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TENSOR PRODUCTS OF DIMENSION GROUPS AND 
K0 OF UNIT-REGULAR RINGS 

K. R. GOODEARL AND D. E. HANDELMAN 

We study direct limits of finite products of matrix algebras (i.e., locally 
matricial algebras), their ordered Grothendieck groups (K0), and their 
tensor products. Given a dimension group G, a general problem is to 
determine whether G arises as K0 of a unit-regular ring or even as K0 of a 
locally matricial algebra. If G is countable, this is well known to be true. 
Here we provide positive answers in case (a) the cardinality of G is S j , or 
(b) G is an arbitrary infinite tensor product of the groups considered in 
(a), or (c) G is the group of all continuous real-valued functions on an 
arbitrary compact Hausdorff space. In cases (a) and (b), we show that 
G in fact appears as K0 of a locally matricial algebra. Result (a) is the 
basis for an example due to de la Harpe and Skandalis of the failure 
of a determinantal property in a non-separable AF C*-algebra [18, 
Section 3]. 

Crucial to results (b) and (c) is an analysis of states on tensor products 
of dimension groups. In particular, we prove that the extremal states on 
such tensor products are exactly the pure tensors of extremal states on the 
factors. As a consequence, the extreme boundary of the state space of a 
tensor product of dimension groups is homeomorphic to the Cartesian 
product of the extreme boundaries of the state spaces of the factors. 

In Section 1, result (a) is derived. The basic construction of infinite 
(possibly uncountable) tensor products of dimension groups is presented 
in the second section. In Section 3, the analogous tensor products of 
locally matricial algebras are discussed, and we show that K0 preserves 
tensor products in this context. Result (b) is then an immediate 
consequence. The fourth section is concerned with the tensor product 
factorization of extremal states. The final section contains a proof of result 
(c). We first express an arbitrary compact Hausdorff space as a subspace 
of a Cartesian product of compact metric spaces; the tensor product 
results are then applied, and the desired unit-regular ring is obtained as a 
quotient of a completion. 
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All rings and algebras in this paper are unital, as are all ring and algebra 
maps, and all modules. We refer the reader to [9, 10, 14] for basic 
definitions concerning unit-regular rings, partially ordered K0, and 
dimension groups. 

1. ^ O of locally matricial algebras. 

Definition. Let F be a field. A matricial F-algebra is any F- algebra that is 
isomorphic (as an F-algebra) to a finite direct product of full matrix 
algebras over F. A locally matricial F-algebra is any F-algebra that is a 
direct union of matricial F-subalgebras. Equivalently, an F-algebra is 
locally matricial if and only if it is isomorphic to a direct limit of matricial 
F-algebras (in the category of F-algebras and F-algebra maps). An 
ultramatricial F-algebra is any F-algebra that is isomorphic (as an 
F-algebra) to a direct limit of a countable sequence of matricial F-algebras 
and F-algebra maps. Equivalently, an F-algebra is ultramatricial if and 
only if it is locally matricial and countable-dimensional. 

Definition. A unit-regular ring is a ring R with the property that for each 
x G R, there exists a unit (i.e., an invertible element) u e R such that 
xux = x. 

For example, all semisimple artinian rings are unit-regular [4, Corollary 
to Theorem 1]. Since unit-regularity is preserved in direct limits, it follows 
that all locally matricial algebras are unit-regular. 

Given a ring R, we make K0(R) into a pre-ordered abelian group with 
positive cone K0(R)+ equal to the collection of all stable isomorphism 
classes [A ] of finitely generated projective right /^-modules A, as in [12, 9]. 
If R is unit-regular, then K0(R) is actually partially ordered [12, 
Propositions 2.1, 2.2; 9, Proposition 15.2]. 

We shall need the concepts of order-units and interpolation groups, 
which may be found in [9, 10, 14]. For the concepts of dimension 
groups, positive homomorphisms, and the category of pre-ordered abe
lian groups, see [10]. 

Arbitrary direct limits exist in the category of pre-ordered abelian 
groups [9, p. 208; 10, Proposition 18.6], and the functor K0 from the 
category of rings to the category of pre-ordered abelian groups preserves 
direct limits [9, Proposition 15.11; 10, Proposition 18.7]. Note that 
any direct limit of dimension groups is a dimension group. Since K0 of any 
semisimple artinian ring is isomorphic to a finite direct product of copies 
of Z, with the product ordering [9, Lemma 15.22], it is a dimension group. 
Hence, K0 of any locally matricial algebra is a dimension group. 

For the concepts of normalized positive homomorphisms and the 
category of pre-ordered abelian groups with order-unit, see [10]. We view 
K0 as a functor from the category of rings to the category of pre-ordered 
abelian groups with order-unit, so that ^ 0 sends a ring R to (K0(R), [R] ). 
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In this setting, K0 again preserves direct limits [9, Proposition 15.11; 10, 
Proposition 18.7]. 

Now K0 of any unit-regular ring is an interpolation group with 
order-unit [17, p. 197; 14, Proposition II. 10.3], and as we have seen, K0 of 
any locally matricial algebra is a dimension group with order-unit. Two 
basic problems are to determine which interpolation groups with 
order-unit appear as K0 of unit-regular rings, and which dimension groups 
with order-unit appear as K0 of locally matricial algebras. For countable 
dimension groups, the problem was solved by Elliott [5] and Effros-
Handelman-Shen [3], as follows. 

THEOREM 1.1. Let F be a field. If (G, u) is a countable dimension group 
with order-unit, then there exists an ultramatricial F-algebra R such that 

(K0(R), [R] ) ^ (G, u). 

Proof According to [3, Theorem 2.2; 10, Corollary 21.9], (G, u) is 
isomorphic to the direct limit of a sequence 

(G„ ux) -> (G2, u2) -> . . . 

in the category of pre-ordered abelian groups with order-unit, where each 
Gl is a finite direct product of copies of Z, with the product ordering. The 
existence of an ultramatricial F-algebra R with (KQ(R), [R] ) isomorphic to 
(G, u) then follows from [5, Theorem 5.5; 9, Theorem 15.24]. 

With a few modifications in the techniques used to prove Theorem 1.1, 
this result can be extended to dimension groups of cardinality S b as 
follows. 

LEMMA 1.2. Let F be afield, let R be a matricial F-algebra, and let S be a 
unit-regular F-algebra. 

(a) / / / : (K0(R), [R]) -> (K0(S), [S]) is a normalized positive 
homomorphism, then there exists an F-algebra map <p : R —> S such that 

K0M - f 
(b) Let <p, \p : R —» S be F-algebra maps. Then AT0(<p) = K0(\p) if and only 

if there exists an inner automorphism 6 of S such that cp = 6\p. 

Proof See [9, Lemma 15.23]. 

A simple patching argument based on Lemma 1.2 yields the following 
generalization of part (a) of the lemma. 

LEMMA 1.3. Let F be afield, let R be an ultramatricial F-algebra, and let 
S be a unit-regular F-algebra. Given any normalized positive homomorphism 
f from (K0(R), [R]) to (K0(S), [S]), there exists an F-algebra map 
<p : R —> S such that K0(y) = f 

Proof See [19, Lemma 3]. 
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LEMMA 1.4. If G is a dimension group and X is a countable subset of G, 
then G contains a countable subgroup H such that H D X and H is a 
dimension group {under the ordering inherited from G). 

Proof Let Hl be the subgroup of G generated by X. Then choose 
countable subgroups H] Q H2 Q . . . of G such that every suitable 
quadruple of elements in Hn may be interpolated in Hn + X, and such that 
every element of Hn is a difference of positive elements of Hn + ]. The 
union of these Hn is the required subgroup H. 

THEOREM 1.5. Let F be afield, and let (G, u) be a dimension group with 
order-unit. 7/"card(G) ^ S l 5 then there exists a locally matricial F-algebra R 
such that 

(K,(R\[R}) = (G,u). 

Proof If G is countable, Theorem 1.1. applies. Hence, we may assume 
that G has cardinality exactly Kj. Let fi denote the first uncountable 
ordinal. Then card(fi) = card(G), and so we may index G by fi, say 

G = {xa\a< 0} . 

Since each ordinal less than Q is countable, we may use Lemma 1.4 to 
construct countable subgroups {Ga \ a < Q} in G such that u e GX and 
xa G Ga for all a < £2, each Ga is a dimension group, and Ga Q Gp 
whenever a ^ ft < £2. Note that UGa = G. 

For all a ^ ft < fi, let f^a : Ga~^ Gp be the inclusion map. The objects 
(Ga, u) together with the morphisms fpa form a direct system in the 
category of pre-ordered abelian groups with order-unit, and the direct 
limit of this system is isomorphic to (G, u). We shall construct a 
corresponding direct system of ultramatricial F-algebras, and form R as 
the direct limit of that system. 

By Theorem 1.1, there exist ultramatricial F-algebras Ra for each a < £2 
and isomorphisms 

ga : (K0(Ra), [Ra] ) -> (Ga, u) 

in the category of pre-ordered abelian groups with order-unit. We 
construct F-algebra maps 

<Pfia : Ra -» Rfi f o r a11 « = P < fi 

such that gpK0(<ppa) = fpaga whenever a ^ ft < Q and q>ypppa = <pya 

whenever a ^ /? ^ y < £2. To start, let <JPU be the identity map on R}. 
Now let 1 < y < £2, and assume that q*pa has been constructed for all 

a ^ ft < y. Set <pyy equal to the identity map on Ry. Let T be the direct 
limit of the direct system 

{*«> V/fo I « = P < Y} 
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(in the category of F-algebras), and for all a < y let \pa : Ra —> T be the 
natural map. Then (K0(T), [T] ), together with the maps K0(\pa), is a direct 
limit for the direct system 

{ (K0(Ra), [Ra] ), K0(vpa) | a ^ 0 < y) 

in the category of pre-ordered abelian groups with order-unit. Note 
that since y is countable and each Ra is ultramatricial, T must be 
ultramatricial. 

For each a < y, the mapfga is a normalized positive homomorphism 
from (K0(Ra)9 [Ra] ) to (Gy, w). Observe that whenever a ^ /? < y, then 

fypgpKo(*Ppa) = fypfpaSa = fyc&a' 

Hence, there exists a unique normalized positive homomorphism 

h : (tf0(0, [T] ) -> (Gy, «) 

such that 

hKoWa) = fyaSa f ° r a 1 1 « < 7-

By Lemma 1.3, there is an F-algebra map <p : T -^ Ry such that 
K0(<p) = gy h. For all a < y, set 

«V = W'tf : ^« "^ # r 

and observe that 

gy^0(<v) = gyK0(<p)K0(xPa) = gyg~xhK^a) = fyaga. 

In addition, for all a ^ fi < y we have 

This completes the inductive step of the construction. 
Let R be the direct limit of the direct system 

(in the category of F-algebras), and for all a < 12 let \pa : Ra —> R be the 
natural map. Since each Ra is ultramatricial, # is locally matricial. Using 
again the fact that K0 preserves direct limits, we find that (K0(R), [R] ) is 
isomorphic to the direct limit of the direct system 

{ (K0(Ra), [RJ ), K0(^a) | a ^ p < 12} 

(in the category of pre-ordered abelian groups with order-unit). As the 
family of isomorphisms ga provides an isomorphism of this direct system 
onto the direct system 

{{Ga, uXfpJa S / ? < a } , 

we conclude that (K0(R), [R] ) = (G, u). 
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Lacking an analogue of Lemma 1.2 (b) for F-algebra maps between 
locally matricial F-algebras, we cannot extend the argument of Theorem 
1.5 to higher cardinalities. However, we do conjecture that all dimension 
groups with order-unit are isomorphic to (K0(R), [R] )'s for locally 
matricial F-algebras R. 

2. Tensor products of dimension groups. In this section, we introduce 
finite and infinite tensor products of pre-ordered abelian groups and 
prove that tensor products of dimension groups are dimension groups. The 
proofs are mostly routine. 

Definition. Let G b . . . , Gn be pre-ordered abelian groups, and let G be 
the abelian group Gx ® . . . ® Gn. We make G into a pre-ordered abelian 
group by defining the positive cone G+ to be the collection of all sums of 
elements from the set 

{xx ® . . . ® x„\ xt; e G,+ for all / = 1, . . . , n}. 

If G,, . . . , Gn are all partially ordered, then so is G, as follows. 

PROPOSITION 2 A. Any tensor product of partially ordered abelian groups is 
a partially ordered abelian group. 

Proof. By induction, the problem reduces to the case of two partially 
ordered abelian groups G and H. To see that G ® H is partially ordered, it 
suffices to show that whenever xh . . . , xn are strictly positive elements of 
G and yu . . . ,yn are strictly positive elements of //, then 

(x, ®yx) + . . . + (xn®yn) * 0. 

Let G' be the subgroup of G generated by x, . . . , xiv and note that the 
element 

u = x{ + . . . + xn 

is an order-unit in G'. Since u > 0, there exists a state s on (Gr, t/), by 
[12, Corollary 3.3; 9, Corollary 18.2]. As 

six^ + . . . + s(xn) = s(u) = 1, 

we must have s(xj) > 0 for at least one j . Renumber the xt so that 
s(xt) > 0 for / = 1, . . . , k while s(xt) = 0 for i = k + 1, . . . , n. Since 
R is divisible, s extends to a homomorphism g : G —» R (not necessarily 
positive). 

Similarly, there is a homomorphism h : H —> R such that h(yi) ^ 0 for 
/ = 1,. . . , k and h(y-) > 0 for at least oney" G {1, . . . , k}. There exists a 
homomorphism/ : G ® H —> R such that 

f(x ® y) = g(x)h(y) for all JC E G and y G H. 

Observing that 

https://doi.org/10.4153/CJM-1986-032-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-032-0


UNIT-REGULAR RINGS 639 

f((xx®yx) + . . . + (xn®y„)) 

= s(xx)h(yx) + . . . + s(xk)h(yk) > 0 , 

we conclude that (xl ®yx) + . . . + (xn®yn) ¥* 0, as desired. 

Note that tensor products of positive homomorphisms are positive 
homomorphisms. Namely, if f : Gz —> Hi is a positive homomorphism 
between pre-ordered abelian groups, for each /' = 1,. . . , n, then the 
homomorphism 

/ 1 0 . . . ® / w : 6 1 ® . . . 0 G B - > f f 1 ® . . . 0 / f „ 

is positive. 

LEMMA 2.2. Let {Gz, g7} tfwd {7/^, Am^} fee d/recf systems of pre-ordered 
abelian groups and positive homomorphisms. Then {Gt ® Hk, gf ® hmk) is a 
direct system of pre-ordered abelian groups and positive homomorphisms, and 
the natural map 

lim(G, ® Hk) -> (lim G,) ® (lim J/*) 

/5 <3W isomorphism of pre-ordered abelian groups. 

Definition. A simplicial group is any partially ordered abelian group that 
is isomorphic (as a partially ordered abelian group) to IT (with the 
product ordering) for some nonnegative integer n. A simplicial basis for a 
simplicial group G is any basis {x}, . . . , xn) for G as a free abelian group 
such that 

G = Z X] + . . . + Z xw. 

(The empty set is considered to be a simplicial basis for the simplicial 
group {0}.) 

PROPOSITION 2.3. If Gx,... ,Gn are dimension groups, then G\ ® . . . ® Gn is 
a dimension group. 

Proof. By [3, Theorem 2.2; 10, Theorem 21.7] every dimension group is 
isomorphic to a direct limit of simplicial groups (in the category of 
pre-ordered abelian groups). Thus, by Lemma 2.2 and induction on n, we 
may assume that n = 2 and that Gx and G2 are simplicial. As the tensor 
product of simplicial bases for Gx and G2 provides a simplicial basis for 
Gj ® G2, we are done. 

LEMMA 2.4. Let Gl5 . . . , Gn be pre-ordered abelian groups. 
(â)IfO ^ xt = yt in Gffor each i = 1, . . . , n, then 

0 ^ JC, ® . . . ® xn ^ yx ® . . . ®yn 

in Gx® . . . ® G„. 
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(b) Iful is an order-unit in G, for each i = 1,. . . , n, then ux 0 . . . 0 un is 
an order-unit in Gx 0 . . . 0 Gn. 

Proof, (a) We have xx 0 . . . 0 xn ^ 0 by definition of (®Gl)
 +. Since 

[yx®...®yn\ ~[xx®...®xn] 

n 

= 2 [xx®...®xl_x®(yl - xl)®yl + x®...®yn] 
i = \ 

and each of the terms in the summation lies in (0GZ) , the remaining 
inequality follows. 

(b) We must show that any element x in ®Gl is bounded above by a 
positive multiple of the element u = ux 0 . . . 0 un. Now x is a sum of pure 
tensors, and it suffices to prove that each of these pure tensors is bounded 
above by a positive multiple of u. Thus we may assume that 
x = xx 0 . . . 0 xn for some elements xt e GZ. 

As each Gt has an order-unit, it is directed, and so each xr is a differ
ence of positive elements of Gt. Hence, x is a sum of terms of the form 
±(yx 0 . . . 0 yn), where each yt e Gz

+, and we need only show that 
each of these terms is bounded above by a positive multiple of u. Since 

-{yx ® ...®yn) ^ O ^ u 

for all yj e G,+ , we may thus assume that x = xx 0 . . . 0 xn with 
each xt e G,+ . 

Each X; ^ kjUj for some ki e N. Let k = m a x ^ , . . . , kn }, so that each 
xl ^ kut. Using (a), we conclude that 

x = xx 0 . . . 0 xn ^ (kux) 0 . . . 0 (kun) = k"u. 

Definition. Let { (Gz, ut) \ i e / } be a nonempty family of pre-ordered 
abelian groups with order-unit, and let J ^ be the family of all nonempty 
finite subsets of /. Then {s/, Q } is a directed set. For all 4̂ e S/, set 

GÀ = ® G , and uA = ®u,. 

Then GA is a pre-ordered abelian group, and uA is an order-unit in GA by 
Lemma 2.4. For all .4 ç B ins/, define a homomorphism g ^ : GA -+ GB 

such that 

*4,©*<) = ,&*; with 

f*, ( i oe^) 
•^ U 7 (ify & B - A) 

for all pure tensors ®x, in G .̂ Then gg/4 is a normalized positive 
homomorphism from (GA, uA) to (GB, uB). The system 
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{(GA,uA),gBA \A ç Bins/} 

is a direct system in the category of pre-ordered abelian groups with 
order-unit, and we define the direct limit of this system to be the tensor 
product of the family { (Gz, ut)\ i e / } . Thus 

<3F(Gi9 ut) = Urn { (GA, uA)\A ^ ^ } , 

for short. 
Set 

(G, u) = <&r(Gi9 uÉ), 

and for all A G j^ le t 

qA : (GA, uA) ->(G, u) 

be the natural map. Then 

Given 4̂ e j ^ a n d a pure tensor JC = ®xz in G ,̂ note that g^C*) is a pure 
tensor in GB for any B e j / t h a t contains .4, and the new factors in gBA(x) 
are all of the form u- for 7 e B — A. Hence, we may view qA (x) as a "pure 
infinite tensor", that is, we write 

qA(x) = ®y, with v = fxf (if / e ,4) 
/ e / I ",-(if/ e / - >4). 

Note that G is generated, as an abelian group, by these pure infinite 
tensors. These particular elements of G consist of all symbols of the form 
®/e/z/ where zl e G, for all i e / and zi = ut for all but finitely many 
/ G /. In particular, 

u = ®U:. 

PROPOSITION 2.5. 7/"{ (Gy, w7) \ i Œ 1} is a nonempty family of dimension 
groups with order-unit, then ®/G/(G/-, ut) is a dimension group with 
order-unit. 

Proof. By construction, ® /G/(Gz, ut) is a pre-ordered abelian group 
(G, w) with order-unit. For each nonempty finite subset A of /, the tensor 
product 

GA = ® G , 

is a dimension group by Proposition 2.3. Since G is the direct limit of the 
GA, it too is a dimension group. 
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3. Tensor products of locally matricial algebras. We now investigate K{) 

of tensor products of locally matricial algebras over a fixed field F. As all 
tensor products of algebras will be taken over F, we just write 0 in place 
of ®F. Given a nonempty family {R; \ i e / } of F-algebras, the tensor 
product ®l^IRi is of course the direct limit of the tensor products of 
finitely many of the Rt, indexed by the nonempty finite subsets of /. As an 
abelian group ®l^JRi is generated by all pure infinite tensors ®i&1ri where 
ri G Ri for all / G / and rt = 1 for all but finitely many / e / . Since finite 
tensor products of matricial F-algebras are matricial, we see that all tensor 
products of locally matricial F-algebras are locally matricial. Our first 
observation, analogous to Lemma 2.1, is routine. 

LEMMA 3.1. Let {Rt, <p7} and [Sk, ^mk} be direct systems of algebras over 
afield F. Then {R; ® Sk, <p7 0 i^mk) ^ a direct system of F-algebras, and the 
natural map 

l im(^ 0 Sk) -> (lim Rt) 0 (lim Sk) 

is an F-algebra isomorphism. 

In order to relate K0(®Ri) to ®K0(Rj), we consider tensor products of 
/^-modules. First, let A be a nonempty finite subset of /, and for each 
/ e A let Pt be a right /^-module. The F-vector space ®l^APl then becomes 
a right module over the algebra ®i^ARl in the obvious manner, so that 

(,?/'•)(,?/••) = ,a^) 
for all pure tensors 0.x;, e ®Pi and 0rz <= ®Rt. Using the natural map 
from ®lGARl to ®iGTRh the module ®l^APi induces a right module 
over ®j(ElRh namely the module 

We denote this induced module by ®i^IPl, where P{ = Rt for all 
/ G / — A. This module is generated, as an abelian group, by all pure 
infinite tensors 0 / e / x z , where xl e Pl for all / e / and xt = 1 for all but 
finitely many /' G /. 

LEMMA 3.2. Let F be a field, and let {Rf \ i e 1} be a nonempty family 
of F-algebras. For each i G /, let Pf be a finitely generated projective 
right Rrmodule, and assume that Pf = Ri for all but finitely many i e /. 
Then ®i<ElPi is a finitely generated projective right module over the algebra 

Proof. Choose a nonempty finite subset A Q I such that Pl = R; for all 
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/ <E I — A. Then ®iG[Pj is induced from the module ®i&APj, and so it 
suffices to show that ®i^APi is a finitely generated projective right module 
over ®iGARi. Hence, there is no loss of generality in assuming that / is 
finite, and then induction on cardinality reduces the problem to 
two-element index sets. Thus we may assume that / = {1, 2}. 

For each / e /, choose a right /^-module Qt such that Pt Q Q{ is a free 
right /^-module Ft of finite rank n{. Note that Fx ® F2 is a free right 
(R] ® i^2)_module of rank nxn2. Since 

(P, ® P2) ® (Px ® Q2) @ (Ô! 0 P2) 0 (Ôi ® Q2) ^ F\® F2, 

we conclude that Px ® P2 is a finitely generated projective right module 
over Rx ® JR2, as desired. 

LEMMA 3.3. Let F be afield, and let [Ri \ i e 1} be a nonempty family of 
F-algebras. Then there is a unique normalized positive homomorphism 

f: <§>(Ko(«,), [Ri] ) - (*"o( (f,*/)' [<§>«,]) 

such that whenever Pi is a finitely generated projective right Rrmodule for 
each i e /, and Pt = Rxfor all but finitely many i e /, then 

f{®,[p,]) = [<§?]. 

Proof Because of the compatible definitions of ®[^I(K0(Rj)y [Rj] ) and 
®l(£fRl as direct limits of finite tensor products, and because K0 preserves 
direct limits, it suffices to construct the corresponding homomorphisms 
for all tensor products over finite subsets of /. Then induction on 
cardinality reduces the problem to two-element index sets. Thus we may 
assume that / = {1, 2}. 

Set R = Rx ® R2. We claim that if Pt and Qi are finitely generated 
projective right i^-modules for each / e /, and if [/•] = [Qt] in K0(R-) for 
each /, then 

[P, 0 P2] = [<2, ® Q2] in * o W -

Each Pj is stably isomorphic to Qt, and so there is a free right i^-module Ft 

of finite rank such that 

P,®F, = Q,® F, 

Now 

(P] ® P2) © (F, ® P2) = (F, 0 F,) ® P2 = ((?, © F,) ® P2 

S (g, ® p2) © (F, ® P2), 

whence P, ® P2
 a n d <2i ® ^2 a r e stably isomorphic. Similarly, 2 , ® P2 
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and Qx 0 Q2 are stably isomorphic, and hence 

[/>, 0 P2] = [G, 0 P2] = [G, 0 G21 

in K0(R), as claimed. 

Thus there is a well-defined map 

g : K0(R,)+ X tf0(/?2)
+ - JÇ-0(/f) 

such that 

g( [p,i [p2] ) = F i ® j y 

for all finitely generated projective right /î-modules Pt. Clearly g is 
biadditive, and so g extends to a biadditive map 

g' : *„(*,) X K0(R2) -» K0(R). 

Because g' is biadditive, it induces a group homomorphism 

f : K^) ® K0(R2)-> K0(R) 

such that 

/ ( [ P 1 ] ® [ P 2 ] ) = [ P , ® P 2 ] 

for all finitely generated projective right ^-modules Pt. It is obvious that 
we obtain a normalized positive homomorphism 

/ : (Ko(tf,), [/?,]) ® (K0(R2), [*2] ) -> (tf0(/O. [R] ), 

and t h a t / i s unique. 

Definition. We refer to the map f constructed in Lemma 3.3. as the 

natural map from ^(K^R^ [Rt] ) to (#0( <§>/*/), [jgRj] )• 

PROPOSITION 3.4. Let F be afield, and let {Rf \ i <B 1} be a nonempty 
family of locally matricial F-algebras. Then the natural map 

f: <§>0W), [*,])-> (*<>(<§>,*,•). [<§>#,]) 

is an isomorphism of pre-ordered abelian groups with order-unit. 

Proof. As in Lemma 3.3, it suffices to prove the case in which 
/ = {1,2}. 

We may assume that Rx is a direct limit of matricial F-algebras S] , and 
that R2 is a direct limit of matricial .F-algebras S2k. Set 

R = Rx® R2 and S = \im(Sy 0 S2k). 

By Lemma 3.1, the natural map <p : S —* R is an F-algebra isomorphism, 
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and so <p induces an isomorphism 

K0M : (K0(S), [S] ) -> (K0(R), [R] ) 

of pre-ordered abelian groups with order-unit. Since K0 preserves direct 
limits, we also have a natural isomorphism 

g : lim(K0(Sy 0 S2k), [Sy 0 S2,] ) -> (K0(S)9 [S] ), 

as well as natural isomorphisms 

A, : lim(Ao(Sly), [StJ\ ) -» (*o(*,), [*,] ) 

A2 : Um(Ao(%), [%] ) -> (*0(«2), [tf2] ). 

Tensoring hx with /i2 provides an isomorphism 

h : (\im(K0(Sy), [Sh] ) ) ® (\im(K0(S2k), [S2k] ) ) 

-» (*<,(*,) [*,] ) 0 (A"0(/i2), [tf2] ). 

Finally, Lemma 2.2 shows that the natural map 

/ : lim( (Ao(517), [Sly] ) ® (K0(S2k), [S2k] ) ) 

) • ( 
-> ^lim(K0(Sy), [5,,-] ) J ® \ hm(K0(S2k), [S2k] ) , 

is an isomorphism. 
For all j , k, let f-k denote the natural map 

(Ao(Sly), [Sy] ) ® («„ (%) , [S2k] ) -» (Ao(Sly ® S2k), [Sly ® S2J ). 

Since these / ^ are compatible, they induce a normalized positive 
homomorphism 

J : lim( (tf0(Sly.), [Sy] ) 0 (K0(S2k), [S2k] ) ) 

-> lim(Ao(Sly 0 S2,), [S,, 0 % ] ). 

Observe that /ht = K0(<p)gf. Thus to prove t h a t / i s an isomorphism (of 
pre-ordered abelian groups with order-unit), we need only show t h a t / is 
an isomorphism, and for that it suffices to show that each fk is an 
isomorphism. 

Therefore we may assume, without loss of generality, that R] and R2 are 
matricial. Hence, we may identify R} with S} X . . . X Sm and R2 with 
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T, X . . . X 3J, where the S- and the Tk are full matrix algebras over F. 
Since K0 preserves finite direct products [9, Proposition 15.13], another 
diagram chase reduces the problem to proving that each of the natural 
maps 

(K0(Sj), [Sj] ) ® (K0(Tk), [Tk] ) -> (KoiSj ® Tk), [S, ®Tk]) 

is an isomorphism. 
Thus there is no loss of generality in assuming that Rl = M (F) and 

R2 = M (F) for some positive integers p and q. Let ex and e2 be 
rank one idempotent matrices in Rx and R2. There is an isomorphism of 
Rx® R2 onto M (F), under which the element e = ex ® e2 corresponds to 
a rank one idempotent matrix in M IF). By [9, Lemma 15.22], the groups 
K^Rj) and K0(RX ® ^2) a r e a ^ infinite cyclic, with generators [eft] and 
[e(Rx ® R2) ], while also 

*o(*,) + = Z+[eft] and K0(RX ® tf2)
 + = Z + K * , ® K2) ]. 

Observing that 

/ ( [<?,*,] ® [e2i?2] ) = [ (£>,*,) ® (e2JR2) ] = [e(Rx ® * 2 ) ], 

we conclude t h a t / i s an isomorphism of pre-ordered abelian groups. A s / 
is already normalized, the proof is complete. 

THEOREM 3.5. Let F be afield, and let { (Gz, t/z) \ i ^ 1} be a nonempty 
family of dimension groups with order-unit. If card(Gj) = Nj /or «// / e /, 
//z£« //z^r^ exists a locally matricial F-algebra R such that 

(K0(R),[R]) = .§>«?,-, «,-)• 

Proof Use Theorem 1.5 and Proposition 3.4. 

4. State spaces of tensor products of dimension groups. Here we show 
that any extremal state on a tensor product of dimension groups is a pure 
tensor of extremal states on the factors. The concepts of states, state 
spaces, extreme points, and extreme boundaries may be found in [9, 14]. 
We use deS to denote the extreme boundary of a convex set S. 

The state space S(G, w) of a pre-ordered abelian group (G, u) with 
order-unit is viewed as a subset of the real vector space RG of all 
real-valued functions on G, and RG is assumed to have the product 
topology. Then S(G, u) is a compact convex subset of RG [9, Proposition 
17.11]. If G is an interpolation group, then S(G, u) is a Choquet simplex 
[14, Theorem 1.2.5]. 

Definition. Let { (Gz, ut) | / e / } be a nonempty family of pre-ordered 
abelian groups with order-unit, and set 

(C, u) = .|>(G,., «,.). 
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Given states sf e S(GZ, wz) for all i e /, there is a unique homomorphism 
s : G —> R such that 

*(.<§>*,-) = n s , w 
for all pure tensors ®xt in G, and we observe that s is a state on (G, w). We 
refer to s as the tensor product of the states si9 denoted 

s = <§h. 

LEMMA 4.1. Let (Gb Wj) and (G2, w2) be pre-ordered abelian groups with 
order-unit, and set 

(G9u) = (G l9Wl)®(C?2."2)-

For / = 1,2, fe/ 

ft : (G/, wz) - > (G, w) 

Z?e //ze natural map. Let s e S(G, w), and set st = sg, /or / = \, 2. If sx is 
extremal, then s = sx ® s2. 

Proof. It suffices to show that s(xx ® x2) = sx(xx)s2(x2) for any pure 
tensor xx ® x2 in G. Choose a positive integer m such that x2 = mu2, and 
set 

yx = (m -f l)w2 and y2 = y\ ~ x2-

Since w2 is
 a n order-unit in G2, so is Ĵ J . Also, since y2 = u2, we see that y2 

is an order-unit in G2. Now x2 = yx — y2, whence 

xx ®x2 = (*, ® ^ ) - (JC, 0>>2). 

We need only show that 

s(xx ®yj) = sx(xx)s2(yj) for each y = 1, 2. 

Thus we may assume that x2 is an order-unit in G2. 
As x2 is an order-unit, we obtain s2(x2) > 0. Setting 

tx(a) = s (a ® x2)/s2(x2) = j(a ® x2)/s(ux ® x2) 

for all a e. Gx, we obtain a state tx in £(£] , ux). Choose a positive integer n 
such that x2 ^ nu2. For all « e Gx , we have 

« ® x2 ^ «(a ® w2), 

whence 

/]((2) ^ TZS(<2 ® u2)/s2(x2) = nsx(a)/s2(x2). 

Thus tx ^ [«/^2(x2) ]̂ ] on Gj. According to [14, Proposition 1.2.4], 
tx must lie in the face generated by sx in S(GX, ux). Since sx is extremal, the 
face it generates is just the singleton {sx}, and so tx = sx. Thus 
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s fa) = /,(x,) = s(x} 0 x2)/s2(x2\ 

and therefore 

s(x] 0 x2) = sfa)s2(x2), 

as desired. 

PROPOSITION 4.2. Let { (Gz, ut) \ i e / } be a nonempty family of 
pre-ordered abelian groups with order-unit. Set 

(G, u) = | ) ( G „ «,.), 

and for all i G 7 /e/ 

^ : (G,, w,-) -» (G, i/) 

èe ///£ natural map. Let s G S(G, w), and set st = sqtfor all i e / . If each st 

is extremal, then 

s = ®5,, 

Aft J s /5 extremal. 

Proof. We first show that 5 = 0sz. Thus consider any pure tensor 
x = 0x, in G. There exists a finite subset J Q I such that x7 = w/ for all 
/ G 7 - J. Set 

(G', w') = ®(G„ w#.) and (G", a") = ® (G„ u,) 
J^J J J i&I-J 

and identify (G, u) with (Gr, M') ® (G", w"). Using Lemma 4.1, we infer by 
induction on the cardinality of «7 that 

5 = W ® ' 
for some state / in S(G", u"). Consequently, 

six) 

(x). 

['("") ] 

Therefore s = ®st. 
It remains to show that s is extremal. Given any positive convex 

combination s = as' + (1 — a).?" in S(G, u), we obtain positive 
convex combinations 

si = a(s%) + (1 ~ a)C*"ft) 
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in each S(Gh uf). As each st is extremal, 

s'qf = s"qt = S; for all / e / . 

Now each s'q{ and each s"qt is extremal. Applying the result of the previous 
paragraph, we conclude that 

s' = ®s'q: = ®s1 = s9 

and similarly s" = s. Therefore s is extremal. 

In proving a converse to Proposition 4.2 (namely, that if s is extremal 
then each sÉ is extremal), we shall require that each Gz be an interpolation 
group. Our proof involves completing interpolation groups with respect to 
state-metrics, as in [13], to which we refer the reader for the construction 
of such completions and the associated terminology. 

LEMMA 4.3. Let (Gl9 ux) and (G2, u2) be pre-ordered abelian groups with 
order-unit. Set 

(G, «) = (G„ K , ) ® ( G 2 , u2\ 

and let 

qx : (G,, ux) -> (G, w) 

Z>£ //2£ natural map. Let s G S (G, u), and set sx = sqx. Let Gj denote 
the s ̂ -completion of Gx, and let s\ be the natural extension of sx to Gx. Let 
<px : Gj —> Gj be the natural map, and let Hx be the convex subgroup of G, 
generated by <JP1(W]). Set 

(H,v) = (H],<h(u]))®(G2,u2), 

and let j be the identity map on G2. Then there exists a state t on (//, v) such 
that 

t(<px ® j) = s and t(x ® u2) = s~x(x) for all x e HX. 

Proof. For each;; e G2, define a homomorphism fy : Gx —> R according 
to the rule 

fv(x) = s(x®y). 

We claim thatX is uniformly continuous with respect to the sx -metric. 
Choose a positive integer m such that —mu2 = y = mu2. For all 

a <= Gi+, we have 

- m ( « ® u2) = a ® (-mu2) ^ a ® y ^ a ® (mu2) = m(a ® u2), 

and consequently 

— msx(a) = —ms(a ® u2) = s(a ® y) = ms(a ® u2) = msx(a), 

so that 
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\s(a ® y) | â msx(a). 

Now consider an arbitrary element x G GX. Whenever x = a — b for some 
a, J, e G, , we have 

| / v (x ) | = Ha®y) - s(b®y)\ fk \s(a®y)\ + |*(fe®.y)l 

^ ra^f//) -f msx(b) = msx(a -h 6). 

Hence, 

IJÇOO I ^ «14,-

Thus fy is uniformly continuous with respect to the sx -metric, as 
claimed. 

As a result, fy extends uniquely to a continuous homomorphism 
gy : Gx —> R such that gy<p1 = ^ . For any j , z G G2, observe that 
X+z = fy + /z» whence g v + z = gv + gz by the uniqueness of gv + ,. 
Moreover, for any j G G2 , the map f is positive (because the maps 
( — )®y and s are positive), from which it follows that gy is a positive 
homomorphism [13, Lemma 2.2]. 

Define a map g : Hx X G2 —> R according to the rule g(x, y) = g v 00, 
and observe that g is biadditive. Then g induces a homomorphism 
r : H —> R such that 

*(JC ® ;;) = g (JC) for all x <E Hx and ^ G G2. 

Whenever x G i/j+ and y G G^, we have /(.x ® >>) â 0 because gv, is a 
positive homomorphism. Thus t is a positive homomorphism. For all 
x G Gx and >> G G2, we compute that 

/(<p, ®7)(x ®y) = t(<px(x) ® y) = gyyx(x) 

Therefore t(<px ® j) = s. In particular, 

t(v) = /(<?,(«,) 0 M2) = f(Vl ®y)(w, ® w2) 

and so / is a state on (7/, v). 
For all x G GJ, observe that 

/M2Cx) = s(x ® u2) = sx(x). 

Consequently, 

S{q>x = S] = fUi 

and so s[ = gu . Thus we conclude that 

t(x ® u2) = gUi(x) = si(x) 

for all JC G Hx. 

PROPOSITION 4.4. Let (Gj, ux) be an interpolation group with order-unit, 
and let (G2, u2) be a pre-ordered abelian group with order-unit. Set 

= fy(x) = s(x®y). 

= s(u) = 1, 
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(G, u) = (G„ a,) ® (G2, H2), 

and for i = 1,2 let 

ql : (G„ My) -> (G, w) 

be the natural map. Let s e S (G, u), and set sx = sqx. If s is extremal, then 
sx is extremal. 

Proof. We continue the notation of Lemma 4.3, and we set 
<JP = <P] ®j. By [13, Theorem 1.6], G, is Dedekind complete, whence Hx is 
Dedekind complete. 

If sx is not extremal, then Hx is not totally ordered [13, Theorem 2.3]. 
Consequently, there must exist a nontrivial characteristic element e in 
B(HX, <px(ux) ) [14, Theorem 1.4.3]. Set 

/ = <px(ux) - e, 

so that e a n d / a r e strictly positive characteristic elements of (//,, <px(ux) ), 
and 

e + f= vi("i). 

Now pe ®j and/y ®y are positive homomorphisms from H to itself, and 
their sum is the identity map on H, whence 

t(pe ® y > + t(pf®j)q> = t<p = s. 

Set a = s~x(e) and fi = s~x(f). Since e > 0 a n d / > 0, we obtain 

a = \e\- > 0 and fi = l/l^ > 0 

from [13, Lemma 1.1 (d) ]. In addition, a + fi = s~x<px(ux) = 1. Observe 
that 

t(pe ®j)<p(u) = t(pe 07X9,(1/,) ® u2) = / (^v, («i ) ® "2) 

= t(e ® M2) = l̂OO = a, 

and similarly t(pf®j)<p(u) = /}. Hence, the maps 

f = a~xt(pe®j)v and /" = fi~xt(pf® j)q> 

are states on (G, w), and a/' 4- fit" = s. 
As ^ is extremal, we must have t' = t" = s. For all x e G,, we compute 

that 

t'qx{x) = a~Xt(pe ®j)<t>(x ® u2) = a~Xt(pe<px(x) ® u2) 

= a~]s-xpe<px(x), 

and similarly t"qx(x) = fi~xs~xpf<px(x). Thus 
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Since s[pe(a) = s[(a) and s[pf(a) = s](a) for all Û G ff, , [13, Lemma 
2.1] shows that s[pe and sj/y are continuous with respect to the ^-metric. 
As q>\(G{) is dense in Hx, we conclude that 

a~lslpe = P~ls[pf. 

However, 

a~xIxpe(e) = a~]s[(e) = 1 

while 

and so we have a contradiction. 
Therefore s} must be extremal. 

THEOREM 4.5. Let { (Gz-, ut) \ i ^ 1} be a nonempty family of interpolation 
groups with order-unit. Set 

(G, u) = ®r(G„ Uj), 

and for all i e / let 

ql : (G,, ut) -> (G, u) 

be the natural map. Let s e S(G, u), and set si = sqtfor all i e / . Then s is 
extremal if and only if each st is extremal, in which case 

s = <§s. 

Proof If each S; is extremal, then s is extremal and s = ®sh by 
Proposition 4.2. Conversely, assume that s is extremal. For any j e /, we 
may identify (G, u) with 

(Gy,«y)®C69_y(G.-.«/))-

Hence, it follows from Proposition 4.4. that s- is extremal. 

COROLLARY 4.6. Let { (G,, ui)\ i e / } Z?e « nonempty family of 
interpolation groups with order-unit, and set 

(G, u) = <|)(G„ «,.). 

77ze« deS(G, u) is homeomorphic to 

I t deS(Gr Ul). 
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Proof. For each / G /, let qi : (Gz, ut) —> (G, w) be the natural map. The 
induced map 

S(qt) : S(G, u) -> S(GZ, ut) 

is continuous, and by Theorem 4.5 it restricts to a map of deS(G, u) to 
deS(Gh My). Together these restrictions induce a continuous map 

/ : deS(G, u) -> E [ 3^(C?/9 «,-) 

such t h a t / 0 ) z = ^ for all 5 G 9eS(G, w) and all /' G /. 
If j , / G 8eS(G, w) w i t h / 0 ) = /(*), then Theorem 4.5 shows that 

s = ®7K) = .0/ty) = *. 

Thus fis injective. Given s, G deS(Gi9 ut) for all / G /, we may form the 
state 

s = ®st in S(G, u). 

As sgz = si for all i G /, we see by Theorem 4.5 that s G deS(G, w), and 
then 

/ ( J ) = (st I 1 G / ) . 

Thus fis surjective. 
Now fis a bijection, and we may desc r ibe / - according to the rule 

f~\s) = <§>., 

for any s = (sz | i G / ) in I I deS(Gi9 ut). Consider a convergent net sk —» 5 
in IT deS(Gi9 ut). For each i G /, we have st —•> sz, so that 

sz(xz) ~^ ^(X) f° r aU -X/ G ^7-

Given any pure tensor x = ®xf in G, there is a finite subset J Q I such 
that xz = My for all i Œ I — J. Hence, 

f~\sk)(x) = I I sf(Xj) -> I T *,•(*,•) =f~l(s)(x). 

As every element of G is a finite sum of pure tensors, we conclude that 

f-\sk)(y)^f-\s)(y) 

for all y G G, whence 

/-V)->/"'(*). 
Therefore / ~ is continuous, and so fis a homeomorphism. 
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5. Pseudo-rank functions. Here we apply the results of the previous 
sections to the problem of realizing C(X, R) as K0(R), where X is 
a compact Hausdorff space and R is a unit-regular algebra. As a 
consequence, the probability measure simplex Mx (X) is realized as the 
simplex P(R) of pseudo-rank functions on R. When X is a direct product 
of compact metric spaces, we show that in fact Mx (X) can be obtained 
as P(R) for R a central simple locally matricial algebra. 

For the concept of pseudo-rank functions on a regular ring R, see [9]. 
We use P(R) to denote the set of all pseudo-rank functions on R. The set 
P(R) is viewed as a subset of the real vector space R of all real-valued 
functions on R, and R^ is assumed to have the product topology. Then 
P(R) is a compact convex subset of RR [6, pp. 270, 273; 9, Proposition 
16.17], and P(R) is a Choquet simplex [7, Corollary 3.6; 9, Theorem 
17.5]. In addition, P(R) is affinely homeomorphic to the state space of 
(K0(R), [R] ) [9, Proposition 17.12]. 

Definition. Given a compact Hausdorff space X, we use Mx (X) to de
note the set of all probability measures on X. 

By means of the Riesz Representation Theorem, Mx (X) is identified 
with a subset of the dual of the real Banach space C(X, R), and we assume 
that M+(X) has the weak* topology from C(X, R)* Then M^(X) is a 
Choquet simplex, and deMx (X) is homeomorphic to X [1, Corollary 
II.4.2]. Conversely, if K is any Choquet simplex for which deK is compact, 
then K is affinely homeomorphic to Mx (deK) [1, Corollary II.4.2]. Note 
that M,+ (X) is the state space of (C(X, R), 1). 

THEOREM 5.1. Let F be afield, and let X be any nonempty direct product 
of compact metric spaces. Then there exists a central simple locally matricial 
F-algebra R such that P(R) is affinely homeomorphic to Mx (X). 

Proof. There is a nonempty family {X^ | / e 7} of compact metric spaces 
such that 

x = n xr 

For each i e 7, there exists a simple ultramatricial F-algebra R( such that 
P(Rj) is affinely homeomorphic to M^(Xt) [8, Corollary 5.2; 9, Corollary 
17.24]. (Alternatively, use Lemma 1.4 and the separability of C(Xh R) to 
choose a dense countable subgroup Gl of C(Xt, R) such that 1 G G, and Gf 

is a dimension group, and apply Theorem 1.1 to (G,, 1).) Thus deP(Rj) is 
homeomorphic to Xt. 

We claim that the center of Rt is F. Any central element x G Rt is in the 
center of some matricial subalgebra of Rt. Hence, x is algebraic over F and 
its minimal polynomial is a product of linear terms. Since R} is simple, x 
must be scalar. 
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Set 

R = ®R:. 

Since each i?z is a central simple locally matricial F-algebra, so is R. 
Now 

(K0(R),[R]) = ^(MR,),^,}) 

by Proposition 3.4, and so 

deP(R) « deS(K0(Rl [R] ) « I I 3 * S ( J W ) , [*,-'] ) 

« n 3,p(̂ z) « n :̂ = * 

(where « denotes homeomorphism), because of Corollary 4.6. As P(R) is 
a Choquet simplex, we conclude from [1, Corollary II.4.2] that P(R) 
is affinely homeomorphic to Mx (X). 

Definition. Let Rbe a, regular ring such that P(R) is nonempty. For all 
x G: R, define 

N*(x) = sup{iV(.x) | TV e P(R) }. 

The rule d(x, y) = N*(x — y) then defines a pseudo-metric d on R [11, 
Lemma 1.2], known as the N*-metric. If d is actually a metric, and if R is 
complete with respect to d, then R is said to be N*'-complete. In general, 
the N*-completion of 7? is the (Hausdorff) completion of R with respect to 
d. As observed in [15, Proposition 14], the TV*-completion of R is a regular 
ring; moreover, the TV*-completion of R is TV*-complete (with respect to its 
own TV*-metric) by [2, Corollary 1.14]. 

In [2, p. 246], it is shown that the partially ordered Banach space of 
affine continuous real-valued functions on an arbitrary metrizable 
Choquet simplex can be realized as K0(R) for R an TV*-complete 
unit-regular ring. Hence, any metrizable Choquet simplex appears as P(R) 
for such an R. We remove the metrizability assumption for Choquet 
simplices of the form M] (X). 

THEOREM 5.2. Let F be a field, and let X be any nonempty compact 
Hausdorff space. Then there exists an TV*-complete unit-regular F-algebra R 
such that 

(K0(R),[R]) = (C(X,R),l) 

and hence such that P(R) is affinely homeomorphic to Mx (X). 
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Proof. Any compact Hausdorff space is homeomorphic to a subspace of 
a direct product of copies of the unit interval. Hence, we may assume that 
X is a subspace of some nonempty direct product Y of copies of [0, 1]. By 
Theorem 5.1, there exists a locally matricial F-algebra R0 such that P(Z?0) 
is affinely homeomorphic to Mx (Y). 

Let R] be the direct limit of the system 

< J P 0 <jp, < J P 2 

R0 -» M2(R0) -» M4(R0) -* M,(R0) -> . . . 

of matrix algebras, where each <p„ is the block diagonal map. In view of 
[9, Proposition 16.20], each of the induced maps 

P(«P„) : P(Mr+iR0) ) -» P(Mr(R0) ) 

is an affine homeomorphism. Since P( — ) converts direct limits to inverse 
limits [9, Proposition 16.21], we see that P(Ri) is affinely homeomorphic 
to P(Z?0). Thus P ^ i ) is affinely homeomorphic to M^(Y). 

Since we may replace R{ by i^1/ker(P(i^1) ), there is no loss of generality 
in assuming that the kernel of P(R\) is zero. (In the terminology of [2], R} 

is Af*-torsion-free.) In addition, R} is a locally matricial F-algebra, whence 
R\ is unit-regular and K0(R^) *s a dimension group. 

Now let R2 be the N*-completion of Rv By [2, Theorem 1.13], R2 is 
unit-regular, and the restriction map P(R2) ~~* P(^i) *s an affine 
homeomorphism. Thus P(R2) is affinely homeomorphic to M^(Y), and 
so 9eP(7?2) is homeomorphic to Y. In addition, R2 is TV*-complete [2, 
Corollary 1.14]. 

For each n e N, there is a set of 2n X 2n matrix units in R]9 and hence 
there is a set of 2n X 2n matrix units in every homomorphic image of R2. 
Consequently, R2 has no simple artinian homomorphic images. Thus 

(K0(R2l [R2] ) = (Aff(P(*2)), 1), 

by [11, Corollary 4.12], where Aff(P(R2)) denotes the partially ordered 
real Banach space of all affine continuous real-valued functions on P(^2) . 
Since 3eP(,R2) is homeomorphic to Y and so is compact, the restriction 
map 

Aff(P(«2) ) - C(deP(R2), R) 

is an isomorphism, by [1, Proposition II.3.13]. Hence, there exists an 
isomorphism 

f:(KÇ)(R2),[R2])-^(C(Y,R), 1). 

Let H be the ideal of C(Y, R) consisting of all functions in C(Y, R) that 
vanish on X. T h e n / - ' ( 7 / ) is an ideal of K0(R2). Set 

J = {x e R2\[xR2] <=f-\H)}. 
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According to [9, Lemma 15.19], / is a two-sided ideal of R2, a n d / " (H) is 
generated (as a subgroup of K0(R2) ) by the set { [yR2] \ y e J}. 

Set R = R2IJ, and note that R is a unit-regular F-algebra. By [16, 
Proposition 7; 9, Proposition 15.15], the quotient map R2-> R induces an 
isomorphism 

{KQ{R2)/r\H% [R2] + f~\H) ) -> (tf0(*), [*] )• 

Therefore 

(K0(Rl [R] ) = (C(7, R)/ / / , 1 + H) = (C(X, R), 1). 

Now S(K0(R), [R]) and S(C(^> R), 1) are affinely homeomorphic, and 
consequently P(R) and Mj+ (X) are affinely homeomorphic. 

Since evaluations at points of X are states on (C(X, R), 1), there are 
enough states on (C(Xy R), 1) to separate points of C(X, R). Hence, there 
are enough states on (K0(R), [R]) to separate points of K0(R). In 
particular, for any nonzero element x e R, there is a state s on 
(K0(R), [R]) such that s ( [xR]) > 0, and so there is a pseudo-rank 
function N <= P(R) such that N(x) > 0. Thus ker(P(#) ) is zero. 
Equivalently, / equals the kernel of a subset of P(i^2)- Therefore R is 
7V*-complete, by [11, Theorem 1.13]. 

The referee has asked whether Theorem 5.1 extends to Choquet 
simplices which are products of metrizable Choquet simplices in any 
suitable sense, and whether Theorem 5.2 extends to Choquet simplices 
which are affinely homeomorphic to closed faces of suitable products of 
metrizable Choquet simplices. Cartesian products are not suitable, since a 
Cartesian product of Choquet simplices is not a Choquet simplex unless 
all but one of the factors is a singleton. We may define the tensor product 
of a family {Ki \ i G / } of compact convex sets to be the state space of 

<§>7(Aff(/g, i). 

(There are alternative choices for a tensor product of compact convex sets, 
but for Choquet simplices they coincide with the definition just given 
[20, Theorem 2.2 and Corollary 2.6].) Theorem 5.1 could be extended to 
show that any tensor product of metrizable Choquet simplices is affinely 
homeomorphic to P(R) for some central simple locally matricial F-algebra 
R. Similarly, Theorem 5.2 could be extended to show that for any closed 
face K of a tensor product of metrizable Choquet simplices, there is an 
TV*-complete unit-regular F-algebra R for which 

(K0(R),[R]) = (AÎÎ(K), 1) 

and P(R) is affinely homeomorphic to K. We have not developed 
Theorems 5.1 and 5.2 in this generality because there are no known 
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characterizations either of tensor products of metrizable Choquet 
simplices or of closed faces of such tensor products. In particular, we do 
not know whether every Choquet simplex is affinely homeomorphic to a 
closed face of a tensor product of metrizable Choquet simplices. 
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