BULL. AUSTRAL. MATH. SOC. VOL. 31 (1985), 235-243.

ON SUBNORMALITY OF GENERALIZED DERIVATIONS AND TENSOR PRODUCTS

ROJAN MAGAJNA

Subnormal and quasinormal tensor product operators and generalized derivations on the Hilbert-Schmidt class will be characterized.

Introduction

Let H be a complex Hilbert space, $\mathcal{B}(H)$ the algebra of all bounded linear operators on H. For $1 \leq p < \infty$ the von Neumann-Schatten class, $C_p(H)$, is defined to be the set of all elements T in B(H) such that $\sum_{k \in K} |\langle T\psi_k, \psi_k \rangle|^p < \infty \text{ for each orthonormal system } \{\psi_k : k \in K\} \text{ in } H$ (see [9]). For fixed A, $B \in B(H)$ let $\delta_{A,B}$ and $\tau_{A,B}$ be the operators on $\mathcal{B}(H)$ defined by

$$\delta_{A,B}(X) = AX - XB ,$$

$$\tau_{A , B}(X) = AXB .$$

Operators of the form (1) are called generalized derivations and they (as well as their restrictions $\delta_{A,B}|\mathcal{C}_p$) have been extensively studied in the past, especially their spectral properties (see, for example, [8], p. 79

Received 28 September 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

for some historical notes). In [1] Anderson and Foias obtained the characterization of spectral generalized derivations and Shaw characterized in [10] Hermitian and normal operators of the form $\delta_{A,B}|_X$ where X is a subspace of B(H) which satisfies suitable conditions (in particular X can be $C_p(H)$). Now $C_2(H)$ is a Hilbert space with respect to the inner product

(3)
$$\langle X, Y \rangle = \operatorname{tr}(Y^*X), X, Y \in \mathcal{C}_{2}(H)$$

(where tr denotes the trace) and so the concepts of subnormality and quasinormality make sense. It is a purpose of this note to characterize subnormal and quasinormal operators of type $\delta_{A,B}|\mathcal{C}_2(\mathcal{H})$ and $\tau_{A,B}|\mathcal{C}_2(\mathcal{H})$. Note that $\tau_{A,B}|\mathcal{C}_2(\mathcal{H})$ can be identified with $A\otimes B^*$ (see [7]) and thus we will obtain in this way a characterisation of subnormal and quasinormal tensor products.

Since the Hilbert space $\,^{_{_{\! H}}}$ and the operators $\,^{_{_{\! A}}}$, $\,^{_{\! B}}$ will be fixed in what follows, we shall denote simply $\,^{_{\! C}}_2=c_2^{_{_{\! C}}({}^{_{\! H})}$, $\,^{_{\! A}}=\delta_{A_{_{\! A}}B}|_{\,^{_{\! C}}}^{\,^{_{\! C}}}$, $\,^{_{\! T}}=\tau_{A_{_{\! A}}B}|_{\,^{_{\! C}}}^{\,^{_{\! C}}}$.

1. Subnormality

By (a special case of) Theorem 2.2 in [10], δ is normal if and only if A and B are normal operators. The following theorem characterizes subnormal operators δ and τ . Recall that an operator $S \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if there exists a bounded normal operator N on some larger Hilbert space $K \supset \mathcal{H}$ such that the restriction of N to \mathcal{H} is S. N is then called the normal extension of S.

THEOREM 1. Let δ and τ be defined on C_2 by (1) and (2). Then δ is subnormal if and only if A and B* are subnormal operators. Moreover, if $A \neq 0$ and $B \neq 0$ the same statement holds for τ .

Proof. Suppose first that A and B^* are subnormal and denote by M and N^* their (not necessarily minimal) normal extensions. Clearly we may assume that M and N act on the same Hilbert space $K\supset H$. Relative to the decomposition $K=H\oplus H^{\perp}$ the operators M and N^* can be represented by the matrices

$$M = \begin{pmatrix} A & A_1 \\ 0 & A_2 \end{pmatrix}, \quad N^* = \begin{pmatrix} B^* & B_1 \\ 0 & B_2 \end{pmatrix},$$

where A_1 , A_2 , B_1 , B_2 are certain bounded operators. Now we can regard $C_2 = C_2(H)$ as a subspace of $C_2(K)$ via the embedding

$$x \mapsto \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}, x \in \mathcal{C}_2$$
.

A straightforward computation with matrices (4) shows that C_2 is an invariant subspace for the operator $\delta_{M,N}$ defined on $C_2(K)$ by $\delta_{M,N}(X) = MX - XN$ and that $\delta_{M,N}|C_2 = \delta$. By Theorem 2.2 of [10], $\delta_{M,N}$ is a normal operator on $C_2(K)$ (this can be also verified directly using (3)). Thus δ is subnormal. The proof that τ is subnormal is the same since an easy computation gives that the operator $\tau_{M,N}$ is normal on $C_2(K)$.

To prove the converse we shall use the following theorem of Halmos and Bram (see [2] or [4]).

An operator $T \in \mathcal{B}(\mathcal{H})$ is subnormal if and only if

(5)
$$\sum_{j,k=0}^{n} \left\langle T^{j} f_{k}, T^{k} f_{j} \right\rangle \geq 0$$

for every finite subset f_0, \ldots, f_n of H.

Suppose that $\,\delta\,$ is subnormal. In order to apply (5) with $\,\delta\,$ instead of $\,T\,$ express the powers $\,\delta^{\hat{J}}\,$ by

$$\delta^{j} X = \sum_{s=0}^{j} (-1)^{s} {j \choose s} A^{j-s} X B^{s} , \quad X \in \mathcal{C}_{2} .$$

Taking into account also the definition (3) of inner product in C_2 we see that (5) assumes the form

(6)
$$\sum_{j,k=0}^{n} \sum_{r=0}^{j} \sum_{s=0}^{k} (-1)^{r+s} {j \choose r} {k \choose s} \operatorname{tr} \left[B^{*S} X_{j}^{*} A^{*k-s} A^{j-r} X_{k} B^{r} \right] \ge 0$$

where X_1, \ldots, X_n are arbitrary elements of C_2 . Now let f_j, g_j , $j=1,\ldots,n$ be any vectors in H and put $X_j=f_j\otimes g_j$ (that is, $X_j(h)=\langle h,g_j\rangle f_j$, $h\in H$). Then, after a simple computation, we get, from (6),

(7)
$$\sum_{j,k=0}^{n} \sum_{r=0}^{j} \sum_{s=0}^{k} (-1)^{r+s} {j \choose r} {k \choose s} \left\langle A^{j-r} f_{k}, A^{k-s} f_{j} \right\rangle \left\langle B^{*s} g_{j}, B^{*r} g_{k} \right\rangle \geq 0 .$$

We will show how (7) implies that A is subnormal. The proof that B^* is subnormal is similar and will be omitted. Without loss of generality we may assume that 0 is an approximate eigenvalue of B^* . (Otherwise we can replace A and B with $A-\alpha$ and $B-\alpha$ respectively, where $\overline{\alpha}$ is an approximate eigenvalue for B^* ; this is possible since $\delta_{A,B}=\delta_{A-\alpha,B-\alpha}$.) Let (h_m) be the corresponding sequence of approximate eigenvectors (that is, $\|h_m\|=1$ and $\lim\|B^*h_m\|=0$). For fixed m put $g_1=g_2=\ldots=g_n=h_m$ in (7), then let m tend to infinity. It follows that

$$\sum_{j,k=0}^{n} \left\langle A^{j} f_{k}, A^{k} f_{j} \right\rangle \geq 0$$

and this implies that A is subnormal by the Bram-Halmos theorem.

The proof that subnormality of τ implies subnormality of A and B^* is similar. Instead of (7) we have here an analogous condition (derived in the same way as (7))

(8)
$$\sum_{j,k=0}^{n} \left\langle A^{j} f_{k}, A^{k} f_{j} \right\rangle B^{*k} g_{j}, B^{*j} g_{k} \geq 0.$$

Since $A \neq 0$, $B \neq 0$ by assumption it follows that $T \neq 0$ and hence $\sigma(\tau) \neq \{0\}$ by subnormality. Now the theorem of Brown and Pearcy in [3] tells that $\sigma(\tau) = \sigma(A) \cdot \sigma(B)$, hence there is a $\beta \neq 0$ in the boundary of $\sigma(B^*)$. Then β is an approximate eigenvalue of B^* ; let $\binom{h}{m}$ be the corresponding sequence of eigenvectors. Replace now in (8) all g_j , $j=1,\ldots,n$, with the same vector m and then take the limit as m tends to infinity. It follows

$$\sum_{j,k=0}^{n} \beta^{k} \overline{\beta^{j}} \langle A^{j} f_{k}, A^{k} f_{j} \rangle \ge 0$$

and this implies that A is subnormal since f_j are arbitrary and $\beta \neq 0$. The proof that B^* is subnormal is similar. //

2. Quasinormality

An operator $T \in \mathcal{B}(\mathcal{H})$ is called quasinormal if and only if it commutes with T^*T ([4], [6]).

THEOREM 2. Let δ and τ be defined on C_2 by (1) and (2).

- (i) δ is quasinormal if and only if one of the following holds:
- (a) A and B are both normal;
- (b) there exists $\lambda \in \mathbb{C}$ such that $A = \lambda I$ and $(B-\lambda I)^*$ is quasinormal;
- (c) there exists $\lambda \in \mathbb{C}$ such that $B = \lambda I$ and $A \lambda I$ is quasinormal.

Here of course I is the identity operator on H .

(ii) If $A \neq 0$ and $B \neq 0$ then τ is quasinormal if and only if A and B^* are quasinormal.

In the proof of this theorem the following result of Fong and Sourour will be used (see [5]).

(FS) Let $A=\{A_1,\ldots,A_n\}$ and $B=\{B_1,\ldots,B_n\}$ be finite subsets of B(H) . Suppose that

$$A_1 X B_1 + \dots + A_n X B_n = 0$$

for all $X \in \mathbb{C}_2$ and that A_1, \ldots, A_k are linearly independent. Then B_1, \ldots, B_k can be expressed as linear combinations of B_{k+1}, \ldots, B_n . (In particular for k=n this means $B_1=\ldots=B_n=0$. Also the role of A and B can be interchanged.)

Actually in [5] this result is stated for $\mathcal{B}(X)$ (where X is any Banach space) instead of \mathcal{C}_2 but (FS) follows at once since \mathcal{C}_2 is

strongly dense in B(H).

Proof of Theorem 2. (i) Since δ^* , the adjoint of δ , is given by $\delta^*(X) = A^*X - XB^*$ (as a direct verification would show) the quasinormality condition $\delta^*\delta^2 - \delta\delta^*\delta = 0$ can be written as

(9)
$$(A*A^2-AA*A)XI + (AA*-A*A)XB - AX(B*B-BB*) - X(B^2B*-BB*B) = 0$$
, for all $X \in C_2$,

where I denotes the identity operator.

If B is not normal then I and $B^*B - BB^*$ are linearly independent since 0 is the only scalar commutator ([6], Problem 230). Hence it follows from (9) by (FS) that A can be expressed as a linear combination of commuting self-adjoint operators I and $AA^* - A^*A$. Thus A is normal and in fact a scalar multiple of I. If we put $A = \lambda I$ in (9) we get

$$B^2B^* - BB^*B + \lambda(B^*B - BB^*) = 0$$
.

This equation can be written also as

$$(B-\lambda I)^2(B-\lambda I)^* - (B-\lambda I)(B-\lambda I)^*(B-\lambda I) = 0$$

which is obviously equivalent to the quasinormality of $(B-\lambda I)^*$.

The case when A is not normal is treated in the same way. Now only the case when A and B are both normal remains, but then δ is normal.

(ii) Since $\tau^*(X) = A^*XB^*$, $X \in C_2$, the quasinormality condition $\tau^*\tau^2 - \tau\tau^*\tau = 0$ is equivalent to

(10)
$$AA*AXBB*B - A*A^2XB^2B* = 0 , X \in C_2 .$$

If A and B^* are quasinormal then obviously (10) is satisfied.

Conversely, if (10) is satisfied then AA*A and $A*A^2$ are linearly dependent. (Otherwise it would follow that BB*B = 0 by (FS) and hence $\|B\|^{\frac{1}{4}} = \|B*BB*B\| = 0$, but $B \neq 0$ by assumption.) Thus we have

$$A^*A^2 = \lambda AA^*A$$

for some $\lambda \in \mathbb{C}$. If we prove that $\lambda = 1$ then A will be quasinormal

and since the quasinormality of B^* can be proved similarly this will complete the proof of the theorem. Now (11) implies that

$$A^{*2}A^2 = \lambda A^*AA^*A .$$

Since $A^{*2}A^2$ and A^*AA^*A are non-negative operators different from 0, (12) implies that $\lambda \geq 0$. From Theorem 1 and the fact that every quasi-normal operator is subnormal ([6], Problem 195) we see that A is subnormal, hence $\|A^2\| = \|A\|^2$. From comparing the norms of the left and the right side of (12) it follows that $\lambda = 1$.

3. Hyponormality

An operator $T \in \mathcal{B}(\mathcal{H})$ is hyponormal (by definition) if and only if $T^*T - TT^* \geq 0$.

If A and B^* are hyponormal operators then δ is also hyponormal by [10], p. 141. Actually the argument of [10] together with the fact that 0 is always in the closure of the numerical range of $A^*A - AA^*$ (where $A \in \mathcal{B}(\mathcal{H})$) imply that the converse is also true. A similar statement can be proved for τ .

PROPOSITION. Suppose A \neq 0 , B \neq 0 . Then τ is hyponormal if and only if A and B* are hyponormal.

Proof. Note first that the hyponormality condition for τ ,

(13)
$$0 \le ((\tau^*\tau - \tau\tau^*)X, X) = tr(X^*(A^*AXBB^* - AA^*XB^*B)), X \in C_2$$

can be written in the form

$$(14) \qquad \text{tr} \left(B^* X^* (A^*A - AA^*) X B \right) \ + \ \text{tr} \left(A^* X (BB^* - B^*B) X^* A \right) \ \ge \ 0 \ , \quad X \ \in \ \mathbb{C}_2 \ .$$

(Here we have used the identity $\operatorname{tr}(YZ) = \operatorname{tr}(ZY)$ for $Y \in \mathcal{B}(H)$, $Z \in \mathcal{C}_1(H)$ and for Y, $Z \in \mathcal{C}_2(H)$ ([9], p. 100).) If A and B^* are hyponormal then $(XB)^*(A^*A-AA^*)XB \geq 0$ and $(X^*A)^*(BB^*-B^*B)X^*A \geq 0$ for all $X \in \mathcal{C}_2$ and so (14) holds.

Conversely, if τ is hyponormal then put $X = f \otimes g$ in (13) where $f, g \in H$. It follows, after a short computation,

$$||Af|| ||B^*g|| - ||A^*f|| ||Bg|| \ge 0.$$

We shall prove that B^* is hyponormal, the proof that A is hyponormal is similar. Assume for a moment that there exists a sequence (f_m) of unit vectors in H such that $\lim \|A^*f_m\| = \lim \|Af_m\| > 0$. Then the hyponormality of B^* follows at once from (15) if we put $f = f_m$ and take the limit when m tends to infinity. To prove that the sequence (f_m) exists put $C = A^*A - AA^*$. If $C \ge 0$ (respectively $C \le 0$) let α be any nonzero approximate eigenvalue for A (respectively A^*); then the corresponding sequence of unit approximate eigenvectors satisfies the requirement. (Proof. The relations $\lim (A-\alpha)f_n = 0$ and $(A-\alpha)^*(A-\alpha) - (A-\alpha)(A-\alpha)^* = C \ge 0$ imply $\lim (A-\alpha)^*f_n = 0$, thus $\lim \|A^*f_m\| = |\alpha| = \lim \|Af_m\|$.) If neither $C \ge 0$ nor $C \le 0$ then there exists $f \in H$, $\|f\| = 1$, such that (Cf, f) = 0 and $\|Cf\| \ne 0$. (This can be seen from the spectral theorem when C is represented as a multiplication with a bounded measurable real function on a suitable $L^2(\mu)$.) Now the constant sequence, $f_m = f$, satisfies the requirement.

Let us finally remark that the same kind of characterization can not hold for general elementary operators. For example the operator $X \longmapsto AXB + A*XB*$ is self-adjoint on C_2 for arbitrary A, $B \in \mathcal{B}(H)$.

References

- [1] J. Anderson and C. Foias, "Properties which normal operators share with normal derivations and related operators", *Pacific J. Math.* 61 (1975), 313-325.
- [2] J. Bram, "Subnormal operators", Duke Math. J. 22 (1955), 75-94.
- [3] A. Brown and C.M. Pearcy, "Spectra of tensor product of operators", Proc. Amer. Math. Soc. 17 (1966), 162-169.
- [4] J.B. Conway, Subnormal operators (Pitman, Boston, 1981).
- [5] C.K. Fong and A.R. Sourour, "On the operator identity $\sum A_k XB_k = 0$ ", Canad. J. Math. 31 (1979), 845-857.

- [6] Paul R. Halmos, A Hilbert space problem book (Springer-Verlag, New York, Heidelberg, Berlin, 1982).
- [7] Paul R. Halmos and V.S. Sunder, Bounded integral operators on L^2 spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [8] D.A. Herrero, Approximation of Hilbert space operators, Volume I (Pitman, Boston, 1982).
- [9] J.R. Ringrose, Compact non-self-adjoint operators (Van Nostrand, London, 1971).
- [10] S.Y. Shaw, "On numerical ranges of generalized derivations and related properties", J. Austral. Math. Soc. Ser. A 36 (1984), 134-142.

Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 61000, Yugoslavia.