THE MAXIMAL p-EXTENSION OF A LOCAL FIELD

MURRAY A. MARSHALL

1. Let k denote a local field, that is, a complete discrete-valued field with perfect residue class field \bar{k}. Let G denote the Galois group of the maximal separable algebraic extension M of k, and let g denote the corresponding object over \bar{k}. For a given prime integer p, let $G(p)$ denote the Galois group of the maximal p-extension of k. The dimensions of the cohomology groups

$$H^q(G(p), \mathbb{Z}/p\mathbb{Z}), \quad q = 1, 2,$$

considered as vector spaces over the prime field $\mathbb{Z}/p\mathbb{Z}$, are equal, respectively, to the rank and the relation rank of the pro-p-group $G(p)$; see [4; 9]. These dimensions are well known in many cases, especially when k is finite [6; 3; (Hoechsmann) 2, pp. 297–304], but also when k has characteristic p, or when k contains a primitive pth root of unity [4, p. 205].

Our aim in this article is to indicate a uniform method for computing $H^q(G, \mathbb{Z}/p\mathbb{Z}), \quad q = 1, 2$, which applies whenever g has cohomological p-dimension less than two. Moreover, it is shown that if k has at least one totally ramified cyclic p-extension, then $H^2(G(p), \mathbb{Z}/p\mathbb{Z}) \cong H^2(G, \mathbb{Z}/p\mathbb{Z})$. (The corresponding result in dimension one is trivial.)

With these goals in mind, the following additional notation is introduced. For the prime p considered above, let S denote the group of pth roots of unity in T, where T denotes the maximal unramified extension of k. Further, let H denote the kernel of the natural homomorphism of G onto g. (Thus H is the Galois group of M over T.) If v denotes the valuation on M normalized to k, then define $e = v(p)$, and $s = ep(p - 1)$. (e satisfies $0 \leq e \leq \infty$, and in the case that $e = \infty$, we understand that s is also ∞.) If K is any pro-finite group, then $\mathbb{Z}/p\mathbb{Z}$ is a K-module under the trivial action, and the cohomology groups $H^q(K, \mathbb{Z}/p\mathbb{Z}), \quad q \geq 0$, will be denoted simply by $H^q(K)$.

Let h denote the Galois group of the maximal elementary p-extension of T. Let $h^x, x \in R$, denote the ramification subgroups of h. (See [1, pp. 119–120], for the definition of ramification for infinite extensions.) By the theorem of Hasse and Arf [7, p. 84], the jumps of the filtration $\{h^x : x \in R\}$ are integers, and so the filtration has the form

$$(1) \quad h = h^1 \supseteq h^2 \supseteq h^3 \supseteq \ldots.$$

Taking the completion of T, we may assume, without loss of generality, that T
is complete under ν; then the structure of the filtration (1) is given by local class field theory [8]. We have

(2)
(a) $h^n = h^{n+1}$ if $0 < n < s$, and $p \mid n$;
(b) $h^s \cong S$ canonically;
(c) $H^1(h^n/h^{n+1}) \cong T$, if $0 < n < s$, $p \nmid n$.

It should be noted that these mappings may be given explicitly as follows.

In the non-trivial case, $\text{ord}(\alpha) = \text{ord}(\sigma) = 1$, the isomorphism $h^s \to S$ is given by $\sigma \to \sigma(\pi)^{1/p}/(\pi)^{1/p}$, where π is a prime of T (see [8, § 4.3]). This mapping is independent of the choice of π.

The isomorphism $\bar{T} \to H^1(h^n/h^{n+1})$ is given as follows. Let $\bar{u} \neq 0$, $\bar{u} \in \bar{T}$. Let $\gamma = 1 + u\pi^{-n}$, where π is a fixed prime of T. Choose $x \in M$ to satisfy $x^n - x = \gamma$, and let $L = T(x)$. Then L/T is cyclic of degree p with a single jump n, and if $\sigma \in h^n$, then $\sigma x - x$ is an integer of L, and its image in the residue class field $\bar{L} = \bar{T}$ is actually in the prime field $\mathbb{Z}/p\mathbb{Z}$. Define

$$
\chi: h^n/h^{n+1} \to \mathbb{Z}/p\mathbb{Z} \text{ by } \chi(\bar{\sigma}) = \overline{\sigma x - x}.
$$

Then $\bar{u} \to \chi$ is the required isomorphism (see [8, § 4.4]).

Since $g = G(T/k) = G(\bar{T}/k)$, T and \bar{T} are naturally g-modules. Clearly S is a g-submodule of T; the action of g on S being trivial if and only if $S \subseteq k$. g also acts on the groups h^n/h^{n+1} and h^s by inner automorphism. In this way, $H^1(h^n/h^{n+1}) = \text{Hom}(h^n/h^{n+1}, \mathbb{Z}/p\mathbb{Z})$ becomes a g-module in the standard way. We note the following important fact. If π is chosen to be a prime in k, then the isomorphisms of (2) are g-module isomorphisms.

Theorem 1. Suppose that $cd_p(g) \leq 1$. Then

(a) $H^1(G) \cong H^1(g) \oplus (\bigoplus_{i=1}^r \bar{k}_i) \oplus H^1(S')$, and

(b) $H^2(G) \cong H^2(g, H^1(S))$ canonically.

(Here \bar{k}_i denotes a copy of the additive group \bar{k}.)

Proof. One notes readily that there are e integers n satisfying $0 < n < s$, $p \nmid n$. If n is any such integer, then by (2)(c) we have the exact sequence of g-modules:

$$
0 \to \bar{T} \to H^1(h^n) \to H^1(h^{n+1}) \to 0.
$$

Applying the cohomology sequence together with the well-known fact that $H^q(g, \bar{T}) = 0$ for all $q \geq 1$, we obtain the following sequences:

(3) $$
0 \to \bar{k} \to H^1(h^n)^e \to H^1(h^{n+1})^e \to 0,
$$

(4) $$
0 \to H^1(g, H^1(h^n)) \to H^1(g, H^1(h^{n+1})) \to 0.
$$

The sequence (3) splits, since the groups are elementary p-groups. Thus, combining (2) and (3) we obtain

$$
H^1(h^n)^e \cong \bigoplus_{i=1}^r \bar{k}_i \oplus H^1(S)^e.
$$
On the other hand, combination of (2) and (4) yields

\[H^1(g, H^1(h)) \cong H^1(g, H^1(h^*)) \cong H^1(g, H^1(S)). \]

The exact sequence

\[0 \rightarrow H \rightarrow G \rightarrow g \rightarrow 0 \]

yields the 5-term exact sequence

\[0 \rightarrow H^1(g) \rightarrow H^1(G) \rightarrow H^1(h) \rightarrow H^2(g) \rightarrow H^2(G) \]

(see [4 or 9]). Since \(cd_p(g) \leq 1 \), we have \(H^2(g) = 0 \); thus (7) yields

\[H^1(G) \cong H^1(g) \oplus H^1(H). \]

Since \(H^1(H) = H^1(h) \) and \(H^1(S)^p = H^1(S^p) \), combining (5) and (8) we obtain (a).

To prove (b), recall that the Brauer group is trivial over finite extensions of \(T \); see [7]. By the results in [4, pp. 203–206], this yields \(cd_p(H) \leq 1 \). Thus, by the theory of spectral sequences [4, p. 208], we have

\[H^2(G) \cong H^1(g, H^1(H)). \]

Combining (6) and (9), we obtain (b).

In view of the introductory remarks, we really wish to compute \(H^q(G(p)) \), \(q = 1, 2 \), rather than \(H^q(G) \). Of course, \(H^q(G(p)) = H^q(G) \) when \(q = 1 \). The following lemma prepares the way for a corresponding result in the case \(q = 2 \).

Lemma. Suppose that \(k \) is a local field and that \(G \) and \(g \) are defined as above, \(i = 1, 2 \). Further, suppose that \(k_2/k_1 \) is cyclic totally ramified of degree \(p \), and that \(cd_p(g_i) \leq 1 \), \(i = 1, 2 \). Then the natural restriction homomorphism

\[\text{Res}: H^2(G_1) \rightarrow H^2(G_2) \]

is trivial.

Proof. We have

\[H^2(G_i) \cong H^1(g_i, H^1(H_i)) \cong H^1(g_i, H^1(h_i)), \quad i = 1, 2. \]

Let \(\pi_i \) denote a prime of \(k_i, i = 1, 2 \). Then by the hypothesis, \(\pi_1 = u\pi_2^p \), where \(u \) is a unit of \(k_2 \). Let \(L = T_1((\pi_1)^{1/p}) \). Then \(LT_2 = T_2((u)^{1/p}) \), and so the jump of \(LT_2/T_2 \) is less than \(s_2 = e_2p/(p - 1) \) [10, p. 143]. Thus, the natural mapping \(h_2 \rightarrow h_1 \) factors through \(h_2/S \); and so, in turn, the natural mapping

\[\text{Res}: H^1(g_1, H^1(h_1)) \rightarrow H^1(g_2, H^1(h_2)) \]

factors through \(H^1(g_2, H^1(h_2/S)) = 0 \).

Theorem 2. Assume that \(cd_p(g) \leq 1 \). If \(k \) has no totally ramified cyclic \(p \)-extensions, then \(H^2(G(p)) = 0 \). Otherwise,

\[H^2(G(p)) \cong H^2(G) \]

canonically.
Proof. The condition that \(k \) has no totally ramified cyclic \(p \)-extensions is clearly equivalent to the equality \(G(p) = g(p) \), and the result comes immediately from the assumption that \(cd_p(g) \leq 1 \); see \([4, p. 201]\).

To prove the second assertion, let \(K \) denote the kernel of the natural homomorphism of \(G \) onto \(G(p) \). Since \(G(p) \) is the maximal \(p \)-factor group of \(G \), we have \(H^1(K) = 0 \), and so we obtain the exact sequence
\[
0 \to H^2(G(p)) \to H^2(G) \to H^2(K).
\]
But by the lemma, this restriction is trivial. This completes the proof.

2. Applications. The most interesting prime is \(p = \text{char}(\bar{k}) \). In this case, \(cd_p(g) \leq 1 \), and so Theorems 1 and 2 apply. Theorem 1 yields the rank formula:
\[
\text{rank } G(p) = \text{rank } g(p) + ef + \text{rank } S^0,
\]
where \(f \) denotes the dimension of \(\bar{k} \) as a vector space over \(\mathbb{Z}/p\mathbb{Z} \). The results concerning the relation rank may be interpreted in several cases.

(1) The condition that \(S = 1 \) is equivalent to the condition that \(s = ep/(p - 1) \) is not an integer (i.e. it is a rational number or infinity); see \([9, p. 114]\). In this case \(G(p) \) is a free pro-\(p \)-group.

(2) Suppose that \(S^0 \neq 1 \). Thus \(g \) operates trivially on \(S = S^0 \), and hence
\[
H^2(G(p)) \cong H^1(g, H^1(S)) \cong H^1(g) \cong \bar{k}/\mathcal{P}(\bar{k}),
\]
where \(\mathcal{P}(x) = x^p - x \). Thus \(G(p) \) is a free pro-\(p \)-group if and only if \(\bar{k} \) has no cyclic \(p \)-extensions. This result may also be derived in a more direct manner using Kummer theory; see Hoechsmann \([2, pp. 297-304]\).

(3) Suppose that \(S \neq 1, S^0 = 1 \). Let \(k_1 = k(S) \), let \((\tau) = G(k_1|k) \), and suppose that \(i \in \mathbb{Z}/p\mathbb{Z} \) is defined by \(\omega^i = \omega^j \) for \(\omega \in S \). Then
\[
H^2(G(p)) \cong H^1(g, H^1(S)) \cong H^1(G(T|k_1), \quad H^1(S))^{(\tau)}
\]
\[
\cong H^1(G(T|k_1))^{(\tau)} \cong (k_1/\mathcal{P}(k_1))^{(\tau)},
\]
where \(A^{(\tau)} = \{ a \in A : a^\tau = a \} \). Thus, \(H^2(G(p)) \) corresponds to a certain class of non-Galois extensions of degree \(p \) over \(\bar{k} \). In particular, \(G(p) \) will be free if \(\bar{k} \) has only abelian \(p \)-extensions, as in the quasi-finite case.

Let \(p = \text{char}(\bar{k}) \), and let \(A \) denote the Galois group of the maximal abelian extension of \(k \). Clearly \(A(p) \) is a free abelian pro-\(p \)-group if \(cd_p(G(p)) \leq 1 \). The converse may also be shown, and in this case, the topological group \(A \), together with its ramification subgroups
\[
A \supseteq A^0 \supseteq A^1 \supseteq A^2 \supseteq \ldots \supseteq A^n \supseteq A^{n+1} \supseteq \ldots ,
\]
is completely characterized as a topological filtered group; see \([5, pp. 142-143]\).

References

University of Saskatchewan,

Saskatoon, Saskatchewan