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ON SUBNORMALITY OF GENERALIZED
DERIVATIONS AND TENSOR PRODUCTS

BOJAN MAGAJNA

Subnormal and quaslnormal tensor product operators and

generalized derivations on the Hilbert-Schmidt class will be

characterized.

Introduction

Let H be a complex Hilbert space, B(H) the algebra of all bounded

linear operators on H . For 1 5 p < °° the von Neumann-Schatten class,

C (H) , is defined to be the set of all elements T in B{H) such that

; , *Jv\|
 < °° for each orthonormal system {tyv : k € K} in H

k K K

(see [9]). For fixed A, B € B{H) let 6. g and T. „ be the operators

on B(H) defined by

(1) &A B(X) = AX - XB ,

(2) T^ fl(AT) = AXB .

Operators of the form (l) are called generalized derivations and they (as

well as their restrictions 6 |C ) have been extensively studied in the
A,a p

past, especially their spectral properties (see, for example, [S], p. 79
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for some historical notes). In [/] Anderson and Foias obtained the

characterization of spectral generalized derivations and Shaw characterized

in [70] Hermitian and normal operators of the form 6. D|X where X is a

A ,B

subspace of 8(H) which satisfies suitable conditions (in particular X

can be C (H) ) . Now C AH) is a Hilbert space with respect to the inner
product

(3) <*, y> = tr(I*X) , X, Y € C2(H)

(where tr denotes the trace) and so the concepts of subnormality and

quasinormality make sense. It is a purpose of this note to characterize

subnormal and quasinormal operators of type 6. _|CAH) and T. _|CAH) .

Note that T^ BI
C
2(W) can be identified with A ® B* (see [7]) and thus we

will obtain in this way a characterisation of subnormal and quasinormal

tensor products.

Since the Hilbert space H and the operators A, B will be fixed in

what follows, we shall denote simply C = CAH) , 6 = 6. _|C ,
tl el n 9D £

1. Subnormality

By (a special case of) Theorem 2.2 in [70], 6 is normal if and only

if A and B are normal operators. The following theorem characterizes

subnormal operators 6 and T . Recall that an operator S i B(H) is

subnormal if and only if there exists a bounded normal operator N on some

larger Hilbert space K ̂ > H such that the restriction of N to H is

5 . N is then called the normal extension of S .

THEOREM 1. Let 6 and T be defined cm Cg by U) and (2). Then

6 is subnormal if and only if A and B* are subnormal operators.

Moreover, if A t 0 and B # 0 the. same statement holds for T .

Proof. Suppose first that A and B* are subnormal and denote by M

and N* their (not necessarily minimal) normal extensions. Clearly we may

assume that M and N act on the same Hilbert space K z> H . Relative to

the decomposition K = H © H the operators M and N* can be

represented by the matrices
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M =

A A,

0 Ar

, N* =

B*

where- A , A , B , B are certain bounded operators. Now we can regard

C = C (H) as a subspace of C (K) via the embedding

IX 0

0 0

A straightforward computation with matrices (k) shows that C is an

invariant subspace for the operator 6,, „ defined on C (K) by

5M N^ = MX ~ XN M d t h a t 6
M NI

C
2
 = 6 • B v Theorem 2.2 of [10], 6^ ^

is a normal operator on C (K) (this can be also verified directly using

(3)j. Thus 6 is subnormal. The proof that T is subnormal is the same

since an easy computation gives that the operator T.. „ is normal on

To prove the converse we shall use the following theorem of Ha Imos and

Bram (see [2] or 141).

(5)

An operator T € 8(H) is subnormal if and only if

n

j,k=o
f,, // ) > 0

for every finite subset / , ..., f of H .

Suppose that 6 is subnormal. In order to apply (5) with 6 instead

of T express the powers 6 by

s=0
, X € Cg .

Taking into account also the definition (3) of inner product in C we see

that (5) assumes the form

n j k

j,k=0 r=0 s=0

(6) > 0
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where X , . .. , X are a r b i t r a r y elements of C . Now l e t f., g . ,

3=1, .. . , n be any vectors in H and put X. = / . ® g . (that i s ,
3 3 3

X .(h) = (h, g . Vf. , h € H ). Then, after a simple computation, we get,
3 3 3

from (6),

<7> ,jL Jo lo (-1)~*# ̂'"̂  *""'>"'*• "*•«*> *" ° •
We will show how (7) implies that A is subnormal. The proof that B* is

subnormal is similar and will be omitted. Without loss of generality we

may assume that 0 is an approximate eigenvalue of B*. (otherwise we can

replace A and B with A - a and B - a. respectively, where a is an

approximate eigenvalue for B* ; this is possible since

^a n = ĴI n n n •! L e t 01 ) b e *he corresponding sequence of approximate

eigenvectors (that i s , \\h || = 1 and lim||B*h II = 0 ] . For fixed m put

g = g = ... = g = h in ( 7 ) , then l e t m tend t o i n f i n i t y . I t follows

that

i 0

and this implies that A is subnormal by the Bram-Halmos theorem.

The proof that subnormality of T implies subnormality of A and 5*

is similar. Instead of (T) we have here an analogous condition (derived in

the same way as (T)j

(8) I
3 >"—0

Since A ̂  0 , B t 0 by assumption it follows that T •$ 0 and hence

a(x) ̂  (o) by subnormality. Now the theorem of Brown and Pearcy in [3]

tells that O(x) = a(A) • a(B) , hence there is a 3 * 0 in the boundary

of (J(S*) . Then 3 is an approximate eigenvalue of B* ; let [h ) be

the corresponding sequence of eigenvectors. Replace now in (8) all g. ,
3

j = 1, .... n , with the same vector h and then take the limit as m
m

tends to infinity. It follows
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I
and this implies that A is subnormal since /. are arbitrary and

8 ^ 0 . The proof that B* is subnormal is similar. //

2. Quasinormality

An operator T € B(H) is called quasinormal if and only if it

commutes with T*T ([4], [6]).

THEOREM 2. Let 6 and T be defined on C2 by (l) and (2).

Cij 6 is quasinormal if and only if one of the following holds:

(a) A and B are both normal;

(b) there exists X € C such that A = XI and (B-XI)* is

quasinormal;

(o) there exists X d C such that B = XI and A - XI is

quasinormal.

Here of course I is the identity operator on H .

(ii) If A + 0 and B + 0 then x is quasinormal if and only if A

and B* are quasinormal.

In the proof of this theorem the following result of Fong and Sourour

will be used (see [5]).

(FS) Let A = {A^, ..., Aj and 8 = \B±, ..., B^} be finite

subsets of 8(H) . Suppose that

for all X € C and that A , ..., A, are linearly independent. Then
i- A. K

B , , S, can be expressed as linear combinations of B, , ..., B
-L K /C"»"l n
(in particular for k = n this means B = ... = B = 0 . Also the role

of A and B can be interchanged.)

Actually in [5] this result is stated for B(X) (where X is any

Banach space) instead of C^ but (re) follows at once since C? is
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strongly dense in B(H) .

Proof of Theorem 2. (i) Since 6* , the adjoint of 6 , is given by

&*(X) = A*X - XB* (as a direct verification would show) the quasinormality

2
condition 6*6 - 66*6 = 0 can be written as

(9) [A*A2-AA*A)XI + (AA*-A*A)XB - AX{B*B-BB*) - X{B2B*-BB*B) = 0 ,

for all X € C ,

where J denotes the identity operator.

If B is not normal then J and B*B - BB* are linearly independent

since 0 is the only scalar commutator ([6], Problem 230). Hence it

follows from (9) by (FS) that A can be expressed as a linear combination

of commuting self-adjoint operators I and AA* - A*A . Thus A is

normal and in fact a scalar multiple of I . If we put A = XJ in (9) we

get

B2B* - BB*B + X(B*B-BB*) = 0 .

This equation can be written also as

(B-AJ)2(B-Al)* - (B-Al)(B-Al)*(B-AJ) = 0

which is obviously equivalent to the quasinormality of (B-AJ)* .

The case when A is not normal is treated in the same way. Now only

the case when A and B are both normal remains, but then 6 is normal.

(ii) Since T*(X) = A*XB* , X € C , the quasinormality condition

2
T*x - TT*T = 0 is equivalent to

(10) AA*AXBB*B - A*A2XB2B* = 0 , X € Cg .

If A and B* are quasinormal then obviously (10) is satisfied.

2
Conversely, if (10) is satisfied then AA*A and A*A are linearly

dependent. (otherwise it would follow that BB*B = 0 by (FS) and hence

i|B|| = ||B*BB*B|| = 0 , but B # 0 by assumption.) Thus we have

(11) A*A2 = \AA*A

for some A € C . If we prove that A = 1 then A will be quasinormal
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and since the quasinormality of B* can be proved similarly this will

complete the proof of the theorem. Now (ll) implies that

(12) A*2A2 = XA*AA*A .

2 2
Since A* A and A*AA*A are non-negative operators different from 0 ,

(12) implies that X £ 0 . From Theorem 1 and the fact that every quasi-

normal operator is subnormal ([6], Problem 195) we see that A is

subnormal, hence \\A \\ = \\A\\ . From comparing the norms of the left and

the right side of (12) it follows that X = 1 . //

3. Hyponormality

An operator T € 8(H) is hyponormal (by definition) if and only if

X*f _ TT* > 0 .

If A and B* are hyponormal operators then 6 is also hyponormal

by [10], p. lUl. Actually the argument of [JO] together with the fact that

0 is always in the closure of the numerical range of A*A - AA* (where

A € B(H) ) imply that the converse is also true. A similar statement can

be proved for T .

PROPOSITION. Suppose A * 0 , B t 0 . Then T is hyponormal if and

only if A and B* are hyponormal.

Proof. Note first that the hyponormality condition for T ,

(13) 0 5 < (T*T-TT*)X, X) = tr[X*{A*AXBB*-AA*XB*B)) , X € Cg ,

can be written in the form

(ll*) tr(B*X*(A*A-AA*)XB) + tr [A*X{BB*-B*B)X*A] > 0 , X (. Cg .

(Here we have used the identity tr(YZ) = tr(ZY) for Y € B(H) ,

Z € CX(H) and for Y , Z € C2(H) ([9], p. 100).) If A and B* are

hyponormal then (XB)*{A*A~AA*)XB > 0 and (X*A)*(BB*-B*B)X*A > 0 for all

X (. C2 and so (lU) holds.

Conversely, if T is hyponormal then put X = f ® g in (13) where

/\ g € H . It follows, after a short computation,

(15) P/||| |B*S|| " IMYIII|B<?|| > 0 .
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We shall prove that B* is hyponormal, the proof that A is hyponormal is

similar. Assume for a moment that there exists a sequence [f 1 of unit

vectors in H such that \lm\\A*f || = lim||/l/ || > 0 . Then the hypo-

normality of B* follows at once from (15) if we put f = f and take the

limit when m tends to infinity. To prove that the sequence (/ ) exists

put C = A*A - AA* . If C > 0 (respectively C 5 0 ) let a be any non-

zero approximate eigenvalue for A (respectively A* ); then the

corresponding sequence of unit approximate eigenvectors satisfies the

requirement. (Proof. The relations Iim(j4-cx)/ = 0 and

(i4-a)*(/l-a) - U-a) U-a) * = C 2 0 imply limU-a)*/ = 0 , thus

Iim||i4*f || = |a| = limp/ || .) If neither C > 0 nor C 2 0 then there

exists f € H , ||f || = 1 , such that < Cf, /> = 0 and ||C/|| * 0 . (This

can be seen from the spectral theorem when C is represented as a multi-

plication with a bounded measurable real function on a suitable L {\i) .)

Now the constant sequence, / = f , satisfies the requirement. //

Let us finally remark that the same kind of characterization can not

hold for general elementary operators. For example the operator

X *-+ AXB + A*XB* is self-adjoint on C for arbitrary A, B € 8(H) .
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