens et al.(21).

Data and methods
During the German IDEFICS baseline survey conducted
from 2007 to 2008, dietary data were assessed in 2014
children aged 2–9 years by means of a qualitative forty-
five-item FFQ included in the IDEFICS Children’s Eating
Habits Questionnaire (CEHQ-FFQ)(22). This paper-and-
pencil based questionnaire was completed by proxies,
mainly by parents. Usual ‘at home’ consumption fre-
quencies of the forty-five food items were queried, i.e.
meals not under parental control like school meals
were not covered. The seven response categories ranged
from ‘never/less than once a week’ up to ‘4 or more times

per day’. Numerical values were assigned to convert the
different answer categories into weekly consumption fre-
quencies (0 up to 30 times/week). A detailed description
of the CEHQ-FFQ is given elsewhere(22–24).

Height of the children was measured to the nearest
0·1 cm with a calibrated stadiometer (model: telescopic
height measuring instruments SECA 225); body weight
was measured in fasting state in light underwear on a
calibrated scale accurate to 0·1 kg (model: electronic scale
TANITA BC 420 SMA with adapter). BMI was calculated
as weight divided by height squared and categorized
according to the International Obesity Task Force
criteria(25,26).

Observations with missing frequency values for more
than five food items were excluded (n 223). In the
remaining 1791 observations, missing values were impu-
ted using the k-nearest-neighbour imputation approach
which estimates missing values from the ten nearest
observations with no missing values in the corresponding
variables. The forty-five food items were aggregated into
fifteen food groups (breakfast cereals, cheese, fast food,
fruits, meat, meat alternatives, milk and yoghurt, refined
cereals, sauces and butter, sweet drinks, sweet spread,
sweets, vegetables, water, wholemeal bread). The aggre-
gation was accomplished based on nutritional character-
istics like sugar and fat content, where solid foods and
drinks were distinguished. Furthermore, it was tried to
avoid combining food items that might have contrary

Table 1 Comparison of pairs of clustering methods by how often each one achieved a higher agreement with the true
cluster structure, based on 10 000 simulated data sets for each cluster geometry

Higher ARI*

Compared algorithms Spherical Ellipsoidal Cube-shaped

GMM v. k-means 72% v. 25% 92% v. 8 % 74% v. 23%
GMM v. Ward 100% v. 0 % 91% v. 9 % 100% v. 0 %
k-means v. Ward 100% v. 0 % 64% v. 36% 100% v. 0 %

GMM, Gaussian mixture model; ARI, adjusted Rand index.
*The ARI was used to measure the agreement with the true cluster structure.

Table 2 Comparison of the performance of the three clustering methods on 10 000 simulated data sets for each cluster geometry based on
the ARI

ARI* percentiles

Cluster geometry Method Mean ARI* 1st 25th Median 75th 99th

(a) Spherical, equal volume GMM 0·69 0·54 0·63 0·68 0·74 0·88
k-means 0·67 0·52 0·60 0·66 0·72 0·87
Ward 0·43 0·24 0·35 0·41 0·51 0·71

(b) Ellipsoidal, variable volume, shape, orientation GMM 0·81 0·29 0·72 0·88 0·92 0·99
k-means 0·56 0·15 0·50 0·58 0·65 0·80
Ward 0·54 0·19 0·46 0·54 0·62 0·81

(c) Cube-shaped, equal volume and orientation GMM 0·69 0·50 0·62 0·68 0·75 0·89
k-means 0·66 0·49 0·59 0·65 0·73 0·88
Ward 0·41 0·21 0·32 0·39 0·49 0·73

GMM, Gaussian mixture model; ARI, adjusted Rand index.
*The ARI was used to measure the agreement with the true cluster structure.

Comparison of clustering methods 259

https://doi.org/10.1017/S1368980014003243 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980014003243


effects in terms of obesity risk. In order to get data that
represent the composition of each child’s diet being at the
same time easily comparable between children, the con-
sumption frequencies of the derived food groups were
divided by the sum of each child’s total consumption
frequency over all food groups (relative frequencies).
To achieve estimability of the formulated model, all vari-
ables except one can be explicitly modelled. Hence, water
consumption frequency was dropped because it may
contribute little to the clustering due to its small variability.
Finally, the data were rescaled such that the variances of
all remaining variables were equal to 1 to avoid artificially
elongated clusters due to different variances of the
marginal distributions.

In contrast to the simulation study, the number of clusters
and the true cluster memberships are unknown when
applying clustering methods to real data. Since in similar
studies(6) clustering solutions with two to six clusters were
obtained, solutions with two to six clusters were also esti-
mated for the IDEFICS data using again GMM with automatic
model selection via the Bayesian Information Criterion,
k-means algorithm with 10 000 starting values and Ward’s
method. For each number of clusters, the solutions obtained
from the three clustering methods were compared using the
ARI to assess their pairwise agreement. Furthermore, the
interpretability of clustering solutions obtained with g=3
clusters was exemplarily examined to assess whether the
clusters can indeed be regarded as representations of
meaningful dietary patterns. This value of g was selected as
the corresponding clustering solutions exhibited the highest
pairwise similarities. Apart from the consumption fre-
quencies, prevalences of overweight/obesity were compared
between clusters to explore whether associations between
dietary patterns and weight status are reasonable.

Results
The clustering solutions obtained for the CEHQ-FFQ data
exhibit very little agreement between the three clustering
methods as indicated in Table 3. For all g= 2,…,6, the
GMM solution is constantly more similar to the k-means
solution than to the Ward solution. The best-fitting GMM
for two to six clusters were those allowing the covariance
matrix to be cluster dependent, i.e. those that allowed the
variances of the food consumption frequencies to vary
within and between clusters.

Comparing the three clustering methods, the solutions
with g= 3 clusters are most similar to each other. Here, the
ARI is 0·47 comparing GMM v. k-means, 0·23 for GMM v.
Ward and 0·20 for k-means v. Ward.

The clustering solutions with g= 3 clusters obtained
via the three clustering methods are summarized in Fig. 3.
For each food item, the length of the corresponding
bar represents the difference between the cluster-specific
mean consumption frequency and the overall mean con-
sumption frequency measured in units of overall standard
deviations for this food item. All three methods identify
one ‘non-processed’ cluster with higher-than-average
consumption of fruits, vegetables and wholemeal bread
and lower-than-average consumption of refined cereals,
sweet drinks and fast food, represented by the left
column in Fig. 3. The second cluster could be labelled as
‘balanced’ as there are no strongly preferred food items
(middle column of Fig. 3). In this cluster, the consumption
of sauces and butter, sweet drinks, meat and refined cer-
eals is slightly higher than average, while the consumption
frequencies of breakfast cereals, dairy products and fruits
are slightly lower than average. The third ‘junk food’
cluster (right column of Fig. 3) consists of children with an
increased consumption of fast food, breakfast cereals,
meat alternatives and dairy products and a lower-than-
average consumption of wholemeal bread, fruits and
vegetables. The GMM and the k-means algorithm also find
a preference for sweet snacks in the third cluster that is not
present in the solution obtained from Ward’s method. For
all three clustering methods, the prevalence of over-
weight/obesity is lower in the ‘non-processed’ cluster
(13·9–14·5 % depending on the clustering method) com-
pared with the ‘junk food’ cluster (15·7–16·3 %), which is
an additional indicator of the reasonability of the exem-
plarily derived clustering solution (see Fig. 3).

Discussion

In the simulation study, the GMM outperforms the
k-means algorithm and Ward’s method in the case of all
three cluster geometries. Even though both heuristic
methods are supposed to give particularly good results on
data sets with spherical clusters of equal volume, they
were still outperformed by the GMM on simulated data

Table 3 Pairwise agreement between the clustering solutions obtained with the GMM, the k-means algorithm and
Ward’s method assessed by the ARI

ARI of g-cluster solutions

Compared algorithms g=2 g=3 g=4 g=5 g=6

GMM v. k-means 0·03 0·47 0·22 0·20 0·22
GMM v. Ward −0·01 0·23 0·14 0·10 0·14
k-means v. Ward 0·17 0·20 0·12 0·19 0·18

GMM, Gaussian mixture model; ARI, adjusted Rand index.
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with this property. As expected, the outperformance of the
GMM is most pronounced for data with clusters of variable
volume, shape and orientation. Surprisingly, the GMM
leads to better results than k-means and Ward’s method
even for data sets with cube-shaped clusters despite the
violation of its distributional assumptions.

Ward’s method performed poorly for many of the
simulated data sets compared with both the GMM and
k-means. This may be explained by the low degree of
simulated cluster separation that leads to overlapping
clusters in which neighbouring points often belong to
different clusters. This could be problematic for an
agglomerative hierarchical algorithm because fusions of
clusters at an early stage of the algorithm are not reversible

later on. If this is indeed the reason for the bad perfor-
mance, Ward’s method might be inappropriate for finding
clusters in FFQ data where strongly overlapping clusters
are to be expected.

All results of the simulation study have been obtained
under the assumption that the true number of clusters is
known, while in general, this number is unknown.
The choice of the most appropriate number of clusters is a
crucial problem which is discussed elsewhere(9,11,27).

When exemplarily applying the clustering methods to
real data, the low agreement of the clustering solutions
according to the pairwise ARI values (Table 3) suggests
that there might not be a manifest, easily identifiable
cluster structure in the data. However, the results obtained
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10. Sweet spread
9. Meat alternatives
8. Breakfast cereal

7. Refined cereal

5. Cheese
4. Dairy products

3. Meat
2. Fruits

1. Vegetables

6. Wholemeal bread

14. Sweet snacks
13. Fast food

12 Sauces and butter
11. Sweet drinks

10. Sweet spread
9. Meat alternatives
8. Breakfast cereal

7. Refined cereal

5. Cheese
4. Dairy products

3. Meat
2. Fruits

1. Vegetables

6. Wholemeal bread

(a)

(b)

(c)

Fig. 3 Clustering solutions with three clusters obtained with (a) the Gaussian mixture model (GMM), (b) the k-means algorithm and
(c) Ward’s method, based on the IDEFICS CEHQ-FFQ data (1791 children). For each food item, the lengths of the corresponding
bars represent the difference between the cluster-specific mean consumption frequencies and the overall mean consumption
frequencies in the sample, measured in units of overall standard deviations for the single food items. The number of observations
and the percentage of overweight and obese(25) (OW/OB) children are indicated for each cluster. IDEFICS, Identification and
Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants; CEHQ, Children’s Eating Habits Questionnaire
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for g = 3 clusters summarized in Fig. 3 show that despite
the low ARI values between these clustering solutions, all
three methods find very similar dietary patterns with only
minor differences in single food items. This finding sug-
gests that the identified clusters might not just be artifacts
of a particular clustering method, but may represent
meaningful dietary patterns. The lower prevalence of
overweight/obesity in the cluster labelled as ‘non-processed’
further underlines the reasonability of the clustering solu-
tions. Nevertheless, several studies have revealed
that self-reported dietary data are prone to measurement
errors resulting e.g. from difficulties in estimation of
consumption frequencies, memory errors or (intentional)
misreporting(28,29). In long-term dietary assessment instru-
ments like FFQ as well as in proxy-reported data these
problems may be even more pronounced(30). In the present
analysis, the problem of under-/over-reporting may have
been reduced by use of relative consumption frequencies
as, for instance, a person consistently reporting lower con-
sumption frequencies was related to his/her overall lower
reported consumption frequency. When using absolute
consumption frequencies in a preliminary analysis, one
cluster with a higher-than-average consumption in all food
groups and another cluster with a lower-than-average con-
sumption in all food groups were identified. Both of these
clusters were no longer present when using relative con-
sumption frequencies. Nevertheless, the use of relative
consumption frequencies may not reduce the problem of
selective misreporting of certain foods. None of the applied
clustering methods is able to account for such measurement
errors. Hence, the identified dietary patterns should be
interpreted with caution as they may only reflect reported
but not necessarily true dietary intake.

Consistently with Fahey et al.(8), the best-fitting GMM
for real FFQ data were those allowing the variances of the
food consumption frequencies to vary within and between
clusters. This suggests that the Ward’s method and
k-means, which assume constant variances, may indeed
not be optimal for dietary pattern analysis. The GMM is
further advantageous as it gives a measure on the uncer-
tainty of the cluster assignment, i.e. the probabilities of
being assigned to the different clusters, and is able to
account for correlated errors among variables (non-zero
residual covariance) using specific parameterizations of
the covariance matrix(8). However, a major difficulty in the
application of GMM lies in potential violations of the dis-
tributional assumptions. Due to habitual non-consumption
of certain foods, especially in children, many food groups
exhibit a zero-inflated marginal distribution. This problem
is illustrated in Fig. 4 based on two food items, dairy
products and breakfast cereals. In this example, a large
number of subjects reported a consumption frequency of
zero for breakfast cereals leading to the huge number
of observations clustered at the bottom line (x-axis) of
Fig. 4. If there are food items with a high number of non-
consumers, only models with strong geometric restrictions

on the clusters can be fitted, for example those that
assume clusters of equal volume or equal shape, making
it impossible for the user to take full advantage of the
flexibility of the GMM. In the present study we tried to
overcome this problem by combining the food items of the
FFQ into fewer and larger food groups. The investigation
of different approaches to deal with zero inflation was
beyond the scope of the paper. However, it should be
kept in mind that not considering single food items but
food groups results in a loss of information which is a
limitation. Other possibilities to deal with zero inflation
are: (i) the use of only those GMM with strong geometric
restrictions on the clusters(15); (ii) dichotomization of
variables with a non-consumption higher than 50 %(8,31,32);
(iii) the use of a truncated Gaussian mixture distribu-
tion(33); (iv) the use of ‘a two-part model combining an
indicator of food non-consumption with a continuous
measurement for consumers’(34); or (v) the application of
multidimensional scaling to the data before clustering(35).
Models like a truncated mixture model (iii) or a two-part
model accounting for zero-inflated variables (iv) may be
more realistic than the GMM but further increase the
complexity of the model. Hence, future research should
investigate whether these models lead to improved cluster-
ing solutions that would justify the increased complexity.

Conclusion

It was found that all three clustering methods are useful for
the identification of meaningful dietary patterns by cluster
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Fig. 4 Scatter plot of a two-dimensional projection of a sub-
sample of the pre-processed IDEFICS CEHQ-FFQ data as an
example of zero inflation in FFQ data. IDEFICS, Identification
and Prevention of Dietary- and Lifestyle-Induced Health Effects
in Children and Infants; CEHQ, Children’s Eating Habits
Questionnaire
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analysis of FFQ data in practice. However, Ward’s method
performed poorly in the simulation study and the EM
algorithm can become numerically instable when fitting
GMM with weak geometric restrictions on the clusters,
making the application of these models more complex.

The promising results of the simulation study suggest
that model-based clustering methods could provide better
clustering solutions and thereby find more realistic dietary
patterns than those identified with the standard methods
used in most studies. The best-fitting GMM for real FFQ
data were those allowing the variances of the food con-
sumption frequencies to vary within and between clusters,
which is not considered in Ward’s method and k-means.
We therefore recommend the use of geometrically
restricted GMM or alternatively the use of k-means, which
often gives similar results but is more easily applicable.

In order to take full advantage of the higher flexibility
provided by model-based clustering methods, the models
need to be modified to account for zero inflation which
is caused by habitual non-consumption of foods and
currently complicates the application of GMM.
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