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Abstract

A connection between Brownian motion and birth–death chains is explored. Several results concerning
birth–death chains are shown to be consequences of well-known results on Brownian motion.

2010 Mathematics subject classification: primary 60J10; secondary 60J65.

Keywords and phrases: birth–death chain, Markov chain, Brownian motion, local time.

1. Introduction

Let Xm be a Markov chain taking values on the nonnegative integers with the following
transition probabilities for n , 0:

pn j =


rn if j = n + 1,

ln if j = n − 1,

0 if |n − j| , 1,

with ln + rn = 1. We refer to such a Markov chain as a birth–death chain. (One may
also find the term state-dependent random walk in the literature.) We set p00 = 1 and
p0 j = 0 for any j , 0. Let k be the starting point of the birth–death chain, so X0 = k
almost surely. Let ∆ denote the extinction time of Xm. That is, ∆ = infm>0{Xm = 0},
with ∆ =∞ if Xm never reaches 0. In [5], a technique was given for realizing Xm as a
Brownian motion stopped at a certain sequence τ(m) of stopping times. This idea was
used to prove the following two results, the first of which is well known.

T 1.1. Let Pk = P(∆ <∞), the extinction probability of Xm. Then

Pk =

∑∞
j=k t j∑∞
j=0 t j

where this quotient is interpreted as being equal to 1 if the sums diverge.
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T 1.2. If t∞ := limn→∞((l1 · · · ln)/(r1 · · · rn)) exists, then limm→∞ E[Xm] exists,
and

lim
m→∞

E[Xm] =
1 + l1

r1
+ · · · + l1···lk−1

r1···rk−1

t∞
.

This result remains valid when t∞ = 0 or ∞, with the quotient being interpreted as
equal to 0 when t∞ =∞ and equal to∞ when t∞ = 0.

The purpose of this paper is to continue with this method by using known properties
of Brownian motion to deduce several results concerning birth–death chains. The
results presented can all be proved by more standard methods, but they will be seen to
flow naturally from standard properties of Brownian motion, most notably the Tanaka
and Itō–Tanaka formulas. In addition, the proofs given are quite short, although some
time must be spent discussing the setup and relevant properties of Brownian motion.
Let us begin by briefly recounting the construction given in [5]. Set

tn :=
l1l2 · · · ln
r1r2 · · · rn

and xn =
∑n−1

j=0 t j, where for n = 0 these definitions are interpreted as t0 = 1, x0 = 0.
Since the sequence {xn}

∞
n=0 is increasing it converges to a limit x∞, possibly infinite,

as n→∞. Let Bt be a Brownian motion stopped at the first time τ(∆) it hits 0
or x∞. Unless otherwise noted, the initial starting point of Bt will be taken to be the
point xk ∈ A, although we will use the standard notation Ez to denote expectation
conditioned on B0 = z. The recurrence properties of Brownian motion imply that
τ(∆) <∞ almost surely. Set A =

⋃∞
n=0{xn}. We define the stopping times τ(m)

recursively by setting τ(0) = 0, and having defined τ(m) we let

τ(m + 1) = inf
t>τ(m)

{Bt ∈ A, Bt , Bτ(m)}.

That is, the τ(m)s are the the successive hitting times of points in A. We see that
the variables Bτ(0), Bτ(1), Bτ(2), . . . form a random process taking values in A. Let
φ :A→ R be defined by φ(xn) = n. It is shown in [5] that the strong Markov property
of Brownian motion and the formula for the exit distribution of Brownian motion from
an interval imply that φ(Bτ(0)), φ(Bτ(1)), φ(Bτ(2)), . . . is a realization of our birth–death
chain. We therefore take Xm = φ(Bτ(m)) in what follows. An important quantity for
us will be the local time of Brownian motion, which is the density of the occupation
measure of Brownian motion with respect to Lebesgue measure. That is, the local time
Lx

t satisfies

Lx
t dx =

∫ t

0
1Bs∈ dx ds.

It is well known that Lx
t exists and that

Lx
t = lim

ε→0

1
2ε

∫ t

0
1|Bs−x|<ε ds
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almost surely. The local time provides a measure of the amount of time that Brownian
motion spends at a point. We will see that it can also be used to shed light upon the
number of visits that a birth–death chain makes to a point, as well as the long-term
behaviour of the chain.

The outline of the paper is as follows. We will begin by showing how Brownian
local time can be used to give a quick derivation of the expected exit time of the
birth–death chain from an interval. We will then prove an extension of Theorem 1.2
which relates to large stopping times. Some examples will be given of birth–death
chains to which this result applies. We will conclude by showing that the Doob
decomposition of the chain follows easily from the Itō–Tanaka formula for Brownian
motion.

2. The expected exit time from an interval

For 0 ≤ a < k < b let Γ(a, b) = infm>0{Xm = a or b}. We will calculate E[Γ(a, b)].
There is no loss of generality in assuming that the lower limit of our interval is 0. The
following result has probably been noted before, although this proof is likely to be
new.

T 2.1. Suppose that 0 < k < M. Then

E[Γ(0, M)] =
1

xM

M−1∑
n=1

xM min(xk, xn) − xnxk

rntn
. (2.1)

R 2.2. If rn = ln = 1/2 for all n, Xm is simple random walk, and (2.1) is readily
seen to reduce to k(M − k). This agrees with the formula obtained by applying the
optional stopping theorem to the martingale X2

m − m.

P. Set Gn
m to be the number of times that X is equal to n on or before time m − 1.

It is clear that

E[Γ(0, M)] =

M−1∑
n=1

E[Gn
Γ(0,M)].

We will use Brownian local time in order to determine E[Gn
Γ(0,M)]. The following

lemma is the key calculation.

L 2.3. Suppose that a < y, z < b. Let γ(a, b) = inft>0{Bt = a or b}. Then

Ez[L
y
γ(a,b)] =

2(b − a) min(y − a, z − a) − 2(y − a)(z − a)
b − a

. (2.2)

P. As the right-hand side of (2.2) is unchanged when {a, y, z, b} is replaced by
{0, y − a, z − a, b − a}, it is enough to assume that a = 0. Tanaka’s formula (see [3]
or [4]) states that

|Bt − y| = |B0 − y| +
∫ t

0
sgn(Bs − y) dBs + Ly

t .
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The stochastic integral here is a martingale, and the optional stopping theorem can be
applied. We find that

Ez[L
y
γ(0,b)] = Ez|Bγ(0,b) − y| − |y − z|.

Since P(Bγ(0,b) = 0) = (b − z)/b and P(Bγ(0,b) = b) = z/b, we see that Ez|Bγ(0,b) − y| =
((b − z)/b)y + (z/b)(b − y). Thus

Ez[L
y
γ(0,b)] =

(b − z)y + z(b − y) − b|y − z|
b

=
b(y + z) − b|y − z| − 2yz

b
=

2b min(y, z) − 2yz
b

.

This proves the lemma. �

We apply this lemma to our Brownian motion starting at xk in order to calculate
E[Gn

Γ(0,M)]. The total expected local time accumulated at xn before hitting 0 or xM is
given by Exk [L

xn
γ(0,xM)]. However, if we condition on Bτ(m) = xn we see that the expected

local time accumulated at xn between times τ(m) and τ(m + 1) is Exn [Lxn
γ(xn−1,xn+1)]. We

therefore obtain

E[Gn
Γ(0,M)] =

Exk [L
xn
γ(0,xM)]

Exn [Lxn
γ(xn−1,xn+1)]

. (2.3)

We need therefore only apply Lemma 2.3 and simplify. We have

Exn [Lxn
γ(xn−1,xn+1)] =

2(xn+1 − xn−1)(xn − xn−1) − 2(xn − xn−1)2

xn+1 − xn−1

=
2(xn+1 − xn)(xn − xn−1)

xn+1 − xn−1

=
2tntn−1

tn + tn−1
=

2tntn−1

tn−1(1 + ln
rn

)
= 2tnrn,

(2.4)

where we have used rn + ln = 1. Plugging this into (2.3) and using Lemma 2.3 to
evaluate Exk [L

xn
γ(0,xM)] gives

E[Gn
Γ(0,M)] =

xM min(xn, xk) − xnxk

xMrntn
.

Summing over all n between 1 and M − 1 gives (2.1), and proves Theorem 2.1. �

3. An optional stopping-like theorem for large stopping times
of birth–death chains

We will prove the following result.

T 3.1. Suppose that t∞ := limn→∞((l1 · · · ln)/(r1 · · · rn)) exists. Let {Tm}
∞
m=1 be

a nondecreasing sequence of stopping times satisfying E[Tm] <∞ such that Tm→ ∆
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almost surely. Then limm→∞ E[XTm ] exists, and

lim
m→∞

E[XTm ] =
1 + l1

r1
+ · · · + l1···lk−1

r1···rk−1

t∞
. (3.1)

R 3.2. This reduces to Theorem 1.2 when we take Tm = m ∧ ∆. As before, the
result is valid when t∞ = 0 or∞, with the same interpretation as in Theorem 1.2.

P. We will assume that t∞ ∈ (0,∞); easy adjustments can be made to the proof
in order to handle the cases t∞ = 0 or∞. Extend φ to a map from [0, x∞) onto [0,∞)
by requiring it to be continuous and linear on each interval (xn, xn+1). Let φ′n be the
derivative of φ on (xn−1, xn). It was shown in [5] to be a consequence of the Itō–Tanaka
formula (see [6, Theorem VI.1.5]) that

Xm = φ(Bτ(m)) = k +

∫ τ(m)

0
φ′(Bs) dBs +

∞∑
n=1

φ′n+1 − φ
′
n

2
Lxn
τ(m). (3.2)

Let T be a stopping time for Xm with E[T ] <∞, and set M(t) =
∫ t

0
φ′(Bs) dBs. We

need to show that E[Mτ(T )] = 0. This is not quite trivial, since even if T is bounded
τ(T ) will be unbounded. We must have control over τ(T ) in order to apply the optional
stopping theorem. The quadratic variation process of M, denoted 〈M〉(t), is given by∫ t

0
φ′(Bs)2 ds. We then have

E[〈M〉τ(m+1) − 〈M〉τ(m)|Bτ(m) = xn]

= E
[∫ τ(m+1)

τ(m)
φ′(Bs)2 ds|Bτ(m) = xn

]
=

∫ xn+1

xn−1

φ′(x)2Exn [Ly
γ(xn−1,xn+1)] dy

=
1

t2
n−1

∫ xn

xn−1

Exn [Ly
γ(xn−1,xn+1)] dy +

1
t2
n

∫ xn+1

xn

Exn [Ly
γ(xn−1,xn+1)] dy

=
1

t2
n−1

∫ xn

xn−1

2(xn+1 − xn−1)( y − xn−1) − 2(xn − xn−1)( y − xn−1)
xn+1 − xn−1

dy

+
1
t2
n

∫ xn+1

xn

2(xn+1 − xn−1)(xn − xn−1) − 2(xn − xn−1)( y − xn−1)
xn+1 − xn−1

dy

=
1

t2
n−1

∫ xn

xn−1

2tn( y − xn−1)
tn + tn−1

dy +
1
t2
n

∫ xn+1

xn

2tn−1(xn+1 − y)
tn + tn−1

dy

=
1

t2
n−1

( tnt2
n−1

tn + tn−1

)
+

1
t2
n

( t2
ntn−1

tn + tn−1

)
= 1.

The second equality is due to the occupation times formula [3, Theorem 8.10], and
the fourth equality is Lemma 2.3. It follows easily from this that E[〈M〉τ(T )] = E[T ].
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This tells us that the stopped process M(t ∧ τ(T )) is uniformly integrable (see, for
example [3, Corollary 7.8]), and thus that E[Mτ(T )] = E[M0] = 0 by [3, Theorem 7.15].
We obtain

E[XTm ] = k +

∞∑
n=1

φ′n+1 − φ
′
n

2
Exk [L

xn
τ(Tm)].

As m→∞, Tm↗ ∆ and E[Lxn
τ(Tm)]↗ E[Lxn

τ(∆)]. Letting b→∞ in Lemma 2.3 gives
Exk [L

xn

τ(∆)] = 2 min(xn, xk). If we assume that
∑∞

n=1 |φ
′
n+1 − φ

′
n| <∞, then we can

apply the dominated convergence theorem (to the functions ((φ′n+1 − φ
′
n)/2)Exk [L

xn
τ(Tm)]

defined on N) to conclude that

lim
m→∞

E[XTm ] = k +

∞∑
n=1

φ′n+1 − φ
′
n

2
Exk [L

xn

τ(∆)]

= k +

k−1∑
n=1

(φ′n+1 − φ
′
n)xn + xk

∞∑
n=k

(φ′n+1 − φ
′
n)

= k + φ′k xk − φ
′
1x1 −

k−1∑
n=1

φ′n+1(xn+1 − xn) + xk(φ′∞ − φ
′
k).

Using xn+1 − xn = tn = 1/φn+1 and φ′1x1 = 1, this reduces to

lim
m→∞

E[XTm ] = xkφ
′
∞.

Recalling the values for xk and φ′∞, this is seen to be equivalent to (3.1). It remains
to remove the restriction

∑∞
n=1 |φ

′
n+1 − φ

′
n| <∞. If there is a sequence of numbers Nm

such that sup0≤m′≤Tm
Xm′ ≤ Nm almost surely, then we can use [5, Lemma 3] and follow

steps (22) through (26) of [5] in order to obtain the desired convergence. Suppose
now that Tm is an arbitrary sequence of stopping times as in the statement of the
theorem. As E[Tm] <∞, there is a number Hm such that if S m = Tm ∧ Hm, then
E[Tm − S m] < 1/m. Since |Xm+1 − Xm| = 1 almost surely, we see that

|E[XTm ] − E[XS m ]| ≤ E[Tm − S m] <
1
m
.

Since sup0≤m′≤S m
Xm′ ≤ k + Hm, we see by our previous work that limm→∞ E[XS m ] =

xk/t∞, and it follows that the same is true for limm→∞ E[XTm ]. This completes the
proof of the theorem. �

4. Examples to which Theorem 3.1 can be applied

E 4.1. This example appeared in [5]. Let ln = n/(2n + 1), rn = (n + 1)/(2n + 1)
for n ≥ 1. Then tn = 1/(n + 1), so that t∞ = 0. On the other hand, x∞ = 1 +

∑∞
n=1 tn =∞.

We see that the birth–death chain Xm built upon these transition probabilities has an
extinction probability of 1, but E[Xm]→∞ as m→∞.

E 4.2. Suppose that there is an M ≥ 1 such that tn = rn = 1/2 for all n > M.
Then t∞ = (l1 · · · lM)/(r1 · · · rM), and so, for a sequence {Tm}

∞
m=1 satisfying the
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requirements for our theorem,

E[XTm ]→
1 + l1

r1
+ · · · + l1···lk−1

r1···rk−1

l1···lM
r1···rM

.

E 4.3. In order for t∞ to exist and lie in (0,∞), it is clearly necessary that
rn, ln→ 1/2 as n→∞, but it is not sufficient. Example 4.1 shows this, as t∞ = 0.
Exchanging rn and ln in Example 4.1 will give the case where t∞ =∞. It is not hard to
interlace these series in a way so that t∞ does not exist. The theory of infinite products
(most complex analysis texts contain this; see, for example, [1]) gives us the standard
necessary condition for t∞ to exist and lie in (0,∞). The following proposition is
obtained.

P 4.4. Suppose that
∞∑

n=1

∣∣∣∣∣1 − ln
rn

∣∣∣∣∣ <∞.
Then limm→∞ E[XTm ] exists and lies in (0,∞), where {Tm}

∞
m=1 is any nondecreasing

sequence of stopping times satisfying E[Tm] <∞ such that Tm→ ∆ almost surely.

5. The Doob decomposition of Xm

Let Ft be the filtration for Bt. Equation (3.2) shows that the σ-fields Fτm can be
taken as the filtration for the birth–death chain Xm, although of course this is far
from the smallest possible filtration as it contains a great deal of extra information
concerning the behaviour of Bt. Equation (3.2) comes from the Doob–Meyer
decomposition of φ(Bt), but is not the discrete-time Doob decomposition of Xm

(see [2]), since Lxn
τ(m) is not Fτ(m−1) measurable. On the other hand, it leads very easily

to the Doob decomposition.

T 5.1. The Doob decomposition of Xm is given by

Xm =Mm +

∞∑
n=1

Gn
m(rn − ln),

whereMm is the martingale given by

Mm = k +

∫ τ(m)

0
φ′(Bs) dBs +

∞∑
n=1

φ′n+1 − φ
′
n

2
(Lxn

τ(m) − 2Gn
mrntn).

P. By the standard arguments [2, Lemma 6.10] we have Xm = Mm + Am, where
Mm is a martingale and Am =

∑m
m′=1 E[Xm − Xm′−1 | Fτ(m′−1)]. Since

∫ τ(m)

0
φ′(Bs) dBs is

a martingale, (3.2) shows that

E[Xm − Xm′−1 | Fτ(m′−1)] = E
[ ∞∑

n=1

φ′n+1 − φ
′
n

2
(Lxn

τ(m′) − Lxn
τ(m′−1))

∣∣∣∣∣ Fτ(m′−1)

]
.
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The result then follows from the following calculation:

φ′n+1 − φ
′
n

2

m∑
m′=1

E[Lxn
τ(m′) − Lxn

τ(m′−1) | Fτ(m′−1)]

=
φ′n+1 − φ

′
n

2

m∑
m′=1

Exn [Lxn
γ(xn−1,xn+1)]1{Bτ(m′−1)=xn}

=
φ′n+1 − φ

′
n

2

m∑
m′=1

2rntn1{Bτ(m′−1)=xn}

=
φ′n+1 − φ

′
n

2
2rntnGn

m

=

( 1
tn
−

1
tn−1

)
rntnGn

m = (rn − ln)Gn
m.

Note that the first equality above is due to the independent increments and strong
Markov property of Brownian motion, while the second follows from Lemma 2.3
(see (2.4)). �
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