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ABSTRACT

Recent studies propose that J. S. Bach established ‘parallel proportions’ in his music – ratios of the lengths of
movements or of pieces in a collection intended to reflect the perfection of divine creation. Before we assign
meaning to the number of bars in a work, we need to understand the mathematical and musical basis of
the claim.

First we need to decide what a ‘bar’ is and what constitutes a ‘movement’. We have explicit evidence from
Bach on these points for Bach’s  Dresden Missa, and his own tallies do not agree with those in the theory.
There are many ways to count, and the numbers of movements or bars are analytical results dependent on
choices by the analyst, not objective data.

Next, chance turns out to play an enormous role in ‘parallel proportions’. Under certain constraints almost
any set of random numbers that adds up to an even total can be partitioned to show a proportion, with like-
lihoods better than ninety-five per cent in sets that resemble the Missa. These relationships are properties of
numbers, not musical works.We thus need to ask whether any apparent proportion is the result of Bach’s design
or is simply a statistically inevitable result, and the answer is clearly the latter. For pieces or sets with fewer
movements the odds are less overwhelming, but the subjective nature of counting and the possibility of silently
choosing from among many possibilities make even these results questionable.

Theories about the number of bars in Bach’s music and possible meanings are interpretative, not factual, and
thus resistant to absolute disproof. But a mathematical result of the kind claimed for ‘parallel proportions’ is
essentially assured even for random sets of numbers, and that makes it all but impossible to label such relation-
ships as intentional and meaningful.

There is a long history of numerical theories about the music of Johann Sebastian Bach. Going back to writ-
ings by Wilhelm Werker, Arnold Schering, Martin Jansen and Friedrich Smend in the years  to , it
has come to be a commonplace that Bach expressed himself in symbolic ways through numbers. These the-
ories, which have continued to proliferate, claim to reveal hidden relationships in Bach’s music, usually by
counting things (bars, notes and so on); and they offer symbolic interpretations of mathematical results
that are said to have had meaning for the composer.
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The latest of these hypotheses is the work of Ruth Tatlow, who has put forward a theory of ‘parallel pro-
portions’ in Bach’s music in articles and a book. The theory claims that in his music ‘Bach created layers of
: and : proportions, using the numbers of bars in the parts and sections of compositions’. It offers a
method for analysis: ‘By comparing the numbers of bars in his early and later versions, or by tracing the
changes he made as he compiled a new collection from pre-existing movements, one can see how Bach intro-
duced the layers of perfect proportion’. And it suggests that the significance to Bach and to our understanding
is that ‘harmonic proportions in the cosmos, in the world and in the measurement of the human being were
understood to be a reflection of the “indescribable wisdom and perfection” of the Creator God’.

This striking theory is illustrated by examples from across Bach’s musical output, including instrumental
collections published and unpublished, as well as multi-movement vocal compositions. For example, Bach’s
Sonatas and Partitas for Solo Violin, BWV–, yield a table showing sums of bars in each movement
that add up in : and : proportions – that is, movements are split into two columns that total the same
number of bars (or twice the number in the case of : proportions), representing the theory’s ‘parallel pro-
portions’ in the music (Figure ).

In many respects this theory is like its numerical predecessors, but it claims to be different in that it is said
to be based on empirical observations – analytical data – rather than on interpretation. I am not certain that
this distinction is entirely clear, but if we accept it for a moment then it makes sense to ask whether the empir-
ical claims hold up – whether, that is, the bar tallies that are the basis of proportional claims are as factual as
represented, and whether the proportional claims really result from the composer’s deliberate choices. The
answers are that they are not, and that they do not.

THE THEORY AND ITS PROBLEMS

The theory of parallel proportions seems to me to make three assertions:

 numerical relationships are present in works by Bach – the numbers of bars in pieces or collections
add up to create proportions;

 Bach created these relationships through compositional choices; and
 the relationships were understood to be meaningful in the eighteenth century.

The third claim is the subject of the opening chapters of the book, which argue for the centrality of harmonic
and proportional thinking in the early eighteenth century and for its significance. This needs to be examined
as a matter of intellectual history, and onewriter has questioned – in harsh terms – the theory’s interpretation
of historical sources, its translation of key terms and its understanding of central principles of eighteenth-
century musical signification.

But even aside from these problems, we do not know whether the claimed views were indeed expressed
musically in the number of bars in pieces, or whether they informed composers’ thinking. There is no

 Ruth Tatlow, Bach’s Numbers: Compositional Proportion and Significance (Cambridge: Cambridge University Press,
); Tatlow, ‘Parallel Proportions, Numerical Structures and Harmonie in Bach’s Autograph Score’, in Exploring
Bach’s B-Minor Mass, edited by Yo Tomita, Robin A. Leaver and Jan Smaczny (Cambridge: Cambridge University
Press, ), –; Tatlow, ‘Bach’s Parallel Proportions and the Qualities of the Authentic Bachian Collection’,
in Bach oder nicht Bach? Bericht über das . Dortmunder Bach-Symposion  (Dortmund: Klangfarben-
Musikverlag, ), –; Tatlow, ‘Collections, Bars and Numbers: Analytical Coincidence or Bach’s Design?’,
Understanding Bach  (), –.

 Tatlow, Bach’s Numbers, –.
 This is the place to acknowledge that I consider Dr Tatlow a friend and that she has always been a most generous
colleague.

 This is the strongest contribution of Pieter Bakker, ‘Postmodern Numbers: Ruth Tatlow on Proportions in the Written
Music of Johann Sebastian Bach’ http://www.kunstenwetenschap.nl/postmd-e.pdf ( December ).
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historical evidence for this – just analytical results according to the theory. Composers might have written
pieces with features intended to project proportional thinking, but the claim that they did would have to
be demonstrated by something more than simply showing numerical results. The fact that there are numer-
ical relationships is not evidence that the composer put them there or that they were meant to be significant –
it’s just a restatement of the theory that there are proportional relationships. I do not think we can be

Figure  Table . from Ruth Tatlow, Bach’s Numbers: Compositional Proportion and Significance (Cambridge:
Cambridge University Press, ), . Used by permission
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comfortable with the assertion that a phenomenon was meaningful to the composer simply because it exists,
at least not without further investigation. (We are free, without justification, to consider it meaningful to us,
but that is a different matter.)

Interpretative claims need merely be plausible, and by that standard numerical relationships in Bach’s
music could be said to mirror symmetry in the world; a hermeneutic assertion like this is not subject to
being disproved. But at the same time, without direct evidence of what Bach or his contemporaries believed
about this it cannot be argued factually, either, and this is where the apparently objective nature of numbers in
the theory of parallel proportions is potentially misleading. This is because the numbers presented do not
fundamentally quantify features of works of music. They are rather the result of a series of analytical choices
that are themselves part of the interpretative method.

The choice of how and what to count involves a large number of decisions on the part of the analyst,
including (in the example of the violin music above) how to count repeats, da capos, and first and second
endings in totalling up the bars. This is significant because one presumably has to count in the ‘correct’
way to get results. The theory acknowledges ambiguities in counting, but it is difficult, for example, to
know what to make of this statement about the solo-violin works, which comprise twenty-one movements
with repeats and one with a da capo indication: ‘Bach’s score of the Six Solos has exactly  bars. This
becomes  bars when the da capo bars are included and  bars when all repeats are observed’. We
need to ask what it means that a score ‘has exactly  bars’ but that they ‘become’ , when counted
a different way, or ,when totalled in yet a third. How ‘exact’ is , if there are at least two other possible
tallies? Which is correct? These are probably not answerable questions, and we have to acknowledge that
there are multiple ways to count. In fact there is no precise, objective number of bars in a work; the number
of bars is an analytical result that stems from a series of choices by the analyst in all but the most trivial
notated pieces.

This is crucial because themethod of counting is essential to the subsequent analysis of numbers according
to the theory. The way bars are counted is an important part of the method, not an objective path to facts on
which to build analyses. Already the first claim – that the numerical relationships are present in Bach’s music
– is not factual but itself belongs to the realm of interpretation.

We particularly need to keep the interpretative character of counting in mind when we come across claims
that notation itself proves Bach’s intentions. In the violin solos, for example, the theory suggests that

the da capo [notation of one movement] . . . may be evidence of how Bach manipulated the score to
achieve his perfect numerical plan. . . . Had Bach omitted the da capo indication and written out the
final eight bars, the movement would have had  bars ( with repeats) instead of  bars. This
would have destroyed the perfect numerical plan.

There is apparently a presumption here of Bach’s ‘perfect numerical plan’, and the evidence for that plan is
that the numbers work out. But the working out of the numbers is the hypothesis, and the choice of how to
count the da capomovement isn’t evidence of its correctness – it is part of the analytical method, endorsed by
the analyst because the numbers add up. The quoted argument implicitly acknowledges that at least two ways
of counting were tried (with and without the da capo) and that the one that worked was selected.

It might be possible to describe this as a search for the correct or original method of counting (Bach’s way),
but the only argument for one over another is a satisfying result according to the theory. It borders on cir-
cularity to argue that analytical decisions themselves – the ones that yield results – are evidence in favour of
the theory. The different counting of the da capo in the violin music is attributed to Bach, but it is as least as
much an act of the analyst. The method rests on choices, and this is a problem because they present a large
risk of selecting a counting method (for example) that validates the theory, and of tacitly eliminating many

 Tatlow, Bach’s Numbers, .
 Tatlow, Bach’s Numbers, –.
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others that do not. And if there are multiple acceptable ways to count bars and movements according to the
theory, that presents a greater likelihood that one of them will produce attractive results, especially if it turns
out that chance plays a role. The more options, the more likely an appealing result.

And this points to a second problem. Even if we accept the analyst’s choices – decisions about numbers of
bars – the assertions of parallel proportions do not demonstrate Bach’s intentional arrangements of the num-
bers, the theory’s second claim. It is indeed often possible to arrange numbers of bars to add up to identical
totals, as the theory suggests. But that does not prove that Bach set up these relationships, because it can be
shown that if a few criteria are met there is a near-mathematical certainty that a set of numbers can be added
to produce equal sums. The matching subtotals said to be evidence of compositional parallel proportions are
actually a feature of the numbers, not of musical works or decisions made by the composer. It is not just that
there is a good chance of these relationships arising randomly – there is an almost certain likelihood that they
will. Chance and the properties of numbers almost entirely explain results that the theory interprets as sym-
bolic gestures Bach deliberately composed into the music.

The two problems are related: the analyst’s choices provide a set of numbers (or several of them) that all but
guarantee a result. Methods of counting that do not or could not work are almost never presented, except in
the negative light we have seen in the da capo example above. The theory chooses, in effect, an analytical
representation of a piece that is mathematically all but certain to demonstrate a ‘parallel proportion’. The
choice, together with inherent properties of the numbers, determines the result. In view of these problems
we need to reconsider our interpretation of the meaning of numerical findings and ask whether a theory
of parallel proportions indeed reveals anything about Bach.

ANALYTICAL CHOICES

The theory encompasses so many distinct claims that it is not possible to examine every aspect here. I will
limit the examination to the central claim that Bach established : relationships among bar totals, and
will focus on one composition that figures both in the book-length presentation of the theory and in an
essay published before its appearance: Bach’s so-called Dresden Missa, BWVI, of , the multi-
movement Kyrie–Gloria setting that he would eventually incorporate into the Mass in B minor. It is trans-
mitted both in an autograph score and in a set of original performing parts that Bach deposited with the
Dresden court in hope of an appointment there (Staatsbibliothek zu Berlin (D-B), Mus. Ms. autogr. Bach
P; Sächsische Landesbibliothek – Staats- und Universitätsbibliothek (D-Dl), Mus. -D-), and
those sources are useful in considering the theory’s application to the work.

Figure  shows how parallel proportions in this work are represented in the book (the presentation in the
article is similar). The principal claim – the one that links all the demonstrations of the theory – is represented
on the left side of the table. The twelve movements of the Missa, totalling , bars, are divided into two
groups of six, and the number of bars in each column is shown to add up to the same value (); this is
the : ‘parallel proportion’.

We can ask right away about the significance of the division – what it means that the first ‘Kyrie eleison’ is
on the left, the ‘Christe eleison’ on the right and so on. The theory does not offer any insights into the dis-
tribution of movements, and we can wonder about an apparently arbitrary feature of the result. But we should
probably ask some even more basic questions first. If the theory makes claims about the number of bars in
each movement, we need to ask: ‘What is a bar?’ and ‘What is a movement?’ This is not just a matter of
semantics, because the answers have a large effect – if the numbers add up, we should want to know that
we are working with the right ones in the first place. The answers to these questions are not as obvious as
one might expect, and they interact in significant ways.

First, howmanymovements are there in theMissa? Almost every edition agrees on twelve (Figure ), but is
that what Bach thought? Consider the end of the ‘Gloria in excelsis’ and the ‘Et in terra pax’, typically num-
bered as movements  and  and considered distinct in the theory. In Bach’s autograph score there is no dou-
ble barline between them – not even a single barline – but rather just a change of metre (Figure ). Each of the

‘paral l e l proport ion s ’ i n j . s . bach ’s mus i c


https://doi.org/10.1017/S1478570620000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1478570620000305


original performing parts is notated the sameway, with no double barline. Bach’s typical way of indicating the
end of a movement, in contrast, is with a fermata and a clear double barline, as at the end of the ‘Et in terra
pax’. Are the ‘Gloria in excelsis’ and ‘Et in terra pax’ distinct movements, or are they a single movement?
Should we count their lengths separately or together?

An even more telling spot is in the transition from the ‘Quoniam tu solus sanctus’ to the ‘Cum Sancto
Spiritu’, regarded generally (and in the theory) as two movements. Once again the autograph score shows
no division. In the parts, lines that participate in both (like the bass voice and basso continuo) are notated

Figure  Table . from Tatlow, Bach’s Numbers, . Used by permission

Figure  Table of contents of Neue Bach-Ausgabe (NBA), series , volume a (Kassel: Bärenreiter, )

dan i e l r . me lamed


https://doi.org/10.1017/S1478570620000305 Published online by Cambridge University Press

https://doi.org/10.1017/S1478570620000305


like the score, with just the word ‘Vivace’ to indicate the change (as in the basso continuo part; see Figure ).
But lines that are not heard in the ‘Quoniam tu solus sanctus’ are notated in the parts with  bars of rest,
then the same ‘Vivace’ with no double bar (Traverso , as shown in Figure ). That is, the ‘Cum Sancto
Spiritu’ begins in bar , suggesting that Bach considered all this music part of the same ‘movement’.
We can compare this notation to Bach’s usual way of telling a singer or instrumentalist to sit out a whole
movement – a tacet indication (‘Qui sedes tacet’ in the Traverso  part, Figure ).

So are the ‘Quoniam’ and ‘Cum Sancto Spiritu’ one movement or two? And are there twelve movements in
the Missa, or eleven, or ten if we also count the ‘Gloria in excelsis Deo’ and ‘Et in terra pax’ as one? The

Figure  J. S. Bach, Dresden Missa, BWVI, ‘Gloria in excelsis Deo’ into ‘Et in terra pax’ in the autograph score.
Staatsbibliothek zu Berlin (D-B) Mus.ms. Bach P . fol. r. Used by permission
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ambiguity is significant because the analyst has to choose, and this is the heart of the problem. There probably
is no correct answer to the question of how many movements there ‘really’ are in the work, because this is an
analytical choice – it is a feature of the analysis, not of the piece. And the existence of a choice offers multiple
opportunities for a theory about numbers of bars to work out. Only one is presented in the table, and we have
to ask why that choice was made.

There is actually a third transition like this in the Missa, between the ‘Domine Deus’ and the ‘Qui tollis
peccata mundi’, notated just like the ‘Gloria’ / ‘Et in terra pax’. Once again the analyst faces the choice of
considering this one movement or two. This one matters even more because if all three sets of paired move-
ments count as one each, there are nine movements in the Missa. And that would not work, of course,
because it is not possible to divide an odd number of movements into two equal groups. A choice has to
be made to count each separately if the theory is to be applied in this way. This presents the same problem
as before: the reason for the choice is ultimately that the numbers work out. This does not imply bad faith; if
the method aims to find ways of counting that yield results, it will implicitly rule out ones that do not.

The theory accounts for this ambiguity in counting by a phenomenon it labels ‘TS’ for ‘Time Signature’,
referring to the change that happens in two of these three transitions. In the table presented in the book, ‘TS’
marks places where the choice has been made (refer back to Figure ). The table offers two alternative ways of
counting these bars. It appears that each can yield the desired result. There are problems here we will return
to, but even the theory’s own analysis here acknowledges multiple ways to count.

If the number of movements is a matter of interpretation, so, it turns out, is the number of bars in a move-
ment. How many, for example, are in the ‘Quoniam tu solus sanctus’, which is part of the third transition?
The numbered bars go to , and the cadential bar of the closing ritornello of the aria-like ‘Quoniam’ is also
the first bar of the ‘Cum Sancto Spiritu’ (Example ). According to the theory, that bar is counted only as part
of the ‘Cum Sancto Spiritu’, but could we not also call the ‘Quoniam’  bars long, counting its cadential bar,
especially if we take the position that these are two distinct movements? After all, the previous movement,
‘Qui sedes ad dexteram patris’, has its cadential bar (with tonic resolution across the bar line) counted
(Example ). At the least, are there not alternatives from which one solution has been chosen?

And if we regard the connected pairs as comprising two distinct movements, how do we number a tran-
sitional bar? Is the transition between the ‘Gloria’ and the ‘Et in terra pax’, for example, one bar long or two?
Friedrich Smend’s edition of the Mass in B minor in the Neue Bach-Ausgabe (NBA), series , volume , calls

Figure  BWVI, ‘Quoniam tu solus sanctus’ into ‘Cum Sancto Spiritu’ in the autograph basso continuo part. Sächsische
Landesbibliothek – Staats- und Universitätsbibliothek (D-Dl) Mus. -D-, fol. r. Used by permission

Figure  BWVI, ‘Qui sedes tacet’ and ‘Quoniam tu solus sanctus’ into ‘Cum Sancto Spiritu’ in the autograph Traverso 
part. D-Dl Mus. -D-, fol. v. Used by permission
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it one large bar and counts it as the first of the ‘Et in terra pax’. The ‘Gloria’ thus has  bars by his reckoning.
But UweWolf’s NBA /a (an edition of the Missa) counts this as two bars, one at the end of the ‘Gloria’
and another at the start of the ‘Et in terra pax’. The length of the ‘Et in terra pax’ is unaffected, but this makes
the ‘Gloria’ a bar longer than in Smend’s count, totalling  instead of  (Example ). Again, a choice has to
be made from among at least two possibilities, and there is no firm basis for arguing that one way of counting
is correct. This is an analytical decision, not subject to being right or wrong, except perhaps by the criterion of
whether the result satisfies the theory.

The need to count requires that we define ‘bar’ in the first place, and this too is more complex than it might
seem. Consider the ‘Gratias agimus tibi’, a movement (at least at its start) in old-style alla breve counterpoint.

Example  BWVI, ‘Quoniam tu solus sanctus’ into ‘Cum Sancto Spiritu’ as represented across a page break in NBA /
(selected lines only)

Example  BWVI, end of ‘Qui sedes ad dextram Patris’ as represented in NBA /

 Johann Sebastian Bach, Missa, Symbolum Nicenum, Sanctus, Osanna, Benedictus, Agnus Dei et Dona nobis pacem,
später gennant: Messe in h-Moll BWV , ed. Friedrich Smend (Kassel: Bärenreiter, ); Johann Sebastian Bach,
Frühfassungen zur h-Moll-Messe, ed. Uwe Wolf (Kassel: Bärenreiter, ).
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Bach notates it in his score in double bars, often with a little stroke dividing each in half (Figure ). (The sec-
ond ‘Kyrie eleison’ is notated the same way, in big divided bars.) If we look, for example, at the Violin  line
(top staff, doubling Soprano  and Soprano ), we see two bars’ rest before it enters – two large bars, that is, in
Bach’s autograph score. But Bach’s autograph performing part calls these four bars’ rest, counting them as
half as long (Figure ). Which is it? Do bars in the ‘Gratias agimus tibi’ span two minims or four, leading
to counts of  or  in total? We have to decide, and of course this has the potential to affect the results
according to the theory.

This is the reason for the right and left sides of the theory’s table, in which both ways of counting appear to
work out (Figure ). But it is essential to note the interaction of this choice with another: the ‘TS’ transition. The
table finds parallel proportions when old-style movements are counted at the breve (fewer big bars) without the
adjustment for movement transitions (‘TS’), but at the semibreve (more small bars) with that adjustment. It is
possible to interpret this as demonstrating that the theory is correct either way, but I think it actually shows the
opposite: that the theory works only when certain decisions are combined. There are multiple ways to assemble
the various choices, but only the ones that work are presented; others are silently rejected.

Example  BWVI, ‘Gloria in excelsis’ into ‘Et in terra pax’ (Soprano  only); (a) as represented in NBA /, ed.
Friedrich Smend (Kassel: Bärenreiter, ); (b) as represented in NBA /a, ed. Uwe Wolf (Kassel: Bärenreiter, )

Figure  BWVI, ‘Gratias agimus tibi’ in the autograph score. D-B Mus.ms. Bach P , fol. r. Used by permission
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There are additional problems when other sorts of compositions by Bach are analysed according to the
theory. His instrumental works have repeats and first/second endings, and the occasional da capo, as we
have seen. Concerted vocal music can introduce the problem of da capo indications, dal segno signs, and
so on. All told there are many analytical choices to make in every application of the theory, and thus
many opportunities in which potentially to find parallelisms.

The table for the DresdenMissa (Figure ) also includes a :: proportion, and a : relationship made up
of first the six movements only. This is presented as evidence of Bach’s creation of multiple parallelisms, but if
the rules (the choices) change for each analysis – how many movements are counted, how many columns
they are divided into, what proportions are said to be revealed – it becomes difficult to say precisely what
is demonstrated. (Note also that some of the divisions require different choices in the counting of the
same movements.)

We do not know how any of the results showing parallel proportions were arrived at analytically, but one
might guess that the method was to try combinations and record ones that worked – it is difficult to see how
else they would surface. And that brings us back to the problem of inherent circularity: the theory claims that
the pieces work this way, but the evidence is that they do provided one makes the right choices from among
many possibilities. I think we have to be cautious about accepting a result that stems from this approach.

PROBABILITY

Let us say, though, that we can agree on the number of movements and bars in a piece or collection. When we
are presented with a division that indeed yields a : proportion, we need to consider the theory’s second
assertion, that Bach put these relationships there by careful work in planning, composing or revising. This
is worth exploring, once again using the  Missa as an example. The theory assigns a certain number
of bars to each of twelve movements and shows a division into two columns that each add up to the same
total. Does chance play any role in this? How likely is it that twelve numbers can be divided in this way?
If it’s improbable, that might point to the results’ having been worked out – by Bach, in this case. But if it
is sufficiently likely, we might want to think carefully about crediting Bach for the relationship.

To test the likelihood, we can start by expressing our problem mathematically. We have twelve numbers
representing the bar counts of each movement (Table ). We choose any six for one column and the remain-
ing six for the other. We add up the numbers in each column and compare them to see if the sum is the same.

With twelve numbers there are many possible arrangements with six in one column and six in the other.
This is what mathematicians call combination without repetition – n things taken r at a time, typically notated
as nCr. This can be calculated for a given n and r by the formula n!

r!(n−r)! .
Twelve things taken six at a time (our case) yields  combinations – that is,  distinct ways to split twelve

numbers into two columns of six. This actually overstates the total for our purposes, because putting six particular
numbers (movements) in one column and the rest in the other is the same as putting those first six in the second
column and the others in the first –we don’t care about the order of right and left columns. This means that there
are only half the number of possible combinations, or  ways to divide the twelve numbers as six and six.

Figure  BWVI, ‘Gratias agimus tibi’ in the autograph first copy of the Violin  part. D-Dl Mus. -D-, fol. r.
Used by permission
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First, we can note that there are some sets of twelve numbers that will never work – that we cannot divide
into two equal-total columns. For example, if the numbers are very lopsided, there is no way six numbers on
one side could ever balance six that include a very large number on the other; or if the total number of bars is
odd, there is obviously no way to divide them to add to the same subtotal (Table ).

But if the total number of bars is even, as in our first combination above, there might be a way to divide
them. This set of numbers does have a solution; in fact it is the Dresden Missa counted according to the the-
ory, and it can be divided to add to  on each side. But what about other numbers, like those in Table ?

To know whether they can be divided we would need to try all  combinations – and we do need to test
them all, it turns out. This is potentially a laborious task, but we can make the job a lot easier with a com-
putational tool, a spreadsheet that rapidly tests all the combinations (its workings are described in the
Appendix). One immediate result of applying the tool is that some combinations of twelve numbers turn
out to have more than one solution that shows a ‘parallel proportion’ – that is, there are multiple ways to
divide them six and six that yield the same total. The tool reveals that the Dresden Missa, for example,
can be divided (once again, in the theory’s count) not just in one way but in six different ways (Table ).
We need to ask what this means for the theory, why only one of the six is presented in the analysis, and
why this one. At the least, this might suggest that the ability to divide numbers this way is more likely
than we suspected.

Table  Two impossible ‘parallel proportions’

 
 
 
 
 
 

 
 
 
 
 
 

   +  = 

Table  A ‘parallel proportion’ in Bach’s Dresden Missa

Kyrie I 
Christe 
Kyrie II 
Gloria 
Et in terra 
Laudamus te 
Gratias 
Domine Deus 
Qui tollis 
Qui sedes 
Quoniam 
Cum Sancto Spiritu 

total:  total: 
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A little experimentation with the tool confirms, of course, that sets of numbers whose total is odd can’t be
divided, but also shows that most combinations with an even total can. In fact some surprisingly unmusical
sets of numbers work. The figures in our unknown example above, for instance, are not numbers of bars in a
composition but rather the page numbers of the Dresden Missa’s movements in NBA /a (Figure ), and
there is indeed one solution that divides them into two columns each totalling  – that is, there is a partition
that shows a parallel proportion among the page numbers (Table ).

And if we experiment with twelve random numbers between  and  ( different values that encom-
pass the movement lengths in the Missa), we quickly notice that twelve random numbers with an even total
are a lot more likely to be divisible than not. In fact, almost every even total has at least one solution that shows
a : proportion; rare is the even total that cannot be divided in this way. This should make us wonder how
likely it is that twelve values can be divided evenly because that matters to a judgment of the theory’s validity.

Given twelve random values in a certain range, what is the likelihood that they can be divided into two
columns totalling the same? It is not clear that there is a mathematical answer to this question – this sort
of problem is notoriously difficult to solve by proof. The alternative is to solve the problem computationally
– by examining every possible set of twelve numbers to determine the likelihood that they can be divided

Table  A potential ‘parallel proportion’














total: 

Table  Six ‘parallel proportions’ in Bach’s Dresden Missa

Kyrie I      
Christe      
Kyrie II      
Gloria      
Et in terra      
Laudamus te      
Gratias      
Domine Deus      
Qui tollis      
Qui sedes      
Quoniam      
Cum Sancto Spiritu      
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equally, or by some more efficient algorithm that takes less time. This quickly becomes a very large under-
taking. Let’s say we want to test every combination of twelve numbers with values between  and .
That means  different values in each of twelve positions, or  =  combinations – a  followed
by  noughts. Even on the fastest computers, testing these is an almost impossibly large task.

Computer science has addressed precisely our problem: dividing a set of numbers into two groups with the
same sum; this comes up in intensely computational areas like security and encryption. It is known as the
partition problem, and it turns out that it falls into a category of problems (called NP-complete) for
which no really efficient computational algorithm is known to exist, and for which it is suspected that
none does. Even with a good algorithm that avoids the brute-force testing of every possible combination,
this is a huge challenge.

But we do not really need to test every possible combination of twelve values, because we are actually con-
cerned only with arrays of numbers like the Dresden Missa, and with the question of how likely it is that a
given combination of that general disposition can be evenly divided. We can get a sense by testing more lim-
ited sets of combinations; if we test a very large number of them, we can be reasonably sure of a good estimate
of the probability. For example, we can start with the claimed lengths of the Missa movements and vary each
by plus or minus two – that is, take every combination of five different values centred on the numbers from
the Kyrie and Gloria, in every possible combination. That requires testing only  = ,,
combinations.

This can be done with a mathematical modelling tool called MATLAB. A simple program works through
sets of twelve values, testing every combination and reporting how many yield equal totals (and other infor-
mation) – in other words, this is the spreadsheet test, automated. On an ordinary desktop computer the pro-
gramme can test around , sets of twelve numbers a second, just by brute force – that’s  checks on
each set, , times a second, powerful enough to test our million Missa-like possibilities in under two
hours. The results are striking.

As shown in Table , of the  million sets of twelve numbers tested, about  million have at least one
solution and about  million do not. That is, there is better than a  per cent chance that numbers like
this can be divided to yield identical totals. But we should recall that only even totals are worth testing because
odd totals cannot be divided equally under any circumstances. In the test, those million successful divisions
were out of million combinations with even totals –more than  per cent of them. Put another way, if a set

Table  A ‘parallel proportion’ in NBA /a page numbers

Kyrie I 
Christe 
Kyrie II 
Gloria 
Et in terra 
Laudamus te 
Gratias 
Domine Deus 
Qui tollis 
Qui sedes 
Quoniam 
Cum Sancto Spiritu 

total:  total: 

 A relatively accessible treatment of the partition problem is Brian Hayes, ‘Computing Science: The Easiest Hard
Problem’, American Scientist / (), –.
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of twelve movements like the DresdenMissa adds up to an even number, there is a  per cent chance that they
can be divided equally into a ‘parallel proportion’. Making small changes to theMissa numbers doesn’t matter –
almost every combination with an even total number of bars can be divided according to the theory.

We can recall that our spreadsheet showed that there were six ways to divide the movements of the Dresden
Missa – six distinct ways to divide them with even totals. It is very common, it turns out, for a set of twelve
numbers to have multiple solutions – up to fourteen of them, in fact (Figure ). A set of four is the most com-
mon, and – are each more common than none. At least by the evidence of this test, the ability to divide
twelve numbers in this range evenly (and in multiple ways) is a property of the numbers, not their origin
– and almost certain.

Another approach is to generate twelve random numbers in a given range and test them. Testing sets of
random values from  to  (again, encompassing the lengths of Missa movements)  million times
gives equally striking results (Table ).

Ninety-five per cent of random combinations of twelve numbers that add up to an even total can be divided,
suggesting once again that the ability to partition them equally is a property of the numbers – they do not even
need to resemble the lengths in the Missa all that precisely. For one more test, we can try a hybrid approach,
starting with the Dresden Missa numbers and randomly adjusting each up or down by  to . One hundred
million tests by that method yield equal totals more than  per cent of the time (Table ).

In fact, a test of random numbers and the resulting high probability that they are evenly divisible most
likely underestimates the susceptibility of Bach’s Missa to partitioning. This is because the bar lengths in
the work are not really random. Rather, they are greatly constrained in a way that make a parallel proportion
even more likely. The movements of the Missa fall within a narrow range of lengths, and the narrower the
span of allowable numbers, the more likely a match, both according to the theory of partitioning and tests
with larger ranges of numbers. And of course the lengths of mass movements are not entirely independent
of each other. Pieces like theMissa tend to have large framingmovements whose lengths can offset each other
(that is, land in opposite columns), giving a better chance of a match. (We can note that in the six equal divi-
sions of the Dresden Missa above, the ‘Quoniam’ and ‘Cum Sancto Spiritu’, comparably long movements,
always end up in opposite columns.) Many of the constraints – features of bar counts that make them non-
random – make a match even more likely than if these were random values. And of course the probability
even for random values is very high to begin with.

Now we are in a position to understand the problem with the numerical interpretations of the Dresden
Missa that choose between two different schemes of counting alla brevemovements and twoways of counting
overlapping (TS) movements. We saw that in the presentation of the theory these are linked to obtain parallel

Table  Test of Dresden Missa lengths +/− 

With at least one solution ,, (.% of all, .% of even totals)
With no solution +,,
Total number of tests ,,

With even totals ,,
With odd totals +,,
Total number of tests ,,

 It turns out that this sort of result could have been predicted. With twelve numbers and a limited range like this, the
likelihood of a so-called perfect partition has been shown to be very high and to approach one hundred per cent
under some circumstances. See Hayes, ‘Computing Science’.

 The Dresden Missa has movements with a relatively narrow range of bar lengths compared, say, to Mass settings by
Zelenka, whose movements contain – depending on how you count – much more widely varying numbers of bars
that yield the sort of lopsided set we saw earlier.
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proportions: one way of counting alla breve movements is paired with one method of handling TS move-
ments; other combinations of these methods are not explicitly considered. The analytical table of the
Missa’s movements presents this result in positive form, showing the two combinations that yield a result
(breve counting/no TS adjustment versus semibreve counting/TS adjustment). But there are also combina-
tions that do not work – counting at the semibreve and making no TS adjustment, for example, which yields
an odd total number of bars – and they are not represented. This is a potentially invisible analytical choice
that has selected one method and silently rejected the other. We have seen that the likelihood that the one

Figure  Number of partitions of Dresden Missa lengths +/−  (out of ,, even totals)

Table  Test of random values from  to 

With at least one solution ,, (.% of all, .% of even totals)
With no solution +,,
Total number of tests ,,

With even totals ,,
With odd totals +,,
Total number of tests ,,

Table  Test of Dresden Missa lengths randomly adjusted +/− 

With at least one solution ,, (.% of all, .% of even totals)
With no solution +,,
Total number of tests ,,

With even totals ,,
With odd totals +,,
Total number of tests ,,

 The theory suggests that ‘Bach’s notation of stile antico movements and the TS feature create a useful ambiguity to the
bar count’. Tatlow, Bach’s Numbers, .
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shown will work is around  per cent, because even totals can almost always be divided successfully. The left
side of the table presents a workable analysis of the Missa, but it actually offers an almost inevitable result
while implicitly suppressing another that does not conform. The table thus potentially presents a misleading
demonstration.

IMPLICATIONS

As far as numbers of bars are concerned, we should not be surprised to find that totals in Bach’s music can be
made tomatch. In fact with an even number of bars it is almost dead certain that they can, given a sufficient num-
ber of movements, and this is a property of the numbers, not of the musical composition from which they derive.
The divisions may look significant – they might appear to be intentional parallel proportions – but they are far
more likely to be the product of the large number of possible combinations, not Bach’s manipulations.

This sort of interpretative problem surfaces elsewhere, perhaps most famously in so-called bible codes.
Many methods have been claimed to reveal hidden meanings in scripture – names, dates, predictions and
so on. A common approach is to take every nth letter of scripture, and sometimes words are indeed revealed
by doing this. But it has been demonstrated repeatedly that this is a product of chance, not intention. Given
enough text and sufficient flexibility in choosing letters, apparently significant words are almost guaranteed
to emerge from any text. Bible codes of this kind are not demonstrations of hidden messages; they are cre-
ative interpretative methods with results more or less mathematically guaranteed by the law of large numbers.

Music theorist John McKay has made a similar argument for a certain kind of mathematical analysis of
atonal music. He examines Allen Forte’s claim that AntonWebern’s Op.  Bagatelles reveal their construc-
tion from octatonic collections (pitch-class set -Z), and demonstrates convincingly that choices made by
the analyst, combined with the many possible ways of grouping notes, makes an apparently meaningful result
almost inevitable. What seems to be a constructive principle of the music is actually an artefact of the ana-
lytical method – it has no demonstrable connection with compositional intent.

This is a close analogy to the theory of parallel proportions: the analyst applying the theory makes a set of
choices (number of movements, ways of counting bars, decisions about repeats and connected movements,
and so on), always in a way that yields an even number of bars. The analytical result, however carefully it
may be derived from original sources or with knowledge of eighteenth-century musical conventions, is drawn
from a large array of potential bar counts. In effect the analyst pre-selects one that is capable of being divided
equally – one with an even total number of bars. Probability then takes over, essentially guaranteeing a result.

To return to our starting-point, we can reconsider the three assertions made in the theory of parallel propor-
tions. First, there is the claim that relationships are present – that the number of bars in pieces and collections adds
up. We have seen that this depends largely on how we define movements, bars and counting. There are multiple
possibilities and significant flexibility, because each piece or collection is typically examined idiosyncratically.

Second, the theory claims that Bach intentionally created these relationships in his works through compo-
sitional choices. In fact, the results do not appear to rely on Bach. The ability to divide bar counts into equal
subtotals – to find parallel proportions – is a feature of the numbers, tallied under constraints and after

 From the large literature on this issue I recommend mathematician Brendan McKay’s website at http://users.cecs.anu.
edu.au/∼bdm/dilugim/torah.html. Summarizing his tongue-in-cheek analysis of Moby Dick that supposedly predicts
historical assassinations (an answer to a bible coder’s challenge), he writes that the reason a result ‘looks amazing is
that the number of possible things to look for, and the number of places to look, is much greater than you imagine’.

 John Z. McKay, ‘The Problem of Improbability in Musical Analysis’, in L’analyse musicale aujourd’hui (Musical
Analysis Today), ed. Xavier Hascher, Monher Ayari and Jean-Michel Bardez (Sampzon: Delatour, ), –. He
shows that an analytical ‘“extraordinary circumstance” appears to be nearly a  in a million occurrence, but . . . it is
much more likely than not that [the analyst] would find something to satisfy’ the stated conditions ().

 We can note that if a strict half-and-half division of movements is not required, as it often is not in illustrations of the
theory, there is no need for an even total number of bars.
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analytical choices that make a seemingly meaningful result mathematically almost inevitable, at least for sets
of numbers like those derived from the  Missa.

Finally, there is the proposal that these results signify in eighteenth-century terms. They might, but given their
near-statistical certainty and thus independence from compositional design, are we confident in regarding them
as part of a composer’s goals? If essentially any piece with a sufficient number of movements works, are the
results meaningful? This does not mean that symmetry and proportion were unimportant to eighteenth-century
thinkers, or that musicians were unaware of the concepts. But it is clear that the kind of numerical relationships
treated by the theory are unlikely to represent composers’ deliberate expression of these ideas.

The theory of parallel proportionsmakesmany claims about numbers in Bach’smusic, of which only some are
illustrated and tested by our example of the DresdenMissa. But themethodology is fundamentally the same each
time: numbers are analytically derived from a piece or collection, and the properties of those numbers are
asserted to be significant. The lessons of our examples are twofold: first that we need to be aware of seemingly
neutral analytical choices that can determine results, and second that we need to test whether a result might be
the product of chance rather than compositional design before we consider its meaning. It is not self-evident
what degree of chance should make us doubt the musical intentionality of a numerical relationship, but a 
per cent probability that random numbers would produce the same result – which appears to be the case for
large sets of numbers – is surely enough to cast grave doubt. Every claim needs to be examined for the nature
of its counting and for the degree of mathematical inevitability before we should be comfortable in accepting it.

A few brief examples can illustrate the direction this reflection might take. Table . in the book lays out
relationships among the first fifteen pieces in the so-called ‘Great Eighteen’ organ chorales, BWV–

(Figure ). The left column indicating the number of bars corresponds to earlier versions of the works;
no proportions are shown. The right columns show multiple divisions of the revised chorales said to dem-
onstrate five different proportions Bach introduced. (As always, we would need to investigate the counting
method.) I have not done the same sort of extensive statistical estimates as with the Dresden Missa, but
with even more chorales in the set than movements in the Missa, it is profoundly likely that a set of numbers
like those associated with the ‘Great Eighteen’ could be arranged to reveal proportions, whatever their origin.

And this suspicion is strengthened by a closer analysis of the particular numbers in the table of the ‘Great
Eighteen’. We are offered five ratios of various kinds, but in fact all of them are present multiple times in these
numbers, not just in the individual ways offered in the table:

 there are thirty-four ways to divide all fifteen chorales in the ratio :
 there are four ways to select six that can be divided :
 there are seven ways to select nine that can be divided : (one in three different ways)
 there are seven ways to select four with a : ratio
 there are eleven ways to divide all fifteen chorales in the ratio :.

This confirms that these ratios (and certainly many more, given that those demonstrated here – choosing
six, nine or four – are apparently arbitrary) are an almost inevitable feature of a large set of small numbers like
this. Fifteen numbers, or even a subset of them, yield so many combinations that seemingly meaningful rela-
tionships appear to emerge.

 On the surface it appears that there might be a parallel to what Emily Zazulia has called ‘false exceptionalism’, the error
of ‘making interpretive claims based on the distinctiveness of features that are not unique or even unusual’. It is true that
parallel proportions can be derived from almost any piece and are thus not special to the Dresden Missa or the solo
violin works or indeed to compositions by Bach. But these relationships are not essentially features of Bach’s music
– they are products of the numbers, independent of the compositions with which they are associated. There is plenty
of false exceptionalism in Bach studies, as any Telemann or Graupner scholar will tell you, but parallel proportions are
not an example. Zazulia’s point about the role of the Strong Law of Small Numbers, relevant to her examination of sup-
posed proportions in DuFay’s motet, does resonate with problems considered here. Emily Zazulia, ‘Out of Proportion:
Nuper rosarum flores and the Danger of False Exceptionalism’, Journal of Musicology / (), –.
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Figure  Table . from Tatlow, Bach’s Numbers, . Used by permission
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The table presents one example of each ratio, perhaps implying that they are rare and unique, but there are
actually many proportions to be found. The table simply confirms that a sufficiently large set constrained in
particular dimensions can almost always be organized to add up in desired ways. If this is true for sets of
twelve numbers divided only as six and six (as in the DresdenMissa), it is even more certain for a set of fifteen
with no requirement that they be divided in a particular way. Large sets of numbers are strongly subject to
chance, and any Bach example that relies on them needs to be treated with caution because they present so
many possible ways to generate a proportional division.

Themultiple proportions in this table (and inmany others) – representing the claim that there aremultiple
parallel proportions to be found in the set of compositions – might appear to strengthen the case that the
mathematical results are significant. That would be because the likelihood of simultaneous events is the prod-
uct of the probabilities of each event, getting smaller (through the multiplication of fractions) with each addi-
tional proportion. What is the chance, it could be asked, that a work would demonstrate multiple parallel
proportions? The more of them it shows, the less likely it would seem that they would occur together ran-
domly and the more compelling the demonstration.

But this is greatly misleading. We can calculate probabilities and their combinations (how likely it is that
certain outcomes will happen together) when, first, we are sure of the independence of the individual events
and, second, we know the entire range of possible outcomes. In seeking parallel proportions in Bach’s music
we cannot be certain of the first because all the claimed proportions in a table derive from the same set of
analytical counting choices; they are not independent. And we don’t know the second because there is an
enormous universe of possible divisions – taking all of the pieces in a collection or subsets of various
sizes, making equal divisions or unequal ones, dividing into two or three columns and so on. A table that
shows multiple ways to derive proportions has implicitly chosen the ones it shows – and only those –

from a huge number of possibilities. We have seen that the mathematics is in favour of each of their working,
and if we have multiple choices the likelihood approaches certainty that more than one will. The existence of
multiple proportions does not strengthen the argument for significance.

The ‘Great Eighteen’ chorales should also make us think about the role of Bach’s revisions in producing
proportions. The table shows proportions among the revised lengths of the chorales, but also offers pre-
revision lengths on the left. No proportions are indicated there, but in fact the pre-revision lengths are
not devoid of relationships: there are eight ways to divide them as nine and six to yield : proportions;
there are three ways to choose six for a : proportion, and so on. In other words, it may be possible
to create proportions from revised lengths, but it is also possible to do so with the pre-revision numbers,
even though the table does not show these divisions.

Before we ascribe meaning to Bach’s revisions here or elsewhere, we need to look carefully at both the old
and the new versions of any work or collection. This applies to the Dresden Missa; the theory suggests that
Bach added introductory bars (the declamation ‘Kyrie eleison’ before the start of the ritornello) ‘to perfect the
structure of the Missa’. But its movements can indeed be divided in a : proportion with four fewer bars in
the first ‘Kyrie eleison’ ( rather than ). This feature did not rely on a revision.

Proportional claims become more difficult to evaluate when there are smaller numbers of movements or
pieces –when the number of possible arrangements is smaller. With fewer ways to arrange a set of bar lengths
comes a smaller likelihood of finding proportional totals randomly. The theory addresses this problem of

 In fact the theory’s author has pointed to this feature in personal communication.
 For example, if we flip two honest coins and want to know the probability that they will both come up heads, we can

count the number of possible outcomes (heads/heads, heads/tails, tails/heads, tails/tails, for a total of four) and see right
away that in one of four cases (. probability) both coins will show heads. We can also get this by multiplying the
probability of one coin coming up heads (., or one out of two) by the probability for the other (also .) for a prob-
ability of . of simultaneous heads. The likelihood that one or the other will show heads is . (two cases out of four),
and the probability that one or both will is . (three out of four). And of course the coins do not influence each other.

 Tatlow, Bach’s Numbers, .
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chance. For example, of Partita No.  in E major, BWV, we read: ‘As numerous combinations of seven
random numbers between  and  can create a : proportion, this result with : bars could easily
be dismissed as arithmetical coincidence’. The chance that seven random numbers over that span (one way
of counting bars in the partita’s seven movements) can be divided proportionally is once again too large to
calculate exhaustively, but the same statistical method used for the Missa suggests, in fact, that approximately
 per cent of random combinations of seven numbers in that range yield at least one : proportion.

With figures like  per cent we are in the realm of judgment. If only one out of ten random sets of numbers
can be divided in this way, is this a matter of chance or is it evidence of the compositional design of a musical
work? Of course we need to consider how the bars are counted, and we have seen that there are many choices
with the violin solos. Favourable counting would increase the likelihood that proportions can be found, and
in this case ten distinct counting methods would provide great certainty that at least one of them would pro-
duce numbers that can be proportionally divided. We have to decide as individual analysts whether we think
a result like this points to Bach’s intentions in any particular work.

If it is difficult to decide about a  per cent likelihood of a result by chance, other instances are even more
challenging. On the violin solos overall, for example, the theory argues: ‘Without deliberate design, the bar
totals of any six works within a range of  and  bars . . . are highly unlikely to form an exact double :
proportion’. This probability too can be estimated: approximately . per cent of random combinations of
six numbers in this range whose total is divisible by  yields a : proportion; approximately . per cent of all
random combinations (any total) do. Whether a result like this would arise randomly is again a matter of
interpretation, though of course the likelihood is higher if one is trying different methods of counting and
alighting on one that works. Claims about small numbers of bar lengths need to be examined closely;
they cannot be dismissed out of hand, but also should not be accepted without reflection.

It is not just individual analyses we need to be concerned about. The theory makes an implicitly broad
claim in discussing the seven movements of BWV and their relationship: ‘As : and : proportions
formed in this way are seen repeatedly in Bach’s scores, this proportion may also have been planned’.

This is potentially very problematic. We have seen that proportions can arise almost inevitably in some
cases, particularly when a large number of movements is involved. The existence of these randomly arising
proportions does not make cases like the seven movements of BWV any more likely or plausible. If pro-
portions in certain sets of numbers are inevitable, they do not document Bach’s tendency to create relation-
ships. Interpretations of individual works need to stand on their own, and are not reinforced by the near
certainty that underlies random results.

The question of what role chance might play raises a significant methodological point. Good scientific
method requires the crafting of a hypothesis and its writing-down before testing. There is a protocol for
that, beginning with the formulation of a so-called null hypothesis, one that typically asserts that the results
supposedly explained by the hypothesis are instead the result of chance. The experimenter then attempts to
disprove this null hypothesis, and to show that the original hypothesis explains things better than chance, to a
statistically significant degree.

 Tatlow, Bach’s Numbers, –.
 Tatlow, Bach’s Numbers, .
 Tatlow, Bach’s Numbers, –.
 One more aspect of the theory that is difficult to test logically, musically or mathematically is the claim that revised

pieces and collections, in particular, contain round numbers of bars (, ,, ,). Results like these depend
on methods of counting, just like proportions, and these need to be examined in detail. But it is difficult to see how
probability could play a role in evaluating this sort of claim. Oddball numbers () are just as likely to occur randomly
as ones that look round to human observers (,). The only approach I can see to this element of the theory would be
a close look at the methods of counting bars; at the least, this sort of claim needs to be investigated separately from
proportions. Just because they both involve numbers does not mean they are connected.

 For a concise summary of the method see http://mathworld.wolfram.com/HypothesisTesting.html.

‘paral l e l proport ion s ’ i n j . s . bach ’s mus i c


https://doi.org/10.1017/S1478570620000305 Published online by Cambridge University Press

http://mathworld.wolfram.com/HypothesisTesting.html
http://mathworld.wolfram.com/HypothesisTesting.html
https://doi.org/10.1017/S1478570620000305


The theory of parallel proportions in Bach’s music invites this kind of scrutiny because it is presented in quan-
titative terms; it gives the impression of being scientific and exact. If it is, we are justified in applying the standards
of hypothesis testing to it, and it falls short in twoways. First, the hypothesis – that Bach’s music displays parallel
proportions – is expressed in very general terms; indeed, each example takes a slightly different approach to
counting and to the finding of proportions of different kinds among varying numbers of movements or pieces
in a set. The hypothesis is that there are parallel proportions somewhere in this music, but this leaves enormous
latitude in working with the numbers. It is never stated in specific enough terms to allow meaningful testing.

The book’s presentation of the DresdenMissa illustrates this. The left side of the table shows results count-
ing old-style movements at the breve. We have seen a problem with its presentation, but the right side is even
more problematic. It counts at the semibreve and also makes TS adjustments, which yields an odd total num-
ber of bars. That, together with the counting of nine movements rather than twelve (by combining the three
pairs of joined numbers) makes it impossible to make a partition with an equal number of movements on
each side, or to create a : proportion at all. This is presumably why the table instead presents a :: pro-
portion, and a : proportion among only six movements whose total is even. We have to ask whether this
really does demonstrate a parallel proportion in the same way as on the left side of the table. The decision to
take the joined movements into account has required a change in the nature of a parallel proportion, and it is
difficult to know how to hold the argument to a strict testable standard.

Second, and perhapsmore importantly, there is no thorough scrutinyof the possibility that chance could account
for the results. This is briefly addressed; for example, the idea is entertained that a particular result ‘could easily be
dismissed as arithmetical coincidence’. But the frequency with which parallel proportions are found is said is to
suggest that Bach indeed created them. The true role of chance is never evaluated, and this would appear to skip an
essential step. The analysis presented here suggests, of course, that chance explains almost everything.

It must be acknowledged, though, that this way of looking at the theory – as a scientific hypothesis in need
of rigorous testing – is not fully relevant. This is because the theory of parallel proportions is less a scientific
hypothesis than an interpretative method. As such, it does not lend itself to a mathematical standard of sig-
nificance. There is little point in insisting on a threshold of significance calculated by p-value or other stat-
istical means (the usual sort of test for evaluating a hypothesis), because the appropriate standard here is not
some statistically supported truth, but rather plausibility in the judgment of the interpreter. This is true of any
interpretative method, and it is not quantifiable.

There is no real possibility of disproving the theory of parallel proportions because it is ultimately about
meaning – it claims that Bach intended his music to project a particular idea. Strictly speaking, this can’t be
demonstrated to be false; the question is whether we are certain enough to attribute mathematical relation-
ships and their putative meaning to Bach. For me, the answer is no, given the large number of analytical
choices that must be made and the often overwhelming likelihood that chance fully explains what we find.
This is scholarship that deserves close and respectful attention, but I do not think that its results can be
taken at face value, however attractive they appear.

APPENDIX

A spreadsheet tool

Testing the properties of a given set of twelve numbers is something a computer can do fast, and a simple
spreadsheet suffices. We need to divide our twelve numbers into two groups in every possible way, and

 Tatlow, Bach’s Numbers, –.
 After this essay was completed I had the opportunity of seeing Alan Shepherd’s work in progress on various mathemat-

ical analyses of Bach’s music, including parallel proportions. We have used similar methods, but his treatment does not
extend to a judgment on whether proportions are musically or historically significant. I am grateful to him for sharing
this material.

 A working copy of the spreadsheet is available at http://www.melamed.org/Calculator.xlsm.

dan i e l r . me lamed
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we can model this by making a sequence of twelve numbers, each a  or a , for example . Then
we can align this sequence of s and s against our twelve bar lengths separating the numbers that line up with
each to generate a combination (Table A).

And if we do this in turn with every sequence of s and s that contains exactly six of each, we will have
tested each of the  possible combinations of twelve numbers taken six at a time (eliminating the redundant
complementary sequences).

For this we need every sequence that contains exactly six s and six s; this can also be described as all the
combinations of twelve s taken six at a time, so, predictably enough, there are  such sequences that rep-
resent all the ways of dividing our bar counts into two columns. If we eliminate the duplicates (the ones that
are identical except for swapped columns), we end up with  sequences representing every combination by
the placement of their s and s.

Sequences of s and s are, of course, just binary numbers, and we can generate this list of every possible
combination of six s and six s by starting with all the binary numbers from  to 
(that’s  − = ,), then choosing those that contain precisely six s and six s (and removing comple-
mentary duplicates.)

Now we can use each sequence to test our numbers of bars and how they add up.We line up each sequence
of s and s with the bar counts and multiply down (Table A).

Positions with a  drop out, and positions with a  pass through. We add the totals across; in our example,
the numbers selected by s add up to  (and so do those selected by s), which is half the total of , we
get by adding all the numbers. This division, represented by our binary number , separates the
twelve bar counts into an even division – a solution in line with the theory. This should be no surprise,
because these are the numbers claimed for the DresdenMissa, and this binary number represents the division
proposed in the theory.

The spreadsheet implements this with a table of  binary numbers representing the possible divisions of
twelve elements into two groups, and performs the addition. It reports the total and half sums, and the num-
ber of solutions, if any. Any twelve numbers can be tested, and random values can be repeatedly generated.

Table A Partitioning twelve numbers

           
           

:      
:      

Table A Testing twelve numbers

           
x x x x x x x x x x x x
            = ,
= = = = = = = = = = = =
            = 

‘paral l e l proport ion s ’ i n j . s . bach ’s mus i c
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