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ON THE Wv AND ,r„ TRANSFORMATIONS 

I\ G. KOONKY 

1. Introduction. Denote by C(> the collection of complexe 'allied 
functions which are continuous and compactly supported on (0, co ). The 
transformations of the title are defined on C„ by 

(1.1) (&.f)(x) = J (xt)l,iY,(xt)f(t)dt, 

and 

(1.2) (Jff,f)(x) = I " (xt)l/2lh(xt)f(t)dt, 
J o 

respectively, where Yv(x) is the Bessel function of the second kind, and 
H„(x) is the Struve function; see [1 ; 7.5.4(55)]. The two transformations 
are studied briefly in [6; §8.4]; tables of transform pairs are given in 
[2; Chapters IX and XI], where it is also stated that, for — \ < v < \, 
each of the transformations is the inverse of the other. 

These transformations are of importance in many axially symmetric 
problems. When solutions that are regular on the axis of symmetry are 
wanted, the solution often involves the Hankel transformation //,., 
defined for/ £ Co by 

(HJ)(x) = / " (xt)l,iJ.(xt)f(t)dt. 

However when solutions to corresponding problems that are singular 
on the axis of symmetry are wanted, the solution will involve &'„, with its 
coefficient determined by-.^„. For example, in generalized axially-sym-
metric potential theory (GASP theory), one studies the partial differ
ential equation 

A\U = Urr + — Ur + U zz = 0 
r 

in r > 0, z > 0. The solution of this equation such that u(r, 0 + ) = f{r), 
which is regular on r = 0, is given formally by 

u(r,z) = r-x(Hx-i/2hzHx-n2f\)(r)y 
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1022 P. G. ROONEY 

where hz{t) = e~zt, and/x(/) = t^f(t), and a solution that is singular on 
Y = 0 is given formally by 

u(r,z) = r - H ^ x - i / 2 f c ^ x - i / 2 / x ) ( r ) . 

Since GASP theory is perhaps the most impor tan t application of the 
Hankel transformation, it thus seems worthwhile to obtain the basic 
facts of boundedness, range, and inverses, about the &v and fflv t rans
formations in approximately the same detail as for the Hankel t rans
formation. 

T h u s our objective in this paper is to s tudy the boundedness and 
ranges of the two transformations on the spaces o£fMfP, defined for real \x 
and 1 ^ p < CQ to consist of those complex-valued func t ions / , measur
able on (0, oo ), and such tha t ||/||M)P < GO , where 

I Too ) 1/2? 

(1-3) 11/11,, = { J o \xj(x)\»dx/xj . 

(For further information on these spaces, see [3; § 3], bu t notice tha t the 
spaces LM)?) of tha t paper are slightly different from J?fMiZ, here.) We shall 
also look into the question of whether the transformations are inverse 
to each other. 

T h e results will be largely derived from our results in [4] on the 
boundedness of the Hankel transformation. Howrever we shall also need 
an integral representation for the Hankel transformation and information 
about its inverse. This we shall develop in Section 2. In addit ion we shall 
need considerable information about the even and odd Hilbert t rans
formations, and we shall develop this in Section 3. T h e results of these 
two sections may be of independent interest. 

In Section 4 we shall determine the boundedness and characterize the 
range of &v on the<J^MtP spaces, while in Section 5 we shall do the same 
f o r ^ „ . In Section 6 we shall show tha t in some circumstances <$/v and 

3f v are inverse to each other, both in the regular sense and in an extended 
sense. 

A notat ion wTe shall use frequently is [X, Y] for the collection of 
bounded linear operators with domain X and range in Y; here X and Y 
are Banach spaces. [X, X] is abbreviated to [X]. If £ (ï R, M$ will denote 
the operator on complex-valued functions on (0, co ) defined by 

[1.4] (Mif)(x) = * « / ( * ) . 

Clearly, if £ £ R, v € R, 

(1.5) MtMv = Mi+V and M0 = I, 

where / is the identi ty operator. I t is also easy to see t ha t M$ is an 
isometric isomorphism of o£fMtP onto ^ M _ ^ p . 
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$/ v AND J f „ TRANSFORMATIONS 1023 

One of our main tools will be the Mellin transformation 5DÎ, defined as 
follows: if/ £ /£ ^v 1 g £ g 2, then 

(1.6) (W)(M + i/) = (cé\f)A(t), 

where ((é\f)(t) = e^Jie1), and Fis the Fourier transformation of / \ that 
is if F £ Li( — co , oo ), 

• / : « /?(/) = e'7(*)<fc. 
J - o o 

[•sing standard results about the Fourier transformation, it is easy to see 
that for 1 é P è 2, 2tt £ [«£%.*, £ P ' ( -oo , oo )], where 

(1.7) (l/p) + (Up') = 1. 

We shall often write (2)i/)(/x + it) as (9)i/)(^), with Re 5 = M. This is 
justified by the obvious fact that if/ Ç <^\,\, 

(1.8) (2»/)( s) = i rlf(t)dt, Re s = M. 
*̂  o 

It follows easily from the standard inversion theorems for the Fourier 
transformation that if/ £ &y.,v, 1 < p è 2, then 

(1.9) /'(*) = — lim aT*(aR/)(*)<fo, 

where the limit is in the topology of i^Mi/,. 
One further fact we will need is the relation between 9)î and M$. 
It is easy to show that if/ Ç J^ .p , 1 < /> ^ 2, then for Re <> = /* — £, 

(1.10) (2KMf/)(s) = (2H/)(* + «). 

2. The Hankel transformation. The Hankel transformation Hv is 
defined for v > — 1 on Co by 

(2.1) (#,f)(*) = I °° (xt)1/2Jv(xt)f(t)dt, 
J o 

where 7„(x) is the BeSvSel function of the first kind. In [4; § 7] we showed 
that if 1 < p < oo , y(p) g M < v + 3/2, where 

(2.2) 7 0 ) = max (l/p, l/p'), 

then for all q è £ such that ç' è 1/M, ^ € [ ^ . / M ^ I - M . J . while in [5], 
we characterized the range of i/„ on =£f M>p. A fact about i7„ that we shall 
make considerable use of is that from [3; § 8] or [4; § 7] if / Ç <=£%.?, 
1 < £ g 2, 7(/>) g M < v + 3/2, then for Re s = 1 - M 

(2.3) (mH9f)(s) = m,(s)(2R/)(l - *)• 
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where 

(2.4) mv(s) = 2*-1/2r(è(^ + * + è))/r(è(> - A- + 3/2)). 

In this section we shall develop an integral representation for / / , , and 
also discuss the inversion of the transformation. T o these ends, we first 
need a product theorem for the Hankel transformation, and a lemma. 

T H E O R E M 2.1. / / / (: JlMj;, g t J£ Mi(/, where 1 < p < oc , 1 < </ < x , 

/?_ 1 + <7_1 ^ 1, and max(Y(/>), 7(</)) ^ M < ^ + :f 2, ^ H 

(2.5) J (ff , / ) (x)g(x)dx = | ° " / (*) (ff„g) (*)<&. 

7-Voo/. I f / (: C\, and g t C0, then from (2.1) 

/

' OO f* CO / * OO 

(H,f)(x)g(x)dx = } g(x)dxj .(*/) , /2A(.v/)/(/)tf/ 
0 ^ 0 ^ I) 

= )\f{t)dt ) (lx)ll2J„(tx\f(x)dx = f"'ntKH.g)(t)dt 

«^ 0 

the interchange of the orders of the integrations being easily justified by 
Fubini 's theorem. T h u s (2.5) is true if / (E C0 and g Ç Co, and hence, 
since from [3; Lemma 2.2], Co is dense inJ^ M,?> and =^%1<7, the general result 
will be true if we show tha t both sides of (2.5) represent bounded bilinear 
functionals o n ^ M i / ) X Jl M((/. 

Now since p~~[ + q~l ^ 1, p' ^ (/; also since p~l ^ 7 (p) ^ M» (/>')' •-= 
/> ^ 1/V> and hence i/„ (: [=2'M>(/, J£ \-]k.l)''\, and thus using Holder ' s 
inequality 

i fa\f(x)(H„g)(x)dx\ g I™ \x»f(x)\ | .V I-M(7^)(.V)|</.V.. 'A-

^ ||/ll,.,||H.g|| !_,.,. è AMI/I!, Jgll,.,. 
where A% is a bound for / /„ as an element of [J/:JiQ,J/: i-Mt/,\], so tha t the 

right hand side of (2.3) is a bounded bilinear functional on Jl ^^ X Jl MiV, 

as is the left hand side of (2.3) by a similar calculation, and the result 

follows. 

Definition 2.1. For x > 0, v real, let 

,oa. , A itv+lr\ 0 < / ^ and 
( 2 ' 6 ) « - ( / ) = \ 0 , / > x 

(2.7) r , , , ( / ) = x»+*t-"VvH(xt). 
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LEMMA 2.1. Suppose 1 < p < co. 77&e# g,^ £ «£VP if awd o?z/y if 
M > — (̂  + | ) . /IPtf, if v > —3/2, r„,.r G ^M,P if a n ^ onh tf ~ (v + è) 
< /x < 1. Further, if v > — 1, 

(2.8) ff,g,,, = r,,„ 

ana7 

(2.9) PP?v.r = g,,,. 

Proof. 

ik,JU = { J O ^ H - I / 2 ) - 1 * } <^ 
if and only if /x > — (*> + \). Since, from the series for the Bessel function, 
if v > - 2 

rv,£(t) ^x-v+ltv+l,2/Y(v + 1) a s / - > 0 + , 

and from [1; 7.13.1(3)] 

rvJt) ~ ( 2 / T T ) 1 / 2 ^ + 1 / 2 COS(** -h(y + h)ir)/t as t -> oo , 

r„tiC G LM>p if and only if 

f V * + ' + 1 / 2 ) - ^ < oo and f V " - 1 , - V / < co 
•̂  0 J R 

for some positive 5 and P , and thus for — (v + | ) < M < 1 ; but — (J> + i ) 
< 1 implies *> > —3/2. In particular, 0„>a; £ J?f i/2>2 if — (̂  + è) < | , that 
is if ^ > — 1, and then from [6; Theorem 129 and § 8.4, Example (1)], and 
| 1 ; 7.7.1(2)], for almost all / > 0 

d fm
 ( .du f 

(flyqv,x)(i) = -- I qVtX(u)~ I v Jv{v)dv 
u J 0 

= 7- 1 "•"" 7 du I y r Jv(v)dv = — I uv+ldu\ v11 Jv(uv)dv 
at J 0 «̂  0 of •/ 0 «J 0 

— T ! ^1/2^; I uv+lJv(yu)du 
at J 0 i / o 

= /1/2 f ' «'+V,(/«)d« = r('+3/2) [" u^MuW 
J 0 «̂  0 

= ^+ 1r1 / 2 / ,+ 1(*/) = /%,,(/). 
Also, from [6; Theorem 129, and § 8.4, Example 1], on ^f 1/2,2, P?/2 = P 
and thus since if */ > —1, a^x G J^i/2,2, 

fl>„..r = Hv2qV,x = ÇP,X-

THEOREM 2.2. 7/ / G ifM,„, wftére 1 < /> < 00, 7 (£) ^ M < ^ + 3/2, 
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then for almost nil x > 0, 

(2.10) (H,f)(x) = x~{"+l<2>~lxx
yfl/2J (xt)l,iJ,+1(xl)J\t)dt/l. 

Proof. Since (/,.r >'.' i%. , / , from Theorem 2.1 and Lemma 2.1. for ,v > (I 

! /Hl/2 (//„/) (/.)<// = I q,At)(HKf)(t)dt = I <//„</>, 

= I rv.x(0f(t)dt -= A-"+1/2 ! (x/)1 / 2y,+ 1(A:/ 
«^ 0 «^ 0 

,.»(/) M n<// 

*t))\t)dt/, 

and the result follows on differentiation. 

If instead of taking g = qvx in (2..T) we had taken <; = x<u../•... the 
characteristic function of (0, x) , we would obtain 

(•V) = f J^ .O (Hj)(x) - r : j,(xt)f{t)dt, 

jAx) = I !iriJM)dL 

This formula seems le^s useful than (2.1.0), hrstly because it requires the 
evaluation of two integrals, and secondly because it is less well posed tor 
using tables of Hankel transforms; for the integral appearing in (2.10) 
can often be evaluated using, say, [2; Chapte r Y III] by changing v to 
v + 1 there and ad jus t i ng / . 

We will now obtain an inverse tor 11p on il M-7, for ju < 1. 

T H E O R E M 2.O. / / ' / t il HJ, where 1 < /; < co , yip) g y. < m u n i . 

v + 3 /2 ) , I hen for almost all x > 0, 

(2.11) f(x) = . v - ' ' ' + 1 / 2 , | ^ + 1 , 3 J J (xt)lriJ,Mxt)(HJ)(t)dt/t. 

Proof. Since v > — 1, — (y + \) < \ ^ 7(i>) ^ M* atid hence by Lemma 
2.1, YV^X r cSfM//. But. then by Theorem 2.1 and Lemma 2.1, 

xvrl/2 I {xt)irlJv^{xi){Hv(){t)dt/t = I r,,.f 

= I Hyr,Jt)f\t)dt = I 
«^ 0 «^ 0 

,.f ( / ) ( / / , , / ) (/)<// 

rl/:f(j)(iL 

and the result follows on differentiating. 

COROLLARY 1. 7/ 1 < /? < OG . 7(/>) g M < m i n ( L v + T 2 ) ///<// <»/ 

if f,p, Hv is one-to-one. 
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T h e reader will note tha t the right hand sides of (2.10) and (2.11) are 
the same except tha t in (2.11) / is replaced by Hyft so tha t formally 
Hv~

l = Hv or Hv
2 = I. However, except 011^1/2,2, this is purely formal, 

for if / C: L,jP, 1 < p < 00, y(p) ^ n < v + 3/2, then Hvf G i f i_MtP and 
thus for Hyl to be defined we require tha t y(p) ^ 1 — M < v + 3 /2 ; but 
since 7 ^ ) è è, with equali ty only if £ = 2, 1 — /x = i = 7(p)> with 
equali ty only if £ = 2, and thus \x = J and p = 2. 

So far we have not shown tha t i/„ is one-to-one on i f Mi/, for 7 (p) :§ /i < 
*> + 3/2, but only for 7(/>) ^ M < m i n ( l , */ + 3 /2) . The following 
theorem covers the mat ter . 

T H E O R E M 2.4. If y(p) g y. < v + 3/2 , / / ^ i/„ ^ one-to-one on^"^^. 

Proof. S u p p o s e / Ç o$fM>p and / / „ / = 0. Then from [5; Lemma 3.4], 

Mn—yt-H—y, (v—n+y+'S/2) /2-H v—n+yM n—y J = 0, 

where 7 a j is defined by [5; Definition 3.1]. Now MM_7 is clearly one-to-
one, and from [3; Lemma 3.4], /M_7)o_M+7+3/2)/2 is one-to-one on <if7tP. 
Hence 

H^+yM^yf = 0. 

But Mp-yf t ^y,P, and since 7 < 1 and 7 < ^ — M + 7 + 3/2, by 
Corollary 1, M^yf = 0, a n d / = 0. 

[5; Lemma 3.4] can be used in conjunction with Theorem 2.3 to 
produce an inversion formula for Hv on ^fM/; for y(p) S M < v + 3 2, 
yielding 

Hv~
l = 2fX~yAiy-fx(H„_M+7)~

J (iM_.7?(^_M+7+3/2;/2)~1-1/7__M. 

Since, as can easily be shown, 

(IaJ)-
1 = M 2 ( 1 . { ) ( J A L 1 Z ) ) » M 2 0 l + H , / n H r ( ^ , 

where n is an integer ^ a and (Df)(x) = f'(x), this gives / /«r1 . 

3. T h e even a n d odd Hi lbert t r a n s f o r m a t i o n s . For our purposes 
here the even and odd Hilbert transformations, H+ and H- respectively, 
will be defined initially on «if 1/2,2 by 

(3.1) H+ = ~^r^c, 

and 

(3.2) if_ = J2", J ^ , 

where ^ " c and J ^ , are respectively the Fourier cosine and Fourier sine 
transformations; tha t is &~c = / / _ i / 2 and J* s = i / i / 2 . Since ^ " c and 
i r , s , Ç [ i f 1/2,2], # ± <E [ i f 1/2,2]; since on «if 1/2,2, - ^ V = ^ 7 = 7, it follows 
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tha t on L 1/2,2 

(3.3) H+H- = H-H+ = -L 

Also, using Theorem 2.1 twice, once with v = — \ and once with v = J, it 
follows tha t if/ and # £ i^i/2,2 

(3.4) J (H.,J)(t)R(t)dt = - rf(t)(H.g)(t)dt. 

Taking g to be the characteristic function of (0, x) , where x > 0, by 
elementary compulat ions we obtain, for almost all x > 0 

(3.f>) ( / /+/) (.v) 

and similarly 

(3.(0 (H-f)(x) 

id fœ 

7T J x J 0 
f(/> log 1 - \dt: 

IT dx •:fr / ( / ) log 
t + x 

(it. 

Comparing (3.o) and (3.6) with [6; Theorem 90], it is evident t ha t H+ is 
the restriction to (0, 00 ) of the Hilbert t ransformation of even functions, 
while H- is the restriction to (0, GO ) of the Hilbert t ransformation of odd 
functions; hence the names, even and odd Hilbert t ransformations. 

T h e action of the M ell in transformation on H± on ^f 1/2,2 is easily 
computed from (2.3). This yields t ha t if/ f f£'1/2,2, then for Re 5 = \, 

(3.7) mH,J)(s) = - tan y (2K/)(s), 

and 

(3.8) (9M//-/) (5) = cot -77 (99V) (5). 

Il is known that Hv and / / can be extended t o i ^ M J , for 1 < p < GO 
and a range ol a values depending on the operator in quest ion; see 
[3; Corollary S.1.2|. The properties of the operators on these spaces are 
given by the following theorem. 

T H E O R E M 3.1. Suppose 1 < p < 00. Then: 
(a) H+ f \^,,p] for -1 < » < 1\ if -1 < n <0 or 0 < » < 1, H+ 

mapsSf^tP one-to-one onto itself; if — 1 < ju < 1, (3.5) holds; iff £ ^ M , P > 
1 < ^ 2 , - 1 < / I < 1 , (3.7) Ao/ds wi*A Re s = M-

(b) i ï_ <E [ i f „,p] /or 0 < M < 2 ; i / 0 < M < l o r l < M < 2 , F _ maps 
ifM,p one-to-one onto itself; if 0 < n < 2, (3.6) holds; iff £ ifM>P, 1 < £ 
^ 2, 0 < M < 2, (3.8) AoWs wVfe Re s - /*. 

(c) iff f ifMfP, g (: i f i - M . P ' , 1 < / > < o o , —1 < / L I < 1 , (3.4) holds; on 
,y-M./>. w M 1 < /> < r « , 0 < ju < 1, (3.3) holds. Onf£\,v, with 1 < p < 00 , 
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- 1 < M < 1, 

(3.9) H+ = MiH-M-r 

or equivalently, oniH\tV with 1 < p < o o , 0 < M < 2 

(3.10) R- = M^H+ML 

Proof. The function m (5) = — tan TTS/2 is in the class .0/ of 14 ; I >eiinit ion 
3.1] with a(m) = — 1, fi(rn) = 1. For (i) m is holomorphic in —1 < Re 
5 < 1; (ii) if - 1 < ai ^ (T2 < 1, m is bounded in the strip <j\ r§ Re 
5 ^ (72, as an elementary argument shows; and (iii) if — 1 < a < 1, 

K((T + f7)| = ~ sec2 — (a + it) = O d / p 1 ) as |/| —> 00 , 

Hence by [4; Theorem 1], and since (3.7) holds on il1/2)2,//+ t \_il. W/,J, 
- 1 < M < 1, and if / e 'UtPt l < ^ 2 , - l < / i < l (3.7) holds with 
Re 5 = 11. \/m(s) = —cot TTS/2 = —tan 7r(l — s)/2 = m ( l — .v)- and 
hence 1/m G - ^ with a(l/m) — 0, (3(l/rn) = 2, and thus by [4; Theorem 
1], # + maps<ifM^ one-to-one onto itself if 0 < M < 1. But m(s — 2) = 
m(s), and thus 1/m(s) = m( — 1 — s), and hence also 1/m £ ^ with 
a (1/m) = — 2, 8 (1/m) = 0, and thus, again by [4; Theorem 1], i J + maps 
J^M(P one-to-one onto itself if — 1 < /z < 0. (3.5) follows from (3.4) taking 
as g the characteristic function of (0, x), and thus once (3.4) is proved, 
(a) is proved. 

The proof of (b) is exactly similar. That; (3.4) holds follows from the 
fact tha t it holds f o r / and g £ i^i/2,2, and that both sides of (3.4) repre
sent bounded bilinear functionals on J^M7, X ^ i _ M J ) ' . (3.3) holds since it 
holds onoèf 1/2,2 and both sides represent bounded operators on^ ' M t P . (3.9) 
and (3.10) follow on<ifMr2 on taking Mellin transforms, and then on their 
respective Jl\tP since both sides represent bounded operators on those 
spaces. 

4. The boundedness and range of °?lv. We shall determine the 
boundedness properties of $/'v and find its range by showing that a 
relation exists between &v and Hv. We shall also find an integral rep
resentation f o r ^ „ . We first need the following lemma. 

LEMMA 4.1. If - 1 < v < 3 /2, 

(4.1) (H.Mv.ll2rv„)(t) = -x*+H^(Yv+l(xt) 

+ T(v + l ) (2 / (* / ) )* + I Ar) , a . e . 

Proof. Since v < 3/2, v — \ < 1, and since v > —I, - (v + l) < 
v + 3/2. Hence the intervals ( - (1/ + J ) , 1) and (v - \, v + 3 2) inter 
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sect. Let \x be any point of their intersection. Since —(v + %)<n<\, 
rva

 ( il MJ, and thus 

Since v - \ < M < v + 3/2 , 0 < M ~ ^ + è < 2, and H-M^1/2rVtX 

exists. Also, for /> = 2, from (3.8), (1.10), (2.3), and [2; 6.2(18) and 
<>.1(2)], with Re .s- = M - v + \ = Mi 

(a)ÎH_J/^i / 2r , i X)(5) = c o t - - (93U€_1/2r,)OCv) 

= c o t ~ (9Wr,,,)(s + * - I ) = cot ™ miHvgVtX)(s + v - i) 

= w,(* + , - è) cot y (2»?,,*)(3/2 - v - s) 

= .v2~'vm,(.v + J/ — -D cot-—- / (2 - 6') 

= 2 ^ ~ V ( x / 2 r ( r ( , + ^ ) / ( ( l - \s)Y{\ - is))) cot y 

= 2 ^ V ( * / 2 ) - c o t y ( r ( , + is)/(T(2 - is))) . 

Hence, from (1.9), 

( i /_M,_ 1 / 2 ^ , , ) ( / ) 

= 2 # hm 7T—: I I — I =7^ f-r cot — as, 
K_,œ 2iri J M1_ii? \ 2 / T(2 - is) 2 

where the limit is in the topology of<ifM 2. But , closing the contour to the 
left, a long bu t straightforward residue calculus calculation yields that 
pointwise a.e. 

.,-2 2V 1 f M 1 + ' * / * A - * r ( * + is) *s 7 
2 x hm — I I 7- I 777- Y-T- cot — ds 

R^2wt J ^-tR \2 / r (2 - \s) 2 
= - x ^ V - ^ F ^ i ^ / ) + Y(v + l)(2/xt)v+l/ir), 

since 0 < MI < 2, and this must equal (H-Mv-i/2rVtX)(t). 

T H E O R E M 4.1 . If \v\ < 1, then on C0, ^ , = HVMv-\i2H+M-{v-il2). 

Proof. Suppose / £ C0. Then M_(J,_i/2) / £ C0 Ç J?fv<2, and hence 
since —1 < v < 1, by Theorem 3.1, H+M-(V-n2) f £ «if,, 2 and thus 
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M v-nîH+\l-{v-iri)f € Z-i/2,2- Hence by Theorem 2.2, for almost all.v > 0 

= x-^1,2)~x>+lr2 fœ (xt)1/2J,+1(xt)r1/2(H+M^imf)(t)dt l 

dx ' 

dxJ o 
^ + i m a_ i (Mf_i/irfi){t)(H+M_{_mJ)it)di 

< *J 0 

= -*~('+1/2'i j f {H.M,.llir.M)r"-lli\f(t)dt 

from (3.4), provided M _ ( , _ i / 2 ) / (: oè?Mj2 and i f „_1/2r„iX <£ ^ ' i -M ,2 for some 
/x, — 1 < M < 1. But s i n c e / f C0, M_ ( „_i / 2 j / (: i?M > 2 for any /x; also, we 
saw in the proof of Lemma 4.1 tha t there was a /xi, with 0 < m < 2, such 
tha t Mv^i/2rVtX £ o£%l>2. Let t ing /x = 1 — /xi, 

i /_(„_i / 2 ) / t ^ M , 2 , M,_i/2f^.c (: ^ i _ M | 2 and - I < /* < 1. 

Hence by (4.1) 

(H,M^i,2H+M-(P-.imf)(x) = x-(P+1/2)~ xv+1 } r1/2(Y,+l(x, 
dx J o 

+ 1 > + i)(2/xty+yw)f(t)dt 
Now from [1 ; 7.2.8(52) et seq.], 

fife 

whence 

^ - ^ + 1 F , + 1 ( x / ) = / ^ + 1 F , ( x / ) , 
ax 

and the differentiation may be taken under the integral sign s i n c e / i C'„. 
Hence 

(HvMv-l/2H+M^lmf)(x) = j (xt)l/2Yv(xt)J\t)dt 

= ( ^ ; / ) ( x ) a . e . , 
and thus on Co, 

T H E O R E M 4.2. Suppose l<p<co,y(p)Sv< 3 /2 — |^|. Then °J/ v 

can be extended to ̂ £\:p as an element of [oSfMtP, S£ i_Ml<7] /0f a w q ^ p such 
that q' ^ l//x, awrf except when /x = è ~ * v ^ ^ one-to-one and WV(J£^j) 
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= Hv{^e\,v). Further, on^^ 

(4.2) <3/v = HyMv-ivH+M-^-in, and 

(4.3) <&v = -M-{v-imH-Mv-i,*Hv. 

Also, if f e oSfM,p, 1 < p £ 2, y(p) g M < 3/2 - | j ; | , / t e witfi Re 

s = 1 — /z 

(4.4) ( 2 K ^ J ) ( 5 ) = - r o , ( s ) cot | (s + \ - * ) (2» / ) ( l ~ *)• 

Proof. Since 7 ( £ ) ^ -|, |i/| < 1, and hence by Theorem 4.1 , on C0 (4.2) 
holds. But if 1 < £> < 00 , 7(£>) ^ ju < v + 3 /2 , the transformation on 
the right of (4.2) is in [̂ fM)P, <if i_M,J for any q ^ p such tha t g' ^ 1 / M. 
For, Af_(„_i/2) mapScifM!p boundedly onto<ifM+v_i/2,p; from Theorem 3.1, 
H+ maps J^M+„_i / 2 ,p into itself if — 1 < / Z + Ï> — | < 1 ; tha t is if 
~ (̂  + è) < M < 3/2 — 1/, and this is so since for \v\ < 1, 

- H J X U T W ^ , and M < 3/2 - |„| ^ 3/2 - , ; 

Mv-1/2 maps cifM+,_i/2tP boundedly onto J^MiP; and since 

7(£) ^ M < 3/2 - |H g 3/2 + ., 

Hv 6 [c^M,p,, <if i_M>(Z] for any g ^ p such tha t g' ^ l//x. 
T h u s we can extend ^ „ to ^ M ) P by defining it by (4.2) and then 

<3/v G [ifM,p,oêfi_M><?]forall^ è P such tha t g' è 1/^ . Also, since il/"_i_ <- „_ 1 m 
are isometric isomorphisms, and H+ maps <ifM+„_i/2,p one-to-one onto 
itself except when n = \ — v, and since from Corollary 1 to Theorem 2.3, 
Hv is one-to-one, then except when n = \ — v, &v is one-to-one and 

From (2.3), (1.10) and (3.7), if/ Ç ifM,p where 1 < p g 2, 7(/>) g M < 
3 /2 — | j / | , then with Re 5 = 1 - /x 

(W3fvf)(s) = (aWfl r ,M,-i / 2fl r
+il/_(,-i/2)/)(5) 

= m,(5)(SKM,_ 1 / 2ff+Af-( , - i /2) / ) ( l - .*) 

= m , ( 5 ) ( 9 J ^ + i ¥ _ ( , _ 1 / 2 ) / ) ( . + I - ^) 

= - m , ( s ) t a n f (, + i - .0(2KM_ ( ,_1 / 2 ) / )( i / + è - s) 

= -mv(s) cot I (s + \ - , ) ( W ) ( 1 - *), 

and (4.4) holds. 
(4.2) holds by définition of ^ „ . For (4.3), we first note tha t the 

transformation on its right is in [<J^M??,, S£I-M,J f ° r the same parameter 
ranges as for <$/v. For Hv maps «^M,p boundedly into ^£i_M><z since 
T ( £ ) ^ M < 3/2 - H g 3/2 + 1/; i f , _ i / 2 maps i^i_M , , boundedly onto 
«Sf3/2-(M+o,<zi ^ - niaps =^3/2_(M+,)i(/ boundedly into itself if 0 < 3/2 — 
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(M + v) < 2, or —| — v < /z < 3/2 — *>, which we have seen is true; 
and ilf_(j,_i/2) maps j£f 3/2-0*+«o,? onto J î__M;(?. Also, if / G J^i /2 )2, from 
(1.10), (1.3), (3.8) and (4.4) 

-mM^ll2)H^\Iv^l2Hvf) s) = - (2WHLM^ / 2 ^/ )Cv + è - " ) 

= - c o t - (5 + \ - V)WMv-1/2HJ)(s + è - v) 

= - C o t f ( s + è -p)($)lH,f)(s) 

= -mv(s) c o t f (s + è - *)(2»/)(l ~ s) = (2W^,/)C0, 

and thus (4.4) holds oni/yi /2>2, and hence on J ^ ^ since both sides of (4.4) 
are in [if„fP, ^ i - M , J -

As a corollary of this result we obtain some information about the 
range of Hv. 

COROLLARY 1. if 1 < p < oo, y(p) ^ /x < 3/2 — \p\, then, except when 
V = \ — v, Hv^w) is invariant under the operator 7lf_(t,_i/2) #_!/,,_ i/2. 

Proof. 

= ( M _ ( , _ 1 / 2 ) f / _ ^ _ 1 / 2 ) ( ^ ( ^ , , , ) ) , 

using (4.3). 

Four comments seem to be in order about the results of Theorem 4.2 
and Corollary 1. Firstly, the boundedness results seem to be maximal 
with respect to the spaces ^ntV, except in the case v = — J, when they 
are not maximal. For it is easy to see that for^ , , to be bounded o n ^ i / ) t 

mv(s) cot w(s + \ — v)/2 must be bounded on the line Re s = 1 — n, 
and if v ^ —\, this requires \ ^ \x < 3/2 — \v\, and easy examples show, 
using the integral representation of & v to be derived below, that we must 
have M ^ y(p). UP = - ^ since F_i/2(x) = Ji/2(x), ^ _ i / 2 - H1/2 =^SJ 

and J^,s. is bounded for y(p) ^ /x < 2. Secondly, the exceptional value 
of M for which 

and for which the result of Corollary 1 fails, namely /x = \ — v, is only 
possible if — \ < v rg 0. For the condition y(p) ^ ^ — v < 3/2 — |^| is 
equivalent to — \ < v ^ \ — y(p)andy(p) ^ \. Further, if v = 0, p = 2 
since 7(£) = J only if p = 2, and thus 
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Thirdly, since onifi/2,2, Hv
2 = J, 

Hv(Jz-y 1/2,2) = <=̂  1/2,2, 

and thus #,(^1/2,2) =^1/2,2, M < 1. 
Finally Hv(<& n,v) has been characterized in [5], in terms of fractional 

integrals independent of v and of J^~c acting on ^ 7 , p , and thus, except 
when JU = \ — y, Wv{^^^ has the same characterization. 

In order to obtain an integral representation for *&v, we need an 
analogue for $/v of Theorem 2.1. 

THEOREM 4.3. If / G ^ M , P> g ê <^M,« wfeere l < ^ < o o , l < g < o o , 
/r-1 + f [ è 1. tfftd max (y(p)j y(q)) è M < 3/2 — |y|, //zen 

(4.5) /

'00 l °° 

(^,/)(*)g(*)<f* = f(x)(W„g){x)dx. 
0 " 0 

Proof. This is practically the same as for Theorem 2.1. 

THEOREM 4.4. If f f i ^ , ^ w/^re 1 < p < GO, y(£>) ^ M < 3/2 — \v\ 

then for almost all x > 0, 

(4.6) (WJ) (x) = x-('+im f x+1'2 f° 
ax J a 

(xtY'-(Yr+1{xt) 

+ T(v+l)(2/xt)'+l/*)f(t)dt/t. 

Proof. Since qVjX Ç <=£%,?', from Theorem 4.3, for x > 0 

u 0 ^ 0 

= / ; 

But from (4.3), (2.8), and (4.1), 

= *'+1/2(:x:01/2(lVnO0 + I > + l)(2/xf)"+1/V)//, 
and thus 

) t'+1'\<Wvf){t)dt = .r"+1/2 J (x<) 1 / 2(^ ,+ 1(^) 
«^ 0 «^ 0 

+ r ( , + l)(2/xt)v+l/ir)f(t)dt/t, 

and the result follows on differentiating. 

5. The boundedness and range of Jl?v. We shall determine the 
boundedness properties of J^fv and find its range by showing that a 
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relation exists between $?v and Hv+i. We shall also find an integral 
representation for Jtifv. First we need the following lemma. 

LEMMA 5.1. Let 

(5.1) h(s) = (Y{h(s + „ + 3/2))r(*(* - , - $)))/ 
(T(i(s + v + i))T(Us - v + i ) ) ) f v > - 2 . 

Then: (a) //^re w a transformation Sv £ [<^n,p\ for 1 < p < CQ , ^ > max 
(* + i - 0 + 3/2)) $ttcft / t o iff G «£%,„ ï < ^ 2 , / i > max {v + i 
- (i; + 3/2)), then for Re 5 = M, 

(5.2) (2KS,/)(s) = / , (* ) ( 2»/) (5). 

5„ maps ^ M ) P one-to-one onto itself ifl<p<co,n> max (*> + \, — 
(y + 3/2)), \x ^ — (?/ + ^)..4/s0: (b) thereis a transformation Tv £ [J£?n,p] 

for 1 < p < co ,n < mm (§ - v,p + 5/2) MC& / t o i / / Ç i f MfP, 1 < p g 2, 
in < min (J — v, v + 5/2), then for Re s = n 

(5.3) (2Rr,/)(s) = / , ( l - 5 ) ( 2 R / ) ( 5 ) . 

r„ maps ^n,v one-to-one onto itself if 1 < p < co, i u < min (J — p, 
p + 5/2), M ̂  v + 3/2. F ^ r ^ r : (c) # / € < £ % , „ , ^ ^ y , w/zw 
1 < £ < oo, M > max (v + i ~ (v + 3/2)), /fcew 

/

oo I oo 

(s,f)(x)g(x)dx = I /(*)(7\g)(*)<fc. 
0 «^ 0 

/n addition: (d) if v > —2, 

(5.5) (7>,+i t*)(0 = xv+Y(v+5/2) I \P+2Hv(xv)dvfa.e. 
J o 

Proof. Clearly lv is holomorphic in a(lv) < Re s < #(/„), where a(lv) 
= max (v + i, ~{v + 3/2)) and /?(/„) = oo. Also, from [1; 1.18(6)], if 
o- > a(lv), then as |/| —* oo 

|/,((T + *0l ~ ( | / |^+"+3/2)/2 |^ | ( . - , - l /2)/2)/ 

/M(<rfH-l/2)/2M(ff-H-l/2)/2\ = 1 

uniformly in <JI ̂  a ̂  o-2, where <*(/„) < a\ S o"2 < P(h)> Hence in the 
strip en ^ Re 5 ^ o-2, |/^| is bounded. Further, 

IV (a + it) = ih(a + it) MM* + v + 3/2 + it)) 

+ *(*(* - * - 1 + *')) 
-*(*(*• + * + I + iO) - *(i(* - " + è + it)), 

where ^(s) = T'(z)/T(z). But from [1; 1.18(7)] as |z| -> 00 in |args| g 
7T — Ô, 

* ( * ) = logs - (2s)-1 +0 ( | s |~ 2 ) . 
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Also, if a and / are real as |/| —> oo , 

log (a + it) = logt/ + log (1 - ia/t) = log (it) - ia/t + 0(r2), 

while (a + it)'1 = - / / / + 0 ( r 2 ) , so tha t 

iK</ + //) = log it - i(a - \)/t + 0(r2). 

Hence as |/| —> oo 

| / / ( a + i7)| - \lM + it)\ |—i((o- + , + 1) + (d - , - 1) 

- (a + v) - u - v))rit + 0(r2)| = 0(r2) 

since |/„((j + *7)l = 0 ( 1 ) . T h u s /„ £ J / ; see [4; Definition 3.1]. 
Hence by [4; Theorem 1], there is a transformation Sv 6 [<=£%,J for 

I < p < oo, a{lv) < (JL < 0(/„) such tha t if / G <£%,?» 1 < £ < -» 
«(/ , ) < M < /3(/„), then (5.2) holds. 

To prove the remainder of (a) , we notice t ha t l / /„ is holomorphic in 
cither of the strips a\ < Re s < 0i or a2 < Re 5 < 02, where «i = max 
(„ _ i j - (j, + .i) j ? 0! = oo , a2 - min(ï/ - £, ~ (v + D ) , 02 = «i, and 
calculations almost identical to those performed above for /„ show tha t 
1/7, e ,<?/ with either a ( l / / „ ) = a i , 0 (1 / / , ) = 0i or a(l/lv) = a2, 0 (1 / / , ) 
= 02. Hence by [4; Theorem 1], Sv maps«JSfMiP one-to-one onto itself for 
1 < £ < oo , max(a( /„) , «i) < ft < min(0(/„) , 0i) or max(a( /„) , a2) < M 
< min(0(/„), 02 ). Pu t t ing the various values of the as and 0's into these 
inequalities we obtain tha t Sv maps J*fM)P one-to-one onto itself for 
1 < /> < oo , M > max(i/ + i ~ (̂  + 3 / 2 ) ) , M ^ - (i; + £). 

(b) follows from (a) ; for if &„(s) = /„(1 — s), then /„ G stf implies 
ku \ V with a[kv) == 1 — 0 ( / , j , 0(&>.) = I — «(/„), etc., and all results 
about Sv are true for 7 \ with M replaced by 1 — /x. 

We first prove (c) for /> = 2. For then, from [6; Theorem 72], 

/

'oo 1 f*H+ico 

(SJ) (x)g(x)dx = - - 7 I (9MS,/) (s) Wg) (1 - ,s-)rf.v 

°i,(S)(<m.f)(s)mg)(i - s)ds 
- ia> 

1 Ç M-f foe 

= rr- I (W)coai - (i - s))mg)(i - s)ds 
1 Ç M+ ioo / * oo 

= — . I &lf) (s) (2K7\g) (1 - s)ds = I / ( * ) (7\g) (x)d*. 

But both sides of (5.4) are bounded bilinear functionals on J^M,P X 
^ i-/i.//, and thus (5.4) is true if f Ç ifMjp, g Ç if\_M>^, 1 < /> < GO , 
M > max(j, + i -(v + 3 / 2 ) ) . 

T o prove (5.5), we notice tha t since v > —2, — (v + 3/2) < 1, and 
- (r + 3/2) < i> + 5/2. T h u s we can choose pt, — (v + 3/2) < jit < 1 

-Lf 
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so that n < min( | — v, v + 5/2) and then rv+XtX G ~^M,2, and r„+i,r = 
Hv+iqv+i,x, and Tvrv+i<x Ç o£%,2. Hence from (2.3) and (5.3), if Re 
* = M, 

(gW7>H-i,*)(*) = mTvHv+lqv+l<x){s) 

= /„(1 - s)my+i(s)(3)lqlf+i,x) (1 - s) 

2 , - l / 2 x , + 5/2-, ^ T{i{v + 3 / 2 + , ) ) r ( I ( l _ „ _ , ) ) 

» + 5/2 - .v r ( i ( " + 3/2 - s ) ) r ( J (3 /2 - v - s)) 
f 

9*-i/2 .+5/2-, r (|(i/ + s + £)) sin ~ (3/2 - v - s) 
~ X ^ 

v + 5/2 - .v r {h{v _ $ + 3 / 2 ) ) s i n | ( i _ y _ $) 

„+5/2-s 

m„(s) t a n ^ (s + ? + è)> 
Ï; + 5/2 - 5 

where we have used (1; 1.2(6)]. But then by (1.9) 

(Tvrv+itX)(t) 

= x'+6/2 lim ^~. I (&)-**»,(*) tan £ ( * + „ + |)<fc/(* + 5/2 - s), 

where the limit is in the topology of L1/2,2- However, closing the contour 
to the left, a long hut straightforward residue calculus calculation yields 
that pointwise a.e. 

/

H+iR 

(tx)-sm,(s) tan ~ (s + v + %)ds/(y + 5/2 - s) 
,wcn u-lR 

= x'+Y{v+im f'v'+2H,(xv)dv, 
J 0 

and thus this must be (7>, + i( /)(/) a.e., and (5.5) holds. 

THEOREM 5.1. / / v > — 2, then, on C0,J^v = HV+1S„. 

Proof. Suppose / £ C0. Then for all M > max(*> + i, — (v + 3/2)), 
5 , / G if,,,2. Since v > - 2 , - (* + 3/2) < */ + 5/2, and thus M exists 
such that 

\ ^ M < v + 5/2 and M > max(. + ! , - ( „ + 3/2)). 

Hence Hv+iSvf is defined, and by Theorem 2.2 and (5.4), for almost all 
x > 0 

d_ f °° 
£& J o rv+la (Hv+lSvf) (x) = x~{v+6/Z) ± rv+la{t) {Svf){t)dt 

^ W / 2 ) i / 0
œ (Tvrv+1,x)(t)f(t)dt 
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provided rv+1<x Ç J^i_M)2, which is so from Lemma 2.1 since \ ^ \x < v + 
5/2 and hence - (y + 3/2) < 1 - /x ^ \ < 1. Thus, for almost all 
x > 0, by (5.5), 

(Hv+lSvf)(x) = x-^/2)~xv+* f™ riv^/2)f(t)dt f ' vv+2H(xv)dv 
ax J o ^ o 

= x~ ( ' + 3 / 2 ) ~ {~ tll\f(t)dt f\>+2H,(tv)dv 
ax J o J o 

= I " (x/)1/2H,(x/)/(/)J/ = C^ , / ) (* ) , 
•J 0 

the differentiation under the integral sign being allowed since/ Ç Co, and 
the result is proved. 

THEOREM 5.2. Suppose l < £ < o o , . + | < / x < . + 5/2, /x ^ 7 ( £ ) . 
7 ^ n J^v can be extended to f£ ».,v as an element of [=^MiP, <f£i_M, J /or any 
g ^ p such that q' §; l//x, and except when /x = — (i> + J ) , ^ „ is one-to-one 
and 

Jri V\^L M p J = x i „+ i (=>£ M p ) . 

Further, if f £ ifMJ>, 1 < £ ^ 2, . + ^ < M < . + 5/2, /x è Y ( £ ) , /or 
Re 5 = 1 - M 

(5.6) (2K.#V)(s) = m,(s) t a n ~ (s + „ + è)(3B/)(l - s). 

In addition, if v > —1, 1 < p < GO , „ + ± < M < „ + 3/2, /x ^ T ( / 0 » 

(5.7) Jt?v = HvM-i.+imH-Mv+1/2, 

and 

(5.8) Jfv = -Mv+1/2H+M-(v+imHv. 

Proof. Since è = T ( £ ) = M < ^ + 5/2, . > —2, and thus by Theorem 
5.1, on Co,Jtfv = Hv+iSv. But by Lemma 5.1, Sv G [<^M,P] f° r M > max 
(v + h - ( . + 3/2)). Since max(. + i - („ + 3/2)) = - ( . + 3/2) 
only if -2 < v < ~ 1 , and for - 2 < v < - 1 , - ( „ + 3/2) < \ ^ 7(/>) 
^ /x, so that for the values of ix under consideration in this theorem, 
Sv Ç [~^M,PL

 a n d KS„ maps 0^
?
M>P one-to-one onto itself except when 

M = - 0* + è). Also, since 7 (£ ) ^ /x < . + 5/2, Hv+1 £ [ifMfP, i f i-Mf<J 
for all q }£ p such that g7 ^ l//x- Hence HV+\SV Ç [if MtP, i f i_Mt<J for all 
such o. 

Thus we can e x t e n d i , t o i f MtP f o r l < £ < o o , . + ^ < / x < . + 5/2, 
M è T ( P ) , by defining it to be Hv+iSv, and then J^„ £ [if/i.P» i f I-M,«] f° r 

all q ^ £ such that g' è 1/M- Also, since Sv is one-to-one except when 
/x = — (y + è)> a n d by Theorem 2.4 i7„+i is one-to-one,^ v is one-to-one 
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except when \x = — (v + J ) . Since also Sv{J£tltP) — ifMiP except when 
M = — ^ + h),y?v(<^n,p) = Hr+i&w) except when /* = — (P + J ) . 

From (2.3) and (5.2), if / £ ifMiP, 1 < £ ^ 2, *> + ^ < M < ^ + 5/2, 
M ̂  T ( £ ) > then for Re 5 = 1 — jit, 

WJf'Ms) = WH,+iS,f)(s) = w , + 1 ( s ) / , ( l - 5 ) ( 2 » / ) ( l - * ) . 

But we saw in the proof of Lemma 5.1 tha t 

m, + i (5) / , ( l — J ) = m„(s) tan - (s + ? + è) , 

and (5.6) follows. 
For (5.7), note t ha t if v > - 1 , HvM-{v+imH-Mv+ir2 G [ifMfJ„ ^ I - M . J 

for all # > £ such tha t g' ^ 1/M- For, i f„+i / 2 mapsi?M i : P boundedly onto 
«Sf^-^i^.pj from Theorem 3.1, H- maps<ifM_y_i/2,p boundedly into itself 
since v + \<ix<v-\- 3 /2 and thus 0 < / Z - - J / — J < 1 ; M_(„+i /2) 
mapSo$fM_J,_i/2,/, boundedly ontoi?M i ; p ; and i7„ maps J2?MiP boundedly into 
i f !_M;, since 7 ( £ ) ^ M < ? + 3/2. But if / <E i ^ , 2 , è ^ M O + 3 /2 , 
then by (2.3), (3.8), and (1.10), if Re s = 1 - M, 

mHvM-iv+imH„Mv+l/2f){s) = wF(5)(a»ML.(H.i/2)flLM^i / 2/)(l - .0 

= m ^ ) ( m L M , + 1 / 2 / ) ( § - * - s) 

= w„(s) c o t ~ (I - v - s)(MMv+i!2f)(h - v - s) 

= ro,(s) tan -J (s + v + i ) ( 2 R / ) ( l - s) = ( 2 » ^ , / ) ( s ) , 

so tha t on J?fMi2, (5.7) holds. But both sides of (5.7) are in [Jz?Mi??,<if i-M,J 
if 1 < £ < 00, J> + J < / X < Ï > + 3/2, /x ^ T ( ^ ) , and hence since 

y(p) ^ I , (5.7) must hold on suchifM ) P . (5.8) follows similarly. 

As a corollary of this result, we obtain further information about the 
range of Hv. 

COROLLARY 1. Ifl<p<co,p + ±<n<v + 3 /2, \x ̂  y(p), then 
Hv(J£ntP) is invariant under the operator M'„+i/2if+M_(„+i12)• 

Proof. Since v + 3/2 > 7 ( p ) è 5, * > - 1 . Also /1 ^ - (? + i ) , since 
if it were, — (v + i ) è T ( £ ) è è> and p ^ — 1. But then, using 
[5; Theorem 1] and (5.8), 

•tl v \ ^ n ,p ) = = tl v+1 (,<=<£• M ,P ) = ttt v\<*£ n,p) 

= (Mv+i/2H+M-(y+i/2)Hv)Ç&piP) 

= (MV+1/2H+M^+1/2))(HV(^,,P)). 

Three comments may be made here. Firstly, the boundedness results 
again appear to be maximal with respect to the spaces LMfP, for the same 
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reasons as for °3/v. Secondly, the exceptional value of M for which 
J^V(LM(2,) 5^ Hv+i(L^yP), namely /i = — (y + \), can only occur for 
- 3 / 2 < v S - 1 since £ g y (p ) ^ M < * + 3 /2 ; if v = - 1 , /> = 2. 
Thirdly, ^ ( ^ 1 / 2 , 2 ) = 0^1/2,2, - 2 < v < 0, v ^ - 1 . 

In order to develop an integral representation for ,;#%, we need an 
analogue of Theorem 2.1. 

T H E O R E M 5.3. / / / G ifMfP, g 6 ^ M,„ l < / > < o o , l < t f < o o , l//> + 
1/(7 = 1» ^ + è < M < ^ + »V2 (i«J ju > max(7(/?) , 7 (</)), //zera 

(5.9) /

'00 1 00 

W,J)(x)g(x)dx = I / ( * ) ( ^ , g ) (*)<&. 
0 ^ 0 

Proof. This is practically the same as tha t for Theorem 2.1. 

T H E O R E M 5.4. / / / Ç i f M|P, where \<p<co}v + ^<n<v + 5, 2, 
M è T ( P ) , then for almost all x > 0, 

(5.10) (jej)(x)=x-i'+ll2)~-x"+il2\ (xt)ll2H,+1(;xt)f(t)dt/t, „ > - I 
ax J 0 

(5.11) (^/ ) (x) = - ^ 1 / 2 £ ^ ( * ~ 1 / 2 ) J j (*<)1/S(H_i(*/) 

- ( . r / ) y ( 2 " - V / 2 r ( „ + h)))f(t)dt/t, -•><»< 1. 

.Proof. If v > - 1 , - ( « + i ) < i ^ 7 ( £ ) ^ M, and by Lemma 'J.I 

Qy,x f: ^I>,I>'- Hence from Theorem ~>.3, if x > 0 

f%"+1'H^f)(t)dt = fœçUt)(j^j)(t)dt = fa^^,lX)(t)f(t)di. 
%J o •/ () */ 0 

Now also <2V.r Ç i f M,2, and hence from (5.6), with Re .s = 1 — \x 

WJf&Jis) = m,(s) tan £ (s + v + D » % , , , ) (1 - s) 

XV"2'S T 

v + ù / 2 — ^ 2 

Hence from (1.9) 

-, r I -M+ «s 
= x ^ 3 / 2 lim - - - I (x/)-sw,Cv) tan ~ (s + v + h)ds/(v + 3 /2 - .*), 

where the limit is in the topology of fi£Mi2. But, closing the contour to the 
left, by a residue calculus calculation similar to t ha t mentioned in the 
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proof of Lemma 5.1(d), pointwise a.e. 

x**'2 lim - - - , / "+lR (xty*m9{s) tan ~ (s + v + \)ds/(v + 3 /2 - .v) 

= (xt)1/2Hv+1(xt)/t, 

and (5.10) follows. 
(5.11) follows in a similar manner, using ^_v,a-, since </_„,,• t L^^ if 

i/ < 1. 

6. Inverses . In this section we shall investigate to what extent &'„ 
and ^ „ are inverse to each other. We note firstly t ha t in order that 
ffî $/ „ or & vffl v be defined onJ?fMt/,, it is necessary tha t \x = \, p = 2, and 
— 1 < ? < 0. For, in order tha t $/' v be defined on J / 7 ^ , we need y(p) ^ 
M < 3 /2 - \v\, and thus since y(p) è è, M < 1, and M à i But <3/v 

maps c^MJ, into cSf i_Mt<? and thus for ffl0v to be defined we need 
^ <; 7(r/) ^ 1 — \x and ^ + ^ < 1 — / i < z ^ + 5/2. T h u s since M è i and 
1 - M è i M = è, ?(/>) = è> and since then v + £ < \, and H < 1, 
v < 0. However, if — 1 < ? < 0, then on J^i / 2 ,2 , ^ ^ a n d J f „ are inverses, 
as the following theorem shows. 

T H E O R E M 6.1. If — 1 < v < 0, then onJ^\r2,2 

.#?&, = ̂  j r , - /. 

/ W / . Since - 1 < v < 0, J < 3/2 + */ = 3 /2 - |*/|, and hence from 
(4.2), 

Also, since — 1 < ^ < 0, y + è < è < ^ + 3/2 , and hence from (5.8), 

rW v = — Al v+\/2H+M—(V+\/2)Hy. 

Note tha t Alv-\/2H+Al-{v-\i2) maps J^i / 2 ,2 onto itself, as shown in the 
proof of Theorem 4.1, and hence, since on J / / / 2 ( 2 , i / , 2 = / , using (1.5), 
( 3 . 1 0 ) , a n d ( 3 . 3 ) , 

M pW v = — Aly+l/ïH+Al-lp+lwHvHyATy-ltfH+Al-tv-l/ï) 

— — Aly+i /2H+Àl-(r+i /2)Mv-i /2H+Àf-(y-i /2) 

= -Al^rzH+Al^H+MiAl-^^ 

= —Alv+i/2H+H-Al-(V+i/2) = M„+i/2-M-(,/+i/2) = ^ > 

and similarly, using (4.3) and (5.7), ^ j f / = 7. 

However we can also c o n s i d e r ^ / , in the product J^0v to be given by 
(5.10), and ^ „ in the product ^VJ^P to be given by (4.6), and doing this 
we obtain a considerable extension of the results of Theorem 6.1, as the 
following two theorems show. 
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THEOREM 6.2. / / / 6 =£%,,,, where 1 < p < oo, y(p) è v < min(£ — »\ 
v + 3/2), then for almost all x > 0, 

(6.1) f(x) = af hl,2>ahX'+l'2K (*0 1 / 4 HH-I(*0(^, / ) ( / )* / / • 

Proof. Since T(£>) ^ ^, ^ < min(^ — v, v + 3/2), and it follows that 
- 1 < v < 0, so that y(p) g /x < 3/2 + */ = 3/2 - |i/|, and thus from 
Theorem 4.2, ̂ „ / exists and is in J2? i_M,P. Hence Mv+\\0vf Ç j£f i/2-M-,,;>. 
Since — 1 < J/ < 0, 

- („ + i ) < i ^ 7 (£ ) g » < min(è - ,̂ v + 3/2) ^ 1, 

and hence, from Lemma 2.1, rVtX G <££^y, and thus M_(,+i/2)^^, f 

^I /2+M+^P ' Î
 n ° te a^ s o t n a t — 1 < 2 + M + ^ < 1 ) since for — 1 < v < 0, 

~{v + 3/2) < - i < fx < è - ^ 

and that 

Hence from Theorem 3.1 and (3.4), 

(6.2) / " (H+M^+lr2)r„,x)(t)(M,+l/&J)(t)dt 
*> 0 

*J o 
{M-Mmr,,t){t)(H-M^,é&,f){t)dt. 

But from [2; 15.3(1.5)], remembering that i/+ is the restriction to (0, oo ) 
of the Hilbert transformation of even functions, 

(H+M-wmr,a){t) = -x'+*r<'+»H,+1(xt). 

Also, from (4.3), 

so that, using (1.5), (3.9), and (3.3), 

H-M,+u&,} = -H-M,+il3M-l,-imH-M,-uiH,f 

= -H-M1H-M-lM,+lliH,f 

= —H-H+Mv+i/2Hvf = Mp+i^Hvfj 

and substituting in (6.2), using (2.7), it follows that 

(6.3) x'+1/2 J œ (**)1/2H*+i(*0 ( ^ J ) (*)*// 
«^ 0 

x"+1/2 | (xt)li2J,+l(xt)(H,f)(t)dt/t, 
J 0 
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and the result follows from Theorem 2.3, since, as noted, y(p) ^ M < v 
+ 3/2, and /* < 1. 

THEOREM 6.3. / / / (E <^M)2?, w/^re l < / ? < o o , ^ + è < M < min(l, v + 
3/2), /x ^ T ( P ) , then JOY almost all x > 0, 

(6.4) f (*) = .r-('+1/2) f *'+1'2 f °° (xt)lr\Yv+1{xl) 
(IX J o 

+ r(, + i)(2/xty+1/T)(^j)(t)dt/t. 

Proof. Note that since v + \ < 1 and */ + 3/2 ^ Y ( £ ) è i - K ^ 
< ^. By Theorem 5.2, J^„/ G ^fi_M^, and hence M_(V_i / 2) ,^/ 
Ç o£f i/2+„_Mip. Clearly — (p + J) < | ^ y(p) S M < 1, and hence by 
Lemma 2.1 rVtX £ ^^y, and hence il/„_i/2/v:r Ç ^ I /2+M-^P ' - Further, 
— 1 < | + J> — J U < 1 , since ^ — ^ < ^ + | < / * < ^ + 3/2. Hence from 
Theorem 3.1 and (3.4) 

3.5) f (6.5) (flLM^1/2r,,,)(<)Clf-(^i,!,jr,/)(/)d/ 

(M_i,2r,,,) (/) (H+M-wvJfrf) (t)dt. 

(H-Mv-n<>rva)(t) is given in Lemma 4.1. Also, since y > — 1 and 
v + è < M < " + 3/2, from (.5.8), 

J T , / = -Mr+uiH+M-wnHJ, 

so that using (1.5), (.3.8), and (3.3), 

H+M-{.-Vi)je,f = -H+M-(^imM,+ï/iH+M-(^1/t)H,f 

= -MiM-tf+MxH+M-wnH.f = -M1H^I+M-i,.lmH,f 

= Al—(V-i/2)Hvf, 

and substituting in (6.5), using (2.7), and multiplying both sides by — 1, 
we obtain 

(6.6) *"+l/2 | (xty'\Yr+1(xt) + r(v + l)(2/xt)*+1/ir)(l#',f)(t)dt/t 

• / , = x'+1/z (xty/zJv+1(xt)(HJ)(t)dt/t, 
J 0 

and the result now follows from Theorem 2.3. 

Inverses for &v and J^„ for other ranges of the parameters involved 
can also be determined. For ̂ „ , it follows from (4.2) that 

and i7„_1 can be determined using the remarks at the end of Section 2. 
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For JT„ it follows that since ^ v = Hv+lSv, Jfr1 = Sv-
lHv+rl. Hv+r' 

can be determined using the remarks at the end of Section 2, while it is 
easy to see that 

Sp~l = ( ^ 2 , , l / 2 ( i / - l / 2 ) / 2 ) - 1 . / 2 , l / 2 f ( » M - l / 2 ) / 2 , 

where JVtpiV is given in [3; (1.3)], and (J^/s.tj)-1 can he determined in 
much the same way as (Ia^)"1 in Section 2. 
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