ON SUBNORMALITY OF GENERALIZED DERIVATIONS AND TENSOR PRODUCTS

Bojan Magajna

Subnormal and quasinormal tensor product operators and generalized derivations on the Hilbert-Schmidt class will be characterized.

Introduction

Let H be a complex Hilbert space, $B(H)$ the algebra of all bounded linear operators on H. For $1 \leq p<\infty$ the von Neumann-Schatten class, $C_{p}(H)$, is defined to be the set of all elements T in $B(H)$ such that $\sum_{k \in K}\left|\left\langle T \psi_{k}, \psi_{k}\right\rangle\right|^{p}<\infty$ for each orthonormal system $\left\{\psi_{k}: k \in K\right\}$ in H (see [9]). For fixed $A, B \in B(H)$ let $\delta_{A, B}$ and $\tau_{A, B}$ be the operators on $B(H)$ defined by

$$
\begin{equation*}
\delta_{A, B}(X)=A X-X B, \tag{1}
\end{equation*}
$$

(2)

$$
\tau_{A, B}(X)=A X B .
$$

Operators of the form (1) are called generalized derivations and they (as well as their restrictions $\left.\delta_{A, B} \mid C_{p}\right)$ have been extensively studied in the past, especially their spectral properties (see, for example, [8], p, 79

Received 28 September 1984.

[^0]for some historical notes). In [1] Anderson and Foias obtained the characterization of spectral generalized derivations and Shaw characterized in [10] Hermitian and normal operators of the form $\delta_{A, B} \mid X$ where X is a subspace of $B(H)$ which satisfies suitable conditions (in particular X can be $C_{p}(H)$). Now $C_{2}(H)$ is a Hilbert space with respect to the inner product
\[

$$
\begin{equation*}
\langle X, Y\rangle=\operatorname{tr}\left(Y^{*} X\right), \quad X, Y \in \mathcal{C}_{2}(H) \tag{3}
\end{equation*}
$$

\]

(where tr denotes the trace) and so the concepts of subnormality and quasinormality make sense. It is a purpose of this note to characterize subnormal and quasinormal operators of type $\delta_{A, B} \mid C_{2}(H)$ and $\tau_{A, B} \mid C_{2}(H)$. Note that ${ }^{\tau}{ }_{A, B} \mid C_{2}(H)$ can be identified with $A \otimes B^{*}$ (see [7]) and thus we will obtain in this way a characterisation of subnormal and quasinormal tensor products.

Since the Hilbert space H and the operators A, B will be fixed in what follows, we shall denote simply $C_{2}=C_{2}(H), \delta=\delta_{A, B} \mid C_{2}$, $\tau=\tau_{A, B} \mid C_{2}$.

1. Subnormality

By (a special case of) Theorem 2.2 in [10], δ is normal if and only if A and B are normal operators. The following theorem characterizes subnormal operators δ and τ. Recall that an operator $S \in B(H)$ is subnormal if and only if there exists a bounded normal operator N on some larger Hilbert space $K \supset H$ such that the restriction of N to H is $S . N$ is then called the normal extension of S.

THEOREM 1. Let δ and τ be defined on C_{2} by (1) and (2). Then δ is subnormal if and only if A and B^{*} are subnormal operators. Moreover, if $A \neq 0$ and $B \neq 0$ the same statement holds for τ.

Proof. Suppose first that A and B^{*} are subnormal and denote by M and N^{*} their (not necessarily minimal) normal extensions. Clearly we may assume that M and N act on the same Hilbert space $K \supset H$. Relative to the decomposition $K=H \oplus H^{\perp}$ the operators M and N^{*} can be represented by the matrices

$$
M=\left(\begin{array}{ll}
A & A_{1} \tag{4}\\
0 & A_{2}
\end{array}\right), \quad N^{*}=\left(\begin{array}{cc}
B^{*} & B_{1} \\
0 & B_{2}
\end{array}\right),
$$

where $A_{1}, A_{2}, B_{1}, B_{2}$ are certain bounded operators. Now we can regard $C_{2}=C_{2}(H)$ as a subspace of $C_{2}(K)$ via the embedding

$$
x \mapsto\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right), \quad x \in \mathcal{C}_{2} .
$$

A straightforward computation with matrices (4) shows that \mathcal{C}_{2} is an invariant subspace for the operator $\delta_{M, N}$ defined on $\mathcal{C}_{2}(K)$ by $\delta_{M, N}(X)=M X-X N$ and that $\delta_{M, N} \mid C_{2}=\delta$. By Theorem 2.2 of [10], $\delta_{M, N}$ is a normal operator on $C_{2}(K)$ (this can be also verified directly using (3)). Thus δ is subnormal. The proof that τ is subnormal is the same since an easy computation gives that the operator $\tau_{M, N}$ is normal on $c_{2}(K)$.

To prove the converse we shall use the following theorem of Halmos and Bram (see [2] or [4]).

An operator $T \in B(H)$ is subnormal if and only if

$$
\begin{equation*}
\sum_{j, k=0}^{n}\left\langle T^{j} f_{k}, T^{k} f_{j}\right\rangle \geq 0 \tag{5}
\end{equation*}
$$

for every finite subset f_{0}, \ldots, f_{n} of H.
Suppose that δ is subnormal. In order to apply (5) with δ instead of T express the powers δ^{j} by

$$
\delta^{j} X=\sum_{s=0}^{j}(-1)^{s}\binom{j}{s} A^{j-s_{X B} s}, \quad X \in C_{2}
$$

Taking into account also the definition (3) of inner product in C_{2} we see that (5) assumes the form
where X_{1}, \ldots, X_{n} are arbitrary elements of C_{2}. Now let f_{j}, g_{j}, $j=1, \ldots, n$ be any vectors in H and put $X_{j}=f_{j} \otimes g_{j}$ (that is, $\left.X_{j}(h)=\left\langle h, g_{j}\right\rangle f_{j}, h \in H\right\rangle$. Then, after a simple computation, we get, from (6),

$$
\begin{equation*}
\sum_{j, k=0}^{n} \sum_{r=0}^{j} \sum_{s=0}^{k}(-1)^{r+s}\binom{j}{r}\binom{k}{s}\left\langle A^{j-r} f_{k}, A^{k-s} f_{j} X_{B^{*} s} g_{j}, B^{\star^{r}} g_{k}\right\rangle \geq 0 \tag{7}
\end{equation*}
$$

We will show how (7) implies that A is subnormal. The proof that B^{*} is subnormal is similar and will be omitted. Without loss of generality we may assume that 0 is an approximate eigenvalue of B^{*}. (Otherwise we can replace A and B with $A-\alpha$ and $B-\alpha$ respectively, where $\bar{\alpha}$ is an approximate eigenvalue for B^{*}; this is possible since $\left.\delta_{A, B}=\delta_{A-\alpha, B-\alpha}.\right)$ Let $\left(h_{m}\right)$ be the corresponding sequence of approximate eigenvectors (that is, $\left\|h_{m}\right\|=1$ and $\lim \left\|B^{*} h_{m}\right\|=0$). For fixed m put $g_{1}=g_{2}=\ldots=g_{n}=h_{m}$ in (7), then let m tend to infinity. It follows that

$$
\sum_{j, k=0}^{n}\left\langle A^{j} f_{k}, A^{k} f_{j}\right\rangle \geq 0
$$

and this implies that A is subnormal by the Bram-Halmos theorem.
The proof that subnormality of τ implies subnormality of A and B^{*} is similar. Instead of (7) we have here an analogous condition (derived in the same way as (7))

$$
\begin{equation*}
\sum_{j, k=0}^{n}\left\langle A^{j} f_{k}, A^{k} f_{j} X^{B^{*}} g_{j}, B^{* j} g_{k}\right\rangle \geq 0 \tag{8}
\end{equation*}
$$

Since $A \neq 0, B \neq 0$ by assumption it follows that $\tau \neq 0$ and hence $\sigma(\tau) \neq\{0\}$ by subnormality. Now the theorem of Brown and Pearcy in [3] tells that $\sigma(\tau)=\sigma(A) \cdot \sigma(B)$, hence there is a $\beta \neq 0$ in the boundary of $\sigma\left(B^{*}\right)$. Then B is an approximate eigenvalue of B^{*}; let $\left(h_{m}\right)$ be the corresponding sequence of eigenvectors. Replace now in (8) all g_{j}, $j=1, \ldots, n$, with the same vector h_{m} and then take the limit as m tends to infinity. It follows

$$
\sum_{j, k=0}^{n} \beta^{k} \bar{\beta}^{j}\left\langle A^{j} f_{k}, A^{k} f_{j}\right\rangle \geq 0
$$

and this implies that A is subnormal since f_{j} are arbitrary and $B \neq 0$. The proof that B^{*} is subnormal is similar. //

2. Quasinormality

An operator $T \in B(H)$ is called quasinormal if and only if it commutes with $T^{*} T$ ([4], [6]).

THEOREM 2. Let δ and τ be defined on C_{2} by (1) and (2).
(i) δ is quasinormal if and only if one of the following holds:
(a) A and B are both normal;
(b) there exists $\lambda \in \mathbb{C}$ such that $A=\lambda I$ and $(B-\lambda I)^{*}$ is quasinormal;
(c) there exists $\lambda \in \mathbb{C}$ such that $B=\lambda I$ and $A-\lambda I$ is quasinormal.

Here of course I is the identity operator on H.
(ii) If $A \neq 0$ and $B \neq 0$ then τ is quasinormal if and only if A and B^{*} are quasinormal.

In the proof of this theorem the following result of Fong and Sourour will be used (see [5]).
(FS) Let $A=\left\{A_{1}, \ldots, A_{n}\right\}$ and $B=\left\{B_{1}, \ldots, B_{n}\right\}$ be finite subsets of $B(H)$. Suppose that

$$
A_{1} X B_{1}+\ldots+A_{n} X B_{n}=0
$$

for all $x \in C_{2}$ and that A_{1}, \ldots, A_{k} are linearly independent. Then B_{1}, \ldots, B_{k} can be expressed as linear combinations of B_{k+1}, \ldots, B_{n}. (In particular for $k=n$ this means $B_{1}=\ldots=B_{n}=0$. Also the role of A and B can be interchanged.)

Actually in [5] this result is stated for $B(X)$ (where X is any Banach space) instead of \mathcal{C}_{2} but (FS) follows at once since \mathcal{C}_{2} is
strongly dense in $B(H)$.
Proof of Theorem 2. (i) Since δ^{*}, the adjoint of δ, is given by $\delta^{*}(X)=A^{*} X-X B^{*}$ (as a direct verification would show) the quasinormality condition $\delta^{*} \delta^{2}-\delta \delta * \delta=0$ can be written as
(9) $\left(A^{*} A^{2}-A A^{*} A\right) X I+\left(A A^{*}-A^{*} A\right) X B-A X\left(B^{*} B-B B^{*}\right)-X\left(B^{2} B^{*}-B B^{*} B\right)=0$, for all $x \in \mathcal{C}_{2}$,
where I denotes the identity operator.
If B is not normal then I and $B^{*} B-B B^{*}$ are linearly independent since 0 is the only scalar commutator ([6], Problem 230). Hence it follows from (9) by (FS) that A can be expressed as a linear combination of commuting self-adjoint operators I and $A A^{*}-A^{*} A$. Thus A is normal and in fact a scalar multiple of I. If we put $A=\lambda I$ in (9) we get

$$
B^{2} B^{*}-B B^{*} B+\lambda\left(B^{*} B-B B^{*}\right)=0
$$

This equation can be written also as

$$
(B-\lambda I)^{2}(B-\lambda I)^{*}-(B-\lambda I)(B-\lambda I)^{*}(B-\lambda I)=0
$$

which is obviously equivalent to the quasinormality of $(B-\lambda I) *$.
The case when A is not normal is treated in the same way. Now only the case when A and B are both normal remains, but then δ is normal.
(ii) Since $\tau^{*}(X)=A^{*} X B^{*}, X \in \mathcal{C}_{2}$, the quasinormality condition $\tau * \tau^{2}-\tau \tau * \tau=0$ is equivalent to

$$
\begin{equation*}
A A^{*} A X B B^{*} B-A^{*} A^{2} X B^{2} B^{*}=0, \quad X \in \mathcal{C}_{2} \tag{10}
\end{equation*}
$$

If A and B^{*} are quasinormal then obviously (10) is satisfied. Conversely, if (10) is satisfied then $A A^{*} A$ and $A^{*} A^{2}$ are linearly dependent. (Otherwise it would follow that $B B^{*} B=0$ by (FS) and hence $\|B\|^{4}=\left\|B^{*} B B^{*} B\right\|=0$, but $B \neq 0$ by assumption.) Thus we have

$$
\begin{equation*}
A^{*} A^{2}=\lambda A A^{*} A \tag{11}
\end{equation*}
$$

for some $\lambda \in C$. If we prove that $\lambda=1$ then A will be quasinormal
and since the quasinormality of B^{*} can be proved similarly this will complete the proof of the theorem. Now (11) implies that

$$
\begin{equation*}
A^{*^{2}} A^{2}=\lambda A^{\star} A A^{\star} A \tag{12}
\end{equation*}
$$

Since $A^{*^{2}} A^{2}$ and $A^{*} A A^{*} A$ are non-negative operators different from 0 , (12) implies that $\lambda \geq 0$. From Theorem l and the fact that every quasinormal operator is subnormal ([6], Problem 195) we see that A is subnormal, hence $\left\|A^{2}\right\|=\|A\|^{2}$. From comparing the norms of the left and the right side of (12) it follows that $\lambda=1$. //

3. Hyponormality

An operator $T \in B(H)$ is hyponormal (by definition) if and only if $T^{*} T-T T^{*} \geq 0$.

If A and B^{*} are hyponormal operators then δ is also hyponormal by [10], p. 141. Actually the argument of [10] together with the fact that 0 is always in the closure of the numerical range of $A^{*} A-A A^{*}$ (where $A \in B(H)$) imply that the converse is also true. A similar statement can be proved for τ.

PROPOSITION. Suppose $A \neq 0, B \neq 0$. Then τ is hyponormal if and only if A and B^{*} are hyponormal.

Proof. Note first that the hyponormality condition for $\boldsymbol{\tau}$,

$$
\begin{equation*}
0 \leq\left(\left(\tau^{*} \tau-\tau \tau^{*}\right) X, X\right)=\operatorname{tr}\left(X^{*}\left(A^{*} A X B B^{*}-A A^{*} X B^{*} B\right)\right), X \in \mathcal{C}_{2}, \tag{13}
\end{equation*}
$$

can be written in the form

$$
\begin{equation*}
\operatorname{tr}\left(B^{*} X^{*}\left(A^{*} A-A A^{*}\right) X B\right)+\operatorname{tr}\left(A^{*} X\left(B B^{*}-B^{*} B\right) X^{*} A\right) \geq 0, \quad X \in \mathcal{C}_{2} . \tag{14}
\end{equation*}
$$

(Here we have used the identity $\operatorname{tr}(Y Z)=\operatorname{tr}(Z Y)$ for $Y \in B(H)$, $Z \in C_{1}(H)$ and for $\left.Y, Z \in C_{2}(H)([9], p .100).\right)$ If A and B^{*} are hyponormal then $(X B)^{*}\left(A^{*} A-A A^{*}\right) X B \geq 0$ and $\left(X^{*} A\right)^{*}\left(B B^{*}-B^{*} B\right) X^{*} A \geq 0$ for all $x \in \mathcal{C}_{2}$ and so (14) holds.

Conversely, if τ is hyponormal then put $X=f \otimes g$ in (13) where $f, g \in H$. It follows, after a short computation,
$\|A f\|\left\|B^{*} g\right\|-\left\|A^{*} f\right\|\|B g\| \geq 0$.

We shall prove that B^{*} is hyponormal, the proof that A is hyponormal is similar. Assume for a moment that there exists a sequence $\left(f_{m}\right)$ of unit vectors in H such that $\lim \left\|A^{*} f_{m}\right\|=\lim \left\|A f_{m}\right\|>0$. Then the hyponormality of B^{*} follows at once from (15) if we put $f=f_{m}$ and take the limit when m tends to infinity. To prove that the sequence $\left(f_{m}\right)$ exists put $C=A^{*} A-A A^{*}$. If $C \geq 0$ (respectively $C \leq 0$) let α be any nonzero approximate eigenvalue for A (respectively A^{*}); then the corresponding sequence of unit approximate eigenvectors satisfies the requirement. (Proof. The relations $\lim (A-\alpha) f_{n}=0$ and $(A-\alpha) *(A-\alpha)-(A-\alpha)(A-\alpha) *=C \geq 0$ imply $\lim (A-\alpha)^{*} f_{n}=0$, thus $\lim \left\|A^{*} f_{m}\right\|=|\alpha|=\lim \left\|A f_{m}\right\|$.) If neither $C \geq 0$ nor $C \leq 0$ then there exists $f \in H,\|f\|=1$, such that $\langle C f, f\rangle=0$ and $\|C f\| \neq 0$. (This can be seen from the spectral theorem when C is represented as a multiplication with a bounded measurable real function on a suitable $L^{2}(\mu)$.) Now the constant sequence, $f_{m}=f$, satisfies the requirement. //

Let us finally remark that the same kind of characterization can not hold for general elementary operators. For example the operator $X \mapsto A X B+A^{*} X B^{*}$ is self-adjoint on C_{2} for arbitrary $A, B \in B(H)$.

References

[1] J. Anderson and C. Foias, "Properties which normal operators share with normal derivations and related operators", Pacific J. Math. 61 (1975), 313-325.
[2] J. Bram, "Subnormal operators", Duke Math. J. 22 (1955), 75-94.
[3] A. Brown and C.M. Pearcy, "Spectra of tensor product of operators", Proc. Amer. Math. Soc. 17 (1966), 162-169.
[4] J.B. Conway, Subnormal operators (Pitman, Boston, 1981).
[5] C.K. Fong and A.R. Sourour, "On the operator identity $\sum A_{k} X B_{k}=0$ ", Canad. J. Math. 31 (1979), 845-857.
[6] Paul R. Halmos, A Hilbert space problem book (Springer-Verlag, New York, Heidelberg, Berlin, 1982).
[1] Paul R. Halmos and V.S. Sunder, Bounded integral operators on L^{2} spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
[8] D.A. Herrero, Approximation of Hilbert space operators, Volume I (Pitman, Boston, 1982).
[9] J.R. Ringrose, Compact non-self-adjoint operators (Van Nostrand, London, 1971).
[10] S.Y. Shaw, "On numerical ranges of generalized derivations and related properties", J. Austral. Math. Soc. Ser. A 36 (1984), 134-142.

Department of Mathematics,
University of Ljubljana,
Jadranska 19,
Ljubljana 61000,
Yugoslavia.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ A 2.00+0.00$.

