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This work introduces a mathematical approach to analysing the polymer dynamics
in turbulent viscoelastic flows that uses a new geometric decomposition of the
conformation tensor, along with associated scalar measures of the polymer fluctuations.
The approach circumvents an inherent difficulty in traditional Reynolds decompositions
of the conformation tensor: the fluctuating tensor fields are not positive definite and
so do not retain the physical meaning of the tensor. The geometric decomposition
of the conformation tensor yields both mean and fluctuating tensor fields that are
positive definite. The fluctuating tensor in the present decomposition has a clear
physical interpretation as a polymer deformation relative to the mean configuration.
Scalar measures of this fluctuating conformation tensor are developed based on
the non-Euclidean geometry of the set of positive definite tensors. Drag-reduced
viscoelastic turbulent channel flow is then used an example case study. The
conformation tensor field, obtained using direct numerical simulations, is analysed
using the proposed framework.
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1. Introduction

In the present study, we address the following questions that arise in the context
of viscoelastic turbulent flows. (i) Given a turbulent flow whose dynamics is partially
governed by state variables that are positive definite tensors representing material
deformation, what is an appropriate method to decompose the flow into a mean,
or nominal, component and a deviation about that mean that preserves the physical
character of the state variables? (ii) Are there corresponding scalar measures of the
turbulence associated with these positive definite state variables? The conformation
tensor is the relevant positive definite state variable in viscoelastic turbulence.

Dilute polymer solutions, viscoelastic flows obtained by adding small amounts of
polymers to an incompressible Newtonian solvent, are the focus of the present work.
The added polymers impart elasticity to the solvent which then causes the fluid to
react not only to the deformation rate but also to the deformation history. As a result,
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a complete physical description of viscoelastic turbulence requires characterization
of both the velocity, u, and the conformation tensor, C, which together form the
state variables. The conformation tensor is a second-order positive definite tensor
that encapsulates the polymer deformation history and is obtained by averaging, over
molecular realizations, the dyad formed by the polymer end-to-end vector (Bird,
Armstrong & Hassager 1987).

The conformation tensor affects the velocity field through the polymer stress,
T = T (C), while gradients in the velocity field are responsible for polymer stretching.
Characterizing the mean polymer stress, or stress deficit, was the focus of early
work because it was found to be necessary for closing the mean momentum balance
(Willmarth, Wei & Lee 1987). A non-vanishing stress deficit suggests the possibility
of maintaining a turbulent velocity profile in the absence of Reynolds stresses, in
which case the polymer dynamics would sustain turbulence. The experiments of
Warholic, Massah & Hanratty (1999) showed that a turbulent mean profile can,
indeed, be maintained in the near absence of Reynolds stresses in channel flow.
However, the polymer deformation itself is not readily accessible experimentally.
Therefore, much of the work in understanding the mechanisms that lead to behaviour
such as that found by Warholic et al. (1999) has resorted to analytical treatments or
direct numerical simulations (DNS), which we will briefly review below.

1.1. Previous approaches to quantifying polymer deformation and its effects
The main approach to analysing the polymer dynamics has been to utilize the statistics
of the polymer forces and torques, or the normal stresses. The polymer force is the
divergence of the polymer stress and the polymer torque is the curl of the polymer
force. For example, de Angelis, Casciola & Piva (2002) and Dubief et al. (2005)
showed that the cross-stream polymer force in turbulent channel flow counteracts
spanwise variations in the velocity while enhancing streamwise advection, consistent
with drag-reducing behaviour. The polymer torque acts in lockstep with the polymer
force and counteracts streamwise vortices. It also inhibits generation of the heads
of hairpin vortices (Kim et al. 2007; Kim & Sureshkumar 2013). Recent theoretical
work proposed a vorticity–polymer torque formulation of the linearized governing
equations and used it to reveal a reverse Orr mechanism for turbulence production
in viscoelastic parallel shear flows (Page & Zaki 2014, 2015). Min, Choi & Yoo
(2003a), Min et al. (2003b), on the other hand, studied viscoelastic turbulent channel
flow but used the elastic energy, defined there as proportional to the sum of the
normal polymer stresses, to posit a theory of drag reduction that relied on an active
exchange of elastic and kinetic energies in the flow.

A more appropriate quantity to probe the polymer deformation itself, and one that
is also a state variable, is the conformation tensor C. The trace of C, denoted here
as tr C, is commonly used in the literature to analyse C since it is equal to the sum
of its principal stretches and is therefore a measure of the polymer deformation. For
example, Sureshkumar, Beris & Handler (1997) considered first-order statistics of
tr C in their pioneering paper on the DNS of viscoelastic turbulent channel flows.
The quantity tr C is frequently used because it is proportional to the elastic energy
in purely Hookean constitutive models of the polymers (Beris & Edwards 1994;
Min et al. 2003b). However, it is often not a sufficiently complete descriptor of
the polymer deformation; even if tr C is held constant, the polymer may undergo a
volumetric deformation.

Housiadas & Beris (2003) evaluated tr C for a wide range of flow parameters
in a viscoelastic turbulent channel flow and found a surprising result for certain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.118
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parameter ranges: the mean of tr C can increase with increasing elasticity without
a commensurate effect on the mean velocity profile. A similar trend was also
reported by Xi & Graham (2010) in minimal flow unit simulations. This trend
is not inconsistent with the mean momentum balance as the mean of tr C in turbulent
channel flows can increase without effecting the mean velocity profile. This behaviour
arises because the (mean) stress deficit is not a function of any of the normal
components of C. The normal components of C do affect the mean momentum
balance through the dynamical coupling between the different components of C, but
this relationship cannot be captured by tr C. The situation described above highlights
the importance of simultaneously considering all of the components of C in order
to arrive at a complete picture of the polymer deformation and its effect on the
velocity field. Additionally, mean quantities such as those used by Housiadas &
Beris (2003) and others are in themselves insufficient descriptors of the fluctuating
polymer deformation; higher-order statistical quantities associated with C are required
to describe the fluctuations and their deviation away from the mean.

The fluctuating conformation tensor, C ′, and its various moments provide one
method to obtain pertinent higher-order statistical descriptions of the full conformation
tensor, C (see also Lee & Zaki 2017). The tensor C ′ is obtained by subtracting the
mean conformation tensor from C, in analogy with the Reynolds decomposition of u.
However, this fluctuating tensor is not guaranteed to be physically realizable; at least
one realization of C ′ implies negative material deformation since it is guaranteed to
lose positive-definiteness (tr C ′ must be 6 0 for at least one sample pulled from a
statistical ensemble). Furthermore, it is not clear which scalar functions of C ′ provide
mathematically consistent measures of the turbulence intensity associated with C.

Although C ′ is not a physical conformation tensor, it can still be used for modelling
Reynolds-averaged quantities in turbulence that do not necessarily require physically
realizable fluctuating quantities. Indeed, it has been used with varying degrees of
success in recent work to develop turbulence models (Li et al. 2006; Iaccarino,
Shaqfeh & Dubief 2010; Resende et al. 2011; Masoudian et al. 2013) and to
quantify subgrid stress contributions in large-eddy simulations (LES) (Masoudian,
da Silva & Pinho 2016). However, characterizing the polymer fluctuations using
physically meaningful quantities is advantageous in that physical interpretations aid
in modelling and provide a greater understanding of mechanism.

A physically motivated description of the velocity and conformation tensor field
can be obtained using Karhunen–Loève or proper orthogonal decomposition (POD), as
recently shown by Wang et al. (2014). A POD is a global decomposition of a field
quantity that yields an orthonormal basis that is optimally ordered in the sense of
the best representation of the Euclidean norm (see Lumley 1970, for more details).
For the velocity field this norm is the square-root of the kinetic energy but in a
straightforward POD of the conformation tensor field the norm is not directly related
to the elastic energy. Wang et al. (2014) showed that a POD of the square-root of
C instead ensures best representation in terms of the elastic energy. Their approach
crucially assumed that tr C is proportional to the elastic energy. When this assumption
is satisfied, their approach provides a valuable tool to extract the spatial structure of
the dominant energetic components of viscoelastic turbulence. One can also use the
individual modes to construct positive definite tensors that represent modal polymer
deformation, since the POD basis is orthogonal with respect to a Frobenius inner
product integrated over the spatial domain. However, these tensors cannot be used to
construct a local decomposition of the conformation tensor into mean and fluctuating
components because the sum of squares is not equal to the square of the sum: the
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cross-contributions of the tensors only vanish when we take the trace and integrate
over the spatial domain. Reynolds decomposing the square-root of the conformation
tensor is a local approach in which the cross-contribution similarly does not vanish
instantaneously.

In the following subsection, we outline a local decomposition the conformation
tensor into mean and fluctuating components, which overcomes the previously
described difficulties with earlier approaches and which is one of the contributions of
the present work. Another contribution is the development of scalar measures of the
fluctuating component that depend on the Riemannian geometric structure of the set
of positive definite tensors. Although the results we invoke for the latter contribution
are well established and broadly applicable, they have not yet been widely used in
fluid mechanics.

1.2. The present approach: motivation and summary of the framework
In the present work, we develop a formalism that allows us to evaluate the
instantaneous deviation of the polymer deformation away from mean which respects
the mathematical structure, and physical interpretation, of C. Such a deviation yields
an associated conformation tensor that can be used in analysis and modelling, e.g.
the approach of Wang et al. (2014) can be adapted to the analysis of this new
conformation tensor. We also develop scalar measures of the turbulence intensity in
the polymer deformation that reflect the distance, in the mathematically precise sense
of a distance metric on a manifold, of the instantaneous deviation away from the
mean.

In order to motivate our proposed formalism, we consider the following analogue
encountered in the study of the stretching of material lines in turbulence (Batchelor
1952). In this case, the normalized squared length of a material line, `2(t) > 0, serves
as the scalar analogue of C. Since material lines cannot vanish, `2

6= 0. Let us assume
that a statistically stationary state is possible and that 〈`2

〉 is then the expected value of
the squared length of a material line. A Reynolds decomposition of `2

= 〈`2
〉 + (`2)′

yields a fluctuation (`2)′(t) that is not always positive, which implies a negative
normalized squared length. One may, for the sake of argument, side-step the physical
ambiguity implied by the negative squared length by considering only |(`2)′| but this
does not solve the problem of asymmetry of |(`2)′| with respect to the direction of
the stretching: when `2/〈`2

〉 ∈ (1,∞), the material line is expanded with respect to
〈`2
〉 and when `2/〈`2

〉 ∈ (0, 1) it is compressed, which means that similarly probable
states (expansion and contraction) would be described by fluctuations with very
different magnitudes. A meaningful way to study the fluctuations in `2 is by instead
considering log(`2/〈`2

〉). Our goal is to generalize this latter type of construction to
the conformation tensor, where one must take into account the tensorial nature of C
which encodes directional information not included in a scalar such as `2.

Following the scalar case described above, one approach to evaluating fluctuations
in C is to use log C, in lieu of C, where log here refers to the matrix logarithm.
This approach is appealing because the logarithm of a positive definite matrix is
a symmetric matrix and the set of symmetric matrices form a vector space, which
therefore allows for a Reynolds decomposition analogous to that of u, i.e.

log C = 〈log C〉 + (log C)′, (1.1)

where 〈log C〉 is the expected value of log C. To the authors’ best knowledge, such a
decomposition has not been previously used to characterize fluctuations in C. However,
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log C itself has been an object of some interest in the viscoelastic literature. Fattal
& Kupferman (2004) introduced an approach for simulating viscoelastic flows that
relied on evolving log C instead of C. Fattal & Kupferman (2004) and Hulsen, Fattal
& Kupferman (2005) then provided closed-form evolution equations for log C which
explicitly depended on both log C as well as its spectral decomposition. Recently,
Knechtges, Behr & Elgeti (2014) and Knechtges (2015) eliminated the explicit
dependence on the spectral decomposition but at the expense of either imposing
restrictions on the spectral radius of C or introducing Dunford–Taylor-type integrals
into the equations.

At least two additional difficulties arise in using log C. The first is that the expected
value of C is not equal to e〈log C〉. This fact implies that evaluating the effect of the
polymer stress on the mean momentum balance requires all statistical moments of
log C, even when the polymer stress is a linear function of C. The second difficulty
is that, in general, e〈log C〉+(log C)′

6= e〈log C〉 · e(log C)′ which means that there is no way
to associate (log C)′ with a conformation tensor or a physical polymer deformation. It
also means that there is no clear way to separate the effect of 〈log C〉 in the fluctuating
momentum balance.

In this paper, we derive a new conformation tensor, G, from a physical decomposi-
tion of the polymer deformation. Instead of the traditional additive decomposition

C = C + C ′, (1.2)

the proposed geometric decomposition of C is given by

C = F ·G · F
T
, (1.3)

where F is a deformation gradient tensor that can be calculated directly from a base-
flow conformation tensor, C, such that F · F

T
= C (this choice will be justified in

§ 3 below). This conformation tensor G is analogous to the scalar fluctuating quantity,
`2/〈`2

〉.
The tensor G represents turbulent deviations from the mean conformation tensor and

can be analysed by resorting to the curved, Riemannian geometry of the manifold of
positive definite tensors. Interestingly, the first two moment invariants of the tensorial
equivalent of log(`2/〈`2

〉), i.e. log G, then appear as the relevant scalar measures
for the fluctuations in G. The first moment invariant is the logarithm of the ratio
of the volume of C to the volume of C, where the volume of the conformation
tensor refers to its determinant. The latter is proportional to the squared volume of
the ellipsoid representing the coarse-grained polymer (Truesdell & Noll 2004). The
determinant also corresponds to the sphericity or conformational probability of the
molecular structure (Beris & Edwards 1994). The second moment invariant is the
metric distance of G away from I on the manifold of second-order positive definite
tensors. Finally, we also propose a measure of the anisotropy of C relative to the
mean, based on the work of Moakher & Batchelor (2006). This measure is equal to
the metric distance of G to the closest isotropic tensor.

Finally, we use the proposed framework and direct numerical simulations to gain
insight into the dynamics of viscoelastic (FENE-P) turbulent channel flow. Such flows
are known to exhibit greatly reduced drag relative to an equivalent Newtonian flow,
up to 60 % or more reduction in some cases (Toms 1948; White & Mungal 2008).
For such turbulent flows, separating the mean and fluctuating components of the
conformation tensor in a physically consistent manner is an important step towards
developing a quantitative understanding of the dynamics and isolating the relevant
mechanisms at play.
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The rest of the paper is organized as follows. The governing equations used in
viscoelastic flows are reviewed in § 2. Section 3 presents the geometric decomposition
of the conformation tensor, the associated evolution equations and the relation between
the decomposition and the elastic energy. A review of a geometry constructed
specifically for the set of positive definite tensors along with scalar measures of the
polymer deformation based on this geometry and associated evolution equations are
presented in § 4. In § 5, we present an example case study of viscoelastic turbulent
channel flow to illustrate the concepts developed in the paper.

2. Governing equations
The non-dimensional governing equations for the velocity, u, and conformation

tensor, C, in a viscoelastic flow are

∇ · u= 0, (2.1)
Du
Dt
+∇p−

β

Re
1u−

1− β
Re
∇ · T = 0, (2.2)

DC

Dt
− 2 sym(C · ∇u)+ T = 0, (2.3)

where D(·)/Dt= ∂t(·)+ uk∂k(·) is the convective derivative, sym(A)= (1/2)(A+AT) is
the symmetric part of a second-order tensor A, p is the pressure, Re is the Reynolds
number, β ∈ [0, 1] is the viscosity ratio and the polymer stress, T , is a function of
the conformation tensor, C. The left-hand side of (2.3) is equal to the upper-convected
Maxwell derivative, or the Lie derivative with respect to u, of C. Although we restrict
our focus to the upper-convected Maxwell derivative, it can be replaced in (2.3) with
any other co-rotational derivative, or objective rate.

The functional form of T (C) depends on the particular constitutive model and
strain measure used. Although we will not use a particular model in the theoretical
development that will follow, we note for completeness that in the absence of inherent
directionality in the polymers, T is an isotropic function of C defined locally at each
(x, t). Therefore, by the representation theorem (Truesdell & Noll 2004) we have

T (C)=
1

Wi
[µ0(IC, IIC, IIIC)I +µ1(IC, IIC, IIIC)C +µ2(IC, IIC, IIIC)C

2
], (2.4)

where the three characteristic tensor invariants of C are defined as

IC ≡ tr C, IIC ≡
1
2 [(tr C)2 − tr C2

], IIIC ≡ det C (2.5a−c)

and the Weissenberg number Wi is the polymer relaxation time normalized by the
convective time scale.

Table 1 lists the coefficient functions, µi for i = 1, 2, 3, for two polymer models
that are popular in the viscoelastic turbulence literature. The parameter Lmax is the
maximum polymer extensibility.

In the following (primarily in §§ 3.1, 3.2 and 4.3), angled brackets, 〈·〉, denote
Reynolds spatio-temporal filtering (see appendix A in Sagaut 2006), i.e. for a variable
φ(x, t)

〈φ〉(x, t)=
∫
φ(r, τ )G (x− r, t− τ) d3r dτ (2.6)
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Model µ0 µ1 µ2

Oldroyd-B −1 1 0
FENE-P [(3/L2

max)− 1]−1
[1− (IC/L2

max)]
−1 0

TABLE 1. Coefficients µi for two common models of polymers. Note that only µ1 in
the FENE-P model depends on an invariant of C.

where G is a filtering kernel that is normalized so that 〈1〉 = 1, and is defined such
that

〈〈 f1〉〉 = 〈 f1〉, 〈〈 f1〉f2〉 = 〈 f1〉〈 f2〉 (2.7a,b)

for any two integrable functions f1 = f1(x, t), f2 = f2(x, t). The mean of a quantity φ
is then 〈φ〉 and the nth moment of φ is 〈φn

〉. The properties, (2.7), further imply
that 〈F (〈φ〉)〉 =F (〈φ〉) for any analytic function, F . While the example case study
presented in § 5 uses traditional Reynolds time-averaging, we present definitions
using the filtering formulation since the approach is also expected to be valid more
generally.

We use an overline symbol within the present text to denote the nominal or base-
flow quantity associated with the symbol, which may be distinct from the averaged or
filtered quantity.

3. Decomposition of the conformation tensor
In the following, we will denote the general linear group of degree n, i.e. the set of

n× n matrices with non-zero determinant, as GLn. We define the structure-preserving
group action of GLn on a set Wn ⊆Rn×n as

[B]A ≡ A · B · AT. (3.1)

where A ∈ GLn and B ∈Wn and by definition, we require Wn to be invariant under
the action.

From the perspective of continuum mechanics, C > 0 is the left Cauchy–Green
tensor associated with the deformation of the polymers (Beris & Edwards 1994;
Rajagopal & Srinivasa 2000; Cioranescu, Girault & Rajagopal 2016), i.e.

C = F · F T
= [I]F , (3.2)

where F is the deformation gradient with respect to an equilibrium configuration, also
known as the distortion tensor. If the spatial coordinates in the micro-structure are
given by a= a(a0, t) where a0 are the material coordinates, then F =∇a0a= ∂a/∂a0 so
that a material line da0 deforms to da= F · da0 under the deformation represented by
C. When F is restricted to be symmetric, (3.2) reduces to the factorization proposed
by Balci et al. (2011) to improve numerical schemes for evolving the conformation
tensor equations.

Let C be a nominal conformation tensor such as the mean or laminar base-flow
conformation tensor. The only requirement we impose on C is that it must be defined
according to a rule that ensures that C and C cannot be arbitrarily rotated with respect
to each other. In other words, if C transforms to [C]R then C must transform to [C]R
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Nominal or mean

InstantaneousEquilibrium

FIGURE 1. (Colour online) Schematic of the decomposition given in (3.5) and (3.6).
The tensor F is a composition of F and L.

for any R ∈ SO3, where SOn denotes the n× n special orthogonal group (or rotation
matrices). Define F ∈GL3 with det F > 0 as the tensor that satisfies

C = F · F
T
. (3.3)

Such an F is non-unique as it can be parametrized as

F = C
1/2
· R (3.4)

for any R ∈SO3 and where C
1/2 is the unique matrix square-root of C. Since the polar

decomposition of F and the square-root of C (up to a ± sign change) are both unique,
(3.4) is a parametrization of all possible F . The tensor F serves as a deformation
gradient associated with the mean configuration.

The nth power of a positive definite tensor A is a tensor with the same eigenvectors
as A and associated eigenvalues equal to the corresponding eigenvalues of A raised to
the nth power. In practice, since these nth powers are isotropic functions of A, one
need not explicitly perform a spectral decomposition to calculate them. For example,
an application of the representation theorem can be used to express A1/2 and A−1/2

solely in terms of A and its invariants (Hoger & Carlson 1984; Ting 1985).
Given a specific F one satisfying (3.4), we then decompose the full distortion tensor

F about F by considering successive transformations on the material line da0, i.e.

da= F · da0 = F · L · da0, (3.5)

where L= F
−1
· F is the fluctuating distortion tensor. This decomposition is illustrated

in figure 1.
Substituting F = F · L in (3.2), we then arrive at a geometric decomposition of the

conformation tensor

C = [G]F = F ·G · F
T
, (3.6)

where G = L · LT is a left Cauchy–Green tensor that is analogous to C. Comparing
(3.6) and (1.2), we can relate C ′ to G as follows:

C ′ = [G− I]F . (3.7)
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From this point of view, the geometric decomposition provides a framework for
interpreting the fluctuating tensor, C ′, obtained from the Reynolds decomposition.

Although a specific G, and in particular only its set of principal axes, depends on
R ∈ SO3 chosen in (3.4), any function of only the invariants of G is independent of
the choice of R. This class of functions includes all objective scalar functions of G;
indeed, the scalar characterizations of the fluctuations that we develop later are also
independent of R. With respect to the full tensor, G, we will later find that R = I is
a natural choice.

The decomposition of F into successive deformations, as in (3.5), is reminiscent
of the multiplicative decomposition in large deformation theory that has found
numerous applications over the last few decades (Casey 2015; Sadik & Yavari 2017).
For example, in elasto-plasticity theory, the deformation gradient is decomposed
into successive plastic and elastic deformations with the objective of formulating
constitutive laws for each of the deformations somewhat independently. Similar
constructions are used in thermo-elasticity and biomechanics (Lubarda 2004). A full
review of that literature is beyond the scope of the present work, but it suffices
to note that the present case is greatly simplified because the constitutive laws are
already specified and the focus is on the analysis of the polymer deformation due to
turbulence.

We next present the equations for mean and fluctuating quantities in the geometric
decomposition when the nominal conformation tensor is obtained by averaging or
Reynolds filtering.

3.1. Evolution equations in the Reynolds-filtered case
In this section, we will consider the case when the nominal tensor is obtained using
Reynolds filtering. We choose to restrict our attention to Reynolds filters but the
development can be generalized to other filters, e.g. for applications in large-eddy
simulations (LES). We thus have

C = 〈C〉. (3.8)

By the properties (2.7), the associated F satisfies 〈F 〉 = F . Applying the averaging
operation to (3.6) yields

〈[G]R〉 = I, (3.9)

where R(x, t) is the rotation tensor field given in (3.4). Henceforth, we will restrict
the rotation tensor field so that

R = 〈R〉. (3.10)

By (2.7), we then have 〈G〉 = I .
The Reynolds decomposition is applied to p and u while C is decomposed using

(3.6) with C defined according to (3.8). We thus have

p= p+ p′, u= u+ u′, C = [G]F , (3.11a−c)

where u= 〈u〉 and p= 〈p〉 and the primes denote fluctuating quantities obtained via
the Reynolds decomposition. In general, p= p(x, t), u= u(x, t), C=C(x, t). Note that
F 6= 〈F 〉, in general.
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Following the standard procedure, we can then decompose the momentum equation
as follows:

∂tu+ u · ∇u = −∇p+
β

Re
∆u+

1− β
Re
∇ · T −∇ · u′u′, (3.12)

∂tu′ + u · ∇u′ + u′ · ∇u = −∇p′ +
β

Re
∆u′ +

1− β
Re
∇ · T ′ −∇ · (u′u′)′, (3.13)

where T = 〈T 〉, T ′ = T − T , u′u′ = 〈u′u′〉 and (u′u′)′ = u′u′ − u′u′.
The precise form of T , which appears in the mean momentum equation in (3.13),

depends on the constitutive model used. In the Oldroyd-B model, T only depends
on F :

T =
1

Wi
(F · F

T
− I). (3.14)

In models that are nonlinear in C, the fluctuating tensor G cannot be eliminated or
factored out of T . For example, in the FENE-P model, T can be expressed as a series
in which the dominant term is equal to (3.14) while the remaining terms depend on
higher-order moments of G. In general, we have

T =
1

Wi
[〈µ0〉I + F · 〈µ1G+µ2G · F

T
· F ·G〉 · F

T
]. (3.15)

Substituting (3.11) into (2.3) and applying the filtering operation 〈·〉 defined in (2.6)
yields the following equations for C:

∂tCij + uk∂kCij − (Cik∂kuj + Cjk∂kui)+ T ij = −∂k

[
F ipF

T
qj 〈Gpqu′k〉︸ ︷︷ ︸

(a)

]
+ F ipF

T
qk 〈Gpq∂ku′j〉︸ ︷︷ ︸

(b)

+F jpF
T
qk 〈Gpq∂ku′i〉︸ ︷︷ ︸

(c)

.

(3.16)

Term (a) is the averaged turbulent transport and terms (b), (c) describe the mean
stretching and rotation of the polymer arising due to the gradients in the fluctuating
velocity field. The right-hand side of (3.16) is the cumulative effect of the turbulent
fluctuations on the mean balance. The mean balance (3.16) can also be written as

M = 2 sym {E + 〈G · E ′〉 − [(∂tF
T
)+ (u+ 〈G · u′〉) · ∇F

T
] · F

−T
} − 〈u′ · ∇G〉, (3.17)

where E = 〈E〉, E ′ = E − E , M = 〈M〉, and

E ≡ F
T
· ∇u · F−T (3.18)

M ≡ F
−1
· T · F

−T
. (3.19)

Here, the tensors E and M serve as modified velocity gradient and polymer stress
tensors. Note that the invariants of ∇u and E coincide. The equation (3.17) shows
that the mean modified stress, M , is a function of the mean velocity gradient, E , the
mean stretching due to turbulent velocity gradients 〈G ·E ′〉, and the turbulent advection
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Geometric decomposition of the conformation tensor 405

of the fluctuating polymer deformation, 〈u′ · ∇G〉. Additionally, new terms appear due
to the time-rate of change of F , and modified advection of F .

We can find the evolution equation for G by substituting (3.11) into (2.3) and
simplifying, which yields

DG

Dt
= 2 sym(G · K )−M, (3.20)

where K is given by

K ≡ E −

(
F
−1
·

DF

Dt

)T

, (3.21)

and represents the modified velocity gradient augmented with an additional stretching
that arises due to the decomposition. The expression (3.20) is more general than
considered here; an equivalent expression can be derived when the nominal tensor, C,
is not equal to the mean conformation tensor.

The higher-dimensional nature of G makes the quantification of the fluctuating
turbulent polymer deformation a more difficult task. We will examine the elastic
potential energy as a method to evaluate this deformation in the next subsection and
then introduce more general scalar characterizations of G in the next section.

3.2. Elastic energy and its relation to G

The turbulent mean polymer configuration is not the thermodynamic equilibrium state,
and thus G alone is not sufficient to fully determine thermodynamic quantities such
as the elastic potential energy, εψ(C). For example, Beris & Edwards (1994) define
εψ(C) for an Oldroyd-B model as

εψ(C)=
∫
Ω

ψ tr(C ·G) d3x, (3.22)

where we have rewritten the expression in terms of G and C by setting F =C
1/2 and

using the cyclic property of the trace to obtain tr C= tr(C ·G). Here, Ω is the spatial
domain, and the scalar function ψ(x) is proportional to the polymer elastic constant
times the elasticity density.

The mean elastic potential, 〈εψ(C)〉, for the Oldroyd-B model has the convenient
property that it can be written solely in terms of the mean conformation tensor:
〈εψ(C)〉 = εψ(C). However, the contribution of G in εψ(C) cannot be fully separated
from that of C because tr A · B 6= tr A tr B. Nonetheless, insight into the role of the
different contributions can be obtained by using a trace inequality proved by Mori
(1988), which yields

εψ3(G)6 εψ(C)6 εψ1(G), ψi ≡ψσi(C), (3.23a,b)

where σi(A) denotes the ith largest eigenvalue of a tensor A. In terms of the bounds
in (3.23), the contribution of C to εψ(C) is equivalent to a modification of the local
elasticity density or the elastic constant.

In other constitutive models, the contribution to the elastic potential energy from
the mean polymer deformation is more difficult to separate. For example, the elastic
potential energy for the FENE-P model (Beris & Edwards 1994) is

εψ(C; Lmax)=−

∫
Ω

ψL2
max log

(
1−

tr(C ·G)
L2

max

)
d3x, (3.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.118


406 I. Hameduddin, C. Meneveau, T. A. Zaki and D. F. Gayme

where Lmax, Ω and ψ are as defined before. Here, the mean elastic potential energy,
〈εψ(C; Lmax)〉, cannot be separated from G as in the Oldroyd-B model because,
according to (3.24), 〈εψ(C)〉 6= εψ(C). However, we can again bound εψ(C; Lmax) as

εψ(G; Lmax,3)6 εψ(C; Lmax)6 εψ(G; Lmax,1), Lmax,i ≡ Lmax/(σi(C))
1/2. (3.25a,b)

In terms of the bounds in (3.25), the contribution of C in εψ(C; Lmax) is equivalent
to a modification of the local polymer maximum extensibility.

Elastic energy may itself be insufficient to fully characterize the polymer
deformation. For example, in both Oldroyd-B and FENE-P models, the elastic energy
is equal for all conformation tensors that are given by

C = [diag(α1 + δ, α2 − δ, α3)]Q, 0 6 δ < α2, (3.26)

where diag(φ1, φ2, φ3) denotes a diagonal tensor with the ith diagonal component
given by φi, and α1 > α2 > α3 > 0 and Q ∈ SO3 are fixed. Even though the trace
is fixed, the volume of the deformation ellipsoid changes with δ, and is given by

det C = α1α2α3 + (α1 − α2)α3δ + δ
2α3. (3.27)

In addition, since the governing equations are not Hamiltonian (Beris & Edwards
1994), the elastic potential energy only provides a partial characterization of the
dynamics underlying the polymer deformation. Due to the above limitations of the
elastic energy, and its dependence on the choice of the particular constitutive model,
we instead develop an approach to characterizing the polymer deformation using
the inherent geometric structure underlying G. This approach, introduced in the next
section, is mathematically rigorous and can be applied to any positive definite tensor.

4. A Riemannian approach to the fluctuating polymer deformation
Any scalar characterization of G obeying the principle of objectivity can be a

function only of its invariants, IG, IIG and IIIG. The invariants can be interpreted
in terms of the fluctuating deformation ellipsoid, i.e. the ellipsoid associated with
G. The first invariant, IG, is proportional to the average radius of the ellipsoid, the
second invariant, IIG, is proportional to a lower bound for the surface area (Klamkin
1971) and the third invariant IIIG is the volume of the deformation ellipsoid. Note
that the eigenvalues (or principal stretches) of a conformation tensor are equal to the
squared polymer stretches.

In practice, multiple difficulties arise in naively using the invariants of G to
characterize the conformation tensor. For example, consider the isotropic case with
C = aI and C = bI . We then have G= (a/b)I and the three invariants reduce to

IG = 3a/b, IIG = 3(a/b)2, IIIG = (a/b)3, (4.1a−c)

which implies that the invariants are bounded between 0 and 1 for compressions
with respect to C and between 1 and +∞ for expansions with respect to C. This
inherent asymmetry in the characterization is undesirable. The statistical moments of
the invariants also vary over several orders of magnitude, rendering these moments
uninformative predictors of the level of turbulent stretching in the polymers.

The problems discussed above arise because the set of n × n positive definite
matrices, denoted Posn, for n > 0, does not form a vector space and thus the
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Geometric decomposition of the conformation tensor 407

Euclidean notions of translation and shortest distances between points are not valid.
For example, let A, B ∈ Pos3, and define X as

X ≡ rA+ (1− r)B, r ∈R. (4.2)

One may wish to use the parameter r to denote ‘distance of X to A’ along the
‘direction between A and B’. However, X is then guaranteed to be positive definite
only if r ∈ [0, 1]. While Pos3 is not a vector space, it has a Riemannian geometric
structure that can exploited to formulate alternative scalar measures of G that do
not suffer from the problems mentioned above. We introduce this geometry in § 4.1,
including definitions of shortest paths and distances between tensors. Subsequently,
in § 4.2, we introduce scalar measures based on the development in § 4.1 that can be
used to quantify the turbulent fluctuations in the polymers. In § 4.3, we derive the
Reynolds-filtered evolution equations for the scalar measures.

4.1. Geodesic curves and distances between positive definite tensors
The set Pos3 is a Cartan–Hadamard manifold: it is a simply connected, geodesically
complete Riemannian manifold with seminegative curvature (Lang 2001). We
summarize this characterization in the present section in order to develop a notion of
distances between positive definite tensors that will be used to formulate appropriate
scalar measures of the fluctuating conformation tensor G. Details on the Riemannian
structure of Pos3 and theorems leading to the results used in this section are presented
in the appendix.

Consider two matrices X , Y ∈ Pos3. In the set of all curves along the manifold
Pos3 connecting X and Y , there exists a unique curve that minimizes the distance
between X and Y with respect to the Riemannian metric on Pos3, i.e. there exists
a P(r) with P(0) = X and P(1) = Y that uniquely minimizes the distance traversed
along the manifold between X and Y . We call this curve the geodesic curve along
the manifold and it is given by

X#rY = [([Y ]X−1/2)r]X1/2, 0 6 r 6 1. (4.3)

The geodesic distance associated with the geodesic curve between X and Y is the
minimum separation between them along the manifold and is given by

d(X , Y )=

[
3∑

i=1

(log σi(X
−1
· Y ))2

]1/2

=

√
tr log2(X−1/2 · Y · X−1/2). (4.4)

The distance, d(X , Y ), is affine invariant, i.e. d(X , Y )= d([X ]A, [Y ]A) for all A∈GL3.
Geodesic curves and distances along a Riemannian manifold are analogous to

straight lines and distances in Euclidean space. In the case of Pos3, the analogy can
be taken quite far because Pos3 is geodesically complete; a geodesic connecting any
two points on the manifold parametrized by r can be arbitrarily extended letting
r ∈R. For example, X#rY with r ∈ [0, a], is a geodesic between X#0Y and X#aY for
all [0, a] ⊆R. Furthermore, for each r> 0, we have

d(X , X#rY )= r d(X , Y ). (4.5)

We now illustrate the geodesic distance derived above using two specific examples.
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(i) Isotropic tensors: Let X = aI and Y = bI be elements of the one-dimensional sub-
manifold of Pos3 consisting of the isotropic tensors. The geodesic path joining
X and Y is given by

X#rY = (a1−rbr)I (4.6)

and the geodesic distance is given by d(X , Y )=
√

3 log(b/a).
Notice that a1−rbr, which appears in (4.6), is a generalized geometric mean of
a and b with the classical definition realized at r= 1/2. It can be shown that a
similar interpretation is admissible when X and Y are not isotropic (Bhatia 2015).
This fact has formed the basis of efforts to formulate alternative definitions of
statistical quantities such as means and covariances so that they conform to the
geometric structure of Pos3 (Pennec, Fillard & Ayache 2006; Fletcher & Joshi
2007).

(ii) Tensors differing by a rotation: Consider X and Y = [X ]R for R ∈ SO3. The
geodesic joining X and Y is given by

X#rY = [([X ]X−1/2·R)
r
]X1/2 . (4.7)

The distance between X and Y is then bounded as

0 6 d(X , Y )6
√

3 min
{

max
i

{∣∣∣∣log
(
σi(Y )

σ3(X)

)∣∣∣∣} ,max
i

{∣∣∣∣log
(
σ1(Y )

σi(X)

)∣∣∣∣}} ,
(4.8)

where the lower bound is achieved for R= I . The upper bound in (4.8) suggests
that a differential rotation of a second-order tensor, X , leads to an excursion along
Pos3 with a path length that depends on the anisotropy of X . For isotropic X , the
path length is zero and it otherwise increases with increasing anisotropy.

The geometry of Pos3 and the properties discussed above are next used to define
scalar measures that characterize the turbulent fluctuations in G.

4.2. Scalar measures of the fluctuating conformation tensor
In this subsection we introduce scalar measures that can be used to quantify the
fluctuating polymer deformation represented by G. In what follows, we will denote
the matrix logarithm of G as G, i.e.

G=
∞∑

k=0

Gk

k!
≡ eG. (4.9)

The matrix logarithm is guaranteed to exist and is unique since G is positive definite.
A key point to note is that the eigenvalues of G are the logarithms of the eigenvalues
of G.

4.2.1. Logarithmic volume ratio, ζ
Let Γi = σi(G), for i = 1, 2, 3, be the eigenvalues of G. Then log(det G) =

log(
∏3

i=1 Γi) =
∑3

i=1 log Γi. We thus define the logarithmic volume ratio of the
fluctuation, ζ , as

ζ ≡ trG = log(det G)= log
(

det C

det C

)
. (4.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.118
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When ζ = 0, the mean and the instantaneous conformation tensors have the same
volume; when ζ is negative (positive), the instantaneous conformation tensor has a
smaller (larger) volume than the volume of the mean. The logarithm ensures that there
is no asymmetry between compressions and expansions with respect to the mean.

4.2.2. Squared distance from the mean, κ
When C =C, we have G= I . When C 6=C, we wish to consider the (appropriately

defined) shortest distance between I and G as a measure of the magnitude of the
fluctuation. The shortest path between I and G along the manifold Pos3 is given by
the geodesic along Pos3 connecting I and G,

I#rG=Gr
= eGr. (4.11)

The squared geodesic distance associated with this path is then

κ ≡ trG2
= d2(I,G)=

3∑
i=1

(log Γi)
2, (4.12)

where (4.12) follows from (4.4). Using (4.4), one can verify that d2(I,G)= d2(I,G−1)
and thus the squared distance measure treats both expansions and compressions with
respect to the mean similarly. The affine-invariance property, furthermore, ensures that

d2(I,G)= d2([I]A, [G]A) (4.13)

for all A ∈GL3. In particular, with A= F , we obtain

d2(I,G)= d2(C, [G]F )= d2(C, C)= d2(C
−1
, C−1), (4.14)

which exhibits the highly desirable property that the squared distance between C and
C is equal to the squared distance between I and G. A further consequence of the
affine-invariance property is that d2(I,G) is independent of the choice of the rotation
R ∈ SO3 in (3.4).

The path between C and C along Pos3 is given by

C#rC = [([C]C−1/2)r]C1/2, (4.15)

which reduces to

C#rC = [G
r
]F (4.16)

when R = I in (3.4). The choice R = I is then natural in the sense that it allows
the path along the manifold between C and C, whose distance is a measure of the
fluctuation, to be described using only F and G.

We next consider realizability in the (ζ , κ) plane. Since G is symmetric, its
eigenvalues must be real, i.e. the eigenvalues must together belong in R3. In the R3

space of eigenvalues of G, surfaces of constant ζ are planes, and surfaces of constant
κ are spheres. A particular choice of ζ and κ is realizable only if the plane and
sphere intersect. The coordinates along the intersecting circle of the sphere satisfy

cos θ sin φ + sin θ sin φ + cos φ =
ζ
√
κ
, θ ∈ [0, 2π), φ ∈ [0,π], (4.17)
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where φ is the inclination angle and θ is the azimuthal angle, in a spherical coordinate
representation of R3. The physically realizable region in the (κ, ζ ) plane is thus
given by

−
√

3κ 6 ζ 6
√

3κ. (4.18)

When κ= (1/3)ζ 2, the circle of intersection reduces to a point and G consequently has
only two independent tensor invariants, ζ and κ . The angles that maximize the left-
hand side of (4.17) are given by θmax=π/4, φmax= arctan

√
2. At (θ, φ)= (θmax, φmax),

it is readily verified that κ = (1/3)ζ 2 and also that the eigenvalues of G are all equal.
Thus G, and hence G, is isotropic at the realizability bounds.

4.2.3. Anisotropy index, ξ
Following the approach taken by Moakher & Batchelor (2006), we define the

anisotropy index, ξ , of G as the squared geodesic distance between G and the closest
isotropic tensor,

ξ ≡ inf
a

d2(aI,G)= inf
a

tr (G − (log a)I)2. (4.19)

By differentiation, we find that a3
=
∏3

i=1 σi(G) = det G is a minimizing stationary
point of (4.19) and hence the closest isotropic tensor to G along Pos3 is ( 3

√
det G)I .

We then have

ξ = d2((
3
√

det G)I,G)= κ − 1
3ζ

2. (4.20)

Notice that χ = 0 if and only if ζ 2
= 3κ . But since we already showed that G, and

hence G, are isotropic at the bound ζ 2
= 3κ , it follows that ξ = 0 only for isotropic

tensors.
Batchelor et al. (2005) first introduced the index

√
ξ for characterizing positive

definite diffusion tensors measured in magnetic resonance imaging. The index is
analogous to the ‘fractional anisotropy index’ that is commonly used in turbulence
and which provides the Euclidean distance to the closest isotropic tensor,

‖G− (tr G/3)I‖F

‖G‖F
, (4.21)

where ‖A‖F = tr (AT · A) indicates the Frobenius norm of matrix A. A review of
anisotropy measures is available in Moakher & Batchelor (2006).

The three scalar measures presented above can be used together to obtain a better
understanding of the fluctuations in the conformation tensor. The logarithmic volume
ratio, ζ , is positive (negative) for volumetric expansions (contractions) with respect
to the mean. However, ζ = 0 does not necessarily imply no deformation, since
det(det(G)A)= det(G) for all A with unit determinant. The squared geodesic distance
to the identity, κ , helps distinguish such cases since κ = 0 only when G= I (C = C).
Finally, the anisotropy index, ξ , provides a quantification of the deviation of the
shape of the polymer from the shape of the mean conformation tensor because it is
a measure of the distance from G to the closest isotropic tensor, or equivalently, the
minimizing distance between C and aC over all a> 0.

We next derive evolution equations for the scalar measures presented above and for
the particular case when C = 〈C〉.
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4.3. Evolution equations for ζ , κ and ξ
Since ζ , κ and ξ are scalar characterizations of G, one need only evolve G (or
equivalently, C) to obtain the field-valued ζ , κ and ξ . Nevertheless, it is of interest
to mathematically evaluate the evolution equations of these scalar measures separately
in order to find the quantities that contribute to their dynamics.

Using (3.20) and the relationship trGn
=
∑3

i=1(logΓi)
n, we can derive the following

equations for the fluctuating scalar measures:

Dζ
Dt
= trD,

1
2

Dκ
Dt
= tr (D ·G),

1
2

Dξ
Dt
= tr (D · devG), (4.22a−c)

where devG =G − (trG/3)I is the deviatoric part of G, and D is defined as

D ≡ 2 sym K −M · e−G. (4.23)

The derivation of (4.22), omitted here for brevity, closely follows the procedure used
by Vaithianathan & Collins (2003) to obtain evolution equations for the continuous
eigendecomposition of C.

The Cauchy–Schwarz inequality can be used to show that∣∣∣∣D√κDt

∣∣∣∣6 ‖D‖F,

∣∣∣∣D√ξDt

∣∣∣∣6 ‖D‖F. (4.24a,b)

The bounds in (4.24) illustrate the role of the stretching and relaxation balance, D, in
bounding the growth of κ and ξ . In the Reynolds-filtered case, D can be simplified
using (3.17) so that

D = 2 sym(E ′ − 〈G · E ′〉 − (u′ − 〈G · u′〉) · ∇F
T
· F
−T
)+ 〈u′ · ∇G〉

− (M ·G−1
−M), (4.25)

which shows that the turbulence intensity of the fluctuating conformation tensor, as
measured by κ , is not directly affected by the mean velocity gradient tensor ∇u. The
contribution of ∇u to κ is captured indirectly through F , which is determined based
on the mean balance.

According to (4.25), the tensor D consists of a stretching component: 2 sym(E ′ −
〈G · E ′〉), a component that arises due to gradients in F and represents modified
advection of F : −2 sym[(u′ − 〈G · u′〉) · ∇F ], a component that comprises mean
advection of G by the fluctuating velocity field: 〈u′ · ∇G〉 and finally a component
that resembles a fluctuating relaxation contribution: −(M ·G−1

−M).

4.3.1. Reynolds filtering the evolution equations
As a first-order statistical characterization of the fluctuating quantities, ζ , κ and ξ ,

we will consider their filtered or averaged values,

ζ ≡ 〈ζ 〉, κ ≡ 〈κ〉, ξ ≡ 〈ξ〉. (4.26a−c)

Reynolds filtering (4.22) and using the expression (4.25), we obtain the filtered
evolution equations for ζ and κ . The filtered equation for ζ is given by〈

Dζ
Dt

〉
= −2 tr sym(〈G · E ′〉 − 〈G · u′〉 · ∇F

T
· F
−T
)

− tr(−〈u′ · ∇G〉 + 〈M ·G−1
〉 −M), (4.27)
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where each term can be compared to those in (4.25) that were described in the
previous subsection. Similarly, the filtered equation for κ is given by

1
2

〈
Dκ
Dt

〉
= 2 tr〈sym(E ′ − F

−1
· u′ · ∇F ) ·G〉 − tr 〈M ·G−1

·G〉

− tr{[2 sym(〈G · E ′〉 − 〈G · u′〉 · ∇F
T
· F
−T
)− 〈u′ · ∇G〉 −M] · 〈G〉}.

(4.28)

The equation for ξ , which we omit here for brevity, can be similarly derived.

5. Case study: viscoelastic turbulent channel flow
The general framework we have developed can be applied to a variety of flows. We

focus on the classical problem of viscoelastic turbulent channel flow as a case study
and use direct numerical simulations (DNS) to investigate the turbulent dynamics. The
algorithmic details of the simulation are identical to that of Lee & Zaki (2017) with
the exception of the treatment of the conformation tensor which is documented in the
appendix for the interested reader. The code employed was validated against linear
growth rates of Tollmien–Schlichting waves (see Lee & Zaki 2017, for a study of
natural transition in viscoelastic flows) and also against the results of Agarwal, Brandt
& Zaki (2014) for the evolution of a localized disturbance.

We define x, y and z as the streamwise, wall-normal and spanwise coordinates,
respectively. The flow is homogeneous in x and z and all the coordinates are
normalized with respect to the channel half-height, with the channel walls located
at y = ±1. The parameters for the calculation are listed in table 2. The Reynolds
number, Re, is defined based on the channel half-height and bulk velocity, while
Reτ is the friction Reynolds number defined based on the friction velocity, calculated
using the slope of the mean velocity at the wall, and channel half-height. The flow is
driven by a pressure gradient which is adjusted in time to maintain a constant mass
flow rate. The symbol 〈·〉 denotes averaging over x, z and t. Therefore, all of the
averaged quantities are functions of only y.

The computational grid is uniform in the (x, z) directions and employs hyperbolic
tangent stretching in the y direction with a Planck taper (McKechan, Robinson
& Sathyaprakash 2010) applied such that grid spacing very close to the wall is
constant. The maximum change of the grid spacing in the y direction is less than
3 % throughout in the domain. The resolution in friction units is listed in table 2.
The initial turbulent state was generated from a separate simulation that followed the
evolution of a Tollmien–Schlichting wave to the fully turbulent state (Lee & Zaki
2017). A snapshot from the fully turbulent state of Lee & Zaki (2017) was used as
an initial condition and first run for at least 150 convective time units before any
statistics were collected. The evolution of the friction Reynolds number, Reτ , was
used to check whether the simulation had reached a statistically stationary state.

5.1. Mean profiles and comparisons with the laminar profiles
The statistics presented in this section were obtained by averaging in space and over
750 time units, and by exploiting the symmetry of the flow about the centreline.
Halving the number of samples maintained the trends and caused only minor
deviations in the statistics, with no impact on the conclusions.

The mean streamwise velocity profile is shown in figure 2 as a function of y+ =
Reτ (y+ 1), where Reτ is always taken to be the turbulent frictional Reynolds number
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FIGURE 2. (Colour online) Mean velocity profile from a FENE-P drag-reduced channel
flow simulation. The solid line (——) is the mean streamwise velocity, the red dotted
(lower) line (- - - - - -) is the von Kármán log law, u+von Kármán = 2.5y+ + 5.5, and the red
dashed (upper) line (– – –) is Virk’s asymptote, u+Virk = 11.7y+ − 17.0.

Domain size Grid size Time step Spatial resolution
Re Reτ Wi Lmax β Lx × Ly × Lz Nx ×Ny ×Nz 1t ∆+x ×∆

+

y ×∆
+

z

4667 180 6.67 100 0.9 4π× 2× 4π 512× 400× 512 2.5× 10−3 4.42× [0.13, 1.90] × 4.42

TABLE 2. Parameters of the simulation of viscoelastic turbulent channel flow. The length
scale is the channel half-height and velocity scale is the bulk flow speed. In the pth
direction, the size of the domain is Lp, the number of grid points is Np, and the spatial
resolution, in friction units, is ∆+p .

given in table 2. Also shown are the von Kármán log law and Virk’s maximum drag
reduction asymptote. The mean velocity lies in between these two lines, indicating
a drag-reduced state. Using Dean’s correlation for the skin friction (Dean 1978), we
obtain a friction Reynolds number of approximately 284 for a Newtonian flow with
Re= 4667 and thus the drag reduction percentage is

DR %≡

[
1−

(
Reτ

Reτ |Newtonian

)2
]
× 100= 59.8 %. (5.1)

The non-zero components of 〈C〉 calculated for the same parameter values, are
shown in figure 3. All the components of 〈C〉 are even functions of y except 〈Cxy〉,
which is an odd function of y. The streamwise stretch 〈Cxx〉 is four times larger than
the laminar case (not shown) near the wall. It is also an order of magnitude larger than
〈Cyy〉 and 〈Czz〉. The remaining normal components of the conformation tensor are
also larger in the turbulent case than the laminar: figure 3 shows that maxy〈Cyy〉 ≈ 45
and maxy〈Czz〉 ≈ 120, while Cyy = Czz ≈ 1 throughout the channel when the flow is
laminar. The peak values of each of the components 〈Cxx〉, 〈Cyy〉 and 〈Czz〉 occur at
different locations in the channel. Figure 3 also shows that 〈Czz〉 > 〈Cyy〉 throughout
the channel. The trends above are consistent with those reported in the literature
(Dallas, Vassilicos & Hewitt 2010).

Figure 4(a) shows the logarithmic volume of the mean and laminar conformation
tensors along with the distance from the origin on the manifold of positive definite
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FIGURE 3. Mean conformation tensor profiles from a FENE-P drag-reduced channel flow
simulation. (a) Cxx. (b) The solid line with star symbols (— ∗—) is Cyy, the dashed
line with square symbols (– –@– –) is Czz and the dashed-dot line with circle symbols
(– -E– -) is Cxy. The remaining components of the mean conformation tensor are 0. Note
that the symbols in (b) are identifiers and are thus only a small subset of all the data
points used in the line plots.
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FIGURE 4. (Colour online) Scalar measures applied to nominal conformation tensors, in
equivalent dimensions, plotted as functions of y+. (a) The solid line with star symbols
(— ∗—) is log det C, the logarithmic volume; the dashed line with square symbols
(– –@– –) is d(I,C), the geodesic distance between C and I on Pos3. (b) Anisotropy index,√
(d(I, C))2 − (1/3)(log det C)2, which is the geodesic distance from the closest isotropic

tensor. For both (a) and (b), black lines are for C = 〈C〉 and grey lines are when C is
equal to the FENE-P laminar conformation tensor. The red dotted line (- - - - - -) in (b) is
−1.375 log y+ + 7.925. Note that the symbols in (a) are identifiers and are thus only a
small subset of all the data points used in the line plots.

tensors. The figure shows that both the logarithmic volume, log det C, and the distance
from the origin, d(I, C) are larger in the turbulent case compared to the laminar.
Furthermore, these two quantities are monotonically decreasing in the laminar case
but have peaks around y+≈ 60 in the turbulent case. Both quantities in the two cases
asymptote to a constant at locations very close to the wall, y+62. The weak growth in
d(I,C) in the turbulent case despite a rapid increase in log det C is due to the increase
in isotropy (sphericity) as we move away from the wall, since for a given volume the
tensor closest to I is an isotropic tensor. In figure 3 we see that the mean normal
stretches in the y and z directions in the turbulent case peak between y+ ≈ 40 and
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FIGURE 5. (Colour online) Wall-parallel (x, z) planes of isocontours of instantaneous IG=

tr G: (a) y+ = 15 and (b) y+ = 180 (centreline).

y+≈ 70 and are at least an order of magnitude larger than the stretches in the laminar
case, where Cyy = Czz ≈ 1. The term Cxx is decreasing towards the channel centre in
both the turbulent and laminar case but is accompanied by an increase in Cyy, Czz in
the turbulent flow which leads to increased isotropy for locations sufficiently removed
from the wall.

Figure 4(b) shows the anisotropy, the geodesic distance to the closest isotropic
tensor, of the mean and laminar conformation tensors. The anisotropy index is
approximately constant in the vicinity of the wall for both the laminar and turbulent
cases, and decays away from the wall. In the turbulent flow, the decay starts very
close to the wall – approximately three friction units away from the wall – and then
shows a remarkable logarithmic decay that proceeds all the way to very close to the
centreline where it sharply turns and forms a stationary point. The increased isotropy
in the turbulent case may be explained by the fact that, although more stretching
occurs in this case, the stretching in the cross-stream directions is much larger than
in the laminar case. Overall, this leads to a more isotropic mean conformation tensor.

5.2. Invariants of the fluctuating conformation tensor
In order to motivate the scalar measures proposed in the present work, we consider
the invariants of G as alternatives in this subsection. Figure 5 shows isocontours of
instantaneous IG at a given time at two wall-parallel planes, y+ = 15 and y+ = 180
(centreline). The isocontours of instantaneous IIG and IIIG are qualitatively similar
to those of IG and are thus not shown here. The instantaneous IG can vary over
several orders of magnitude. As a result, obtaining reliable statistics for the invariants
is challenging. We found that the peak root-mean-square (r.m.s.) of the invariants
(not shown) are at least an order of magnitude larger than the corresponding mean
values. This large spread in the instantaneous invariants of G suggests that log G is a
more appropriate quantity to consider, and reinforces the need for the geometrically
consistent scalar measures introduced in § 4.

5.3. The scalar measures: ζ , κ and ξ
Figure 6 shows isocontours of instantaneous values of ζ , κ and ξ for two wall-parallel
planes, y+ = 15 and y+ = 180. As a comparison, the fluctuating tensor C ′xx obtained
by the Reynolds decomposition (1.2) and normalized by the local Cxx is shown in
figure 7. We normalized C ′xx so that the fluctuations near the wall could be compared

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.118


416 I. Hameduddin, C. Meneveau, T. A. Zaki and D. F. Gayme

0 4 8 12 0 4 8 12

0 4 8 12 0 4 8 12

0 4 8 12 0 4 8 12

12

4

8

12

4

8

12

4

8

12

4

8

12

4

8

12

4

8

x x

z

z

z

(a) (b)

(c) (d)

(e) ( f )

0

4

8

–12

–16

–8

–4

0

16

32

48

64

80

0

28

56

84

112

140

FIGURE 6. (Colour online) Wall-parallel (x, z) planes of isocontours of instantaneous
(a,b) logarithmic volume ratio, ζ , (c,d) geodesic distance from the identity, κ and (e, f )
anisotropy index, ξ . (a,c,e) y+ = 15, (b,d, f ) y+ = 180 (centreline).

to those at the centreline, since Cxx differs by an order of magnitude between the
two locations. The isocontours of C ′xx/Cxx, and in particular the negative values,
are difficult to interpret since the correspondence to a physical deformation or a
mathematical metric is unclear.

Figure 6(a,b) shows the logarithmic volume ratio, ζ . This quantity is the logarithm
of IIIG, which itself is qualitatively similar to IG and hence we observe a strong
visual resemblance between figures 5 and 6(a,b). The colour scale in the former is
logarithmic and is thus consistent with the linear scale in figure 6. Both figures 6(a)
and 6(b) have predominantly negative values, indicating that the instantaneous volume
is smaller than the volume of the mean conformation. We also find regions of very
high ζ adjacent to regions of very low values, especially at the centreline. This is
partially a result of the lack of diffusion in the polymers since there is no direct
mechanism for smoothing out shocks in the conformation tensor field.

Another important effect is that of memory: polymers are stretched near the wall
where the shear is significant, and are then transported out to the centreline. If the
half-channel transit time, the ratio of the channel half-height to the r.m.s. wall-normal
velocity, is smaller than the polymer relaxation time, we expect to observe a footprint
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FIGURE 7. (Colour online) Wall-parallel (x, z) planes of isocontours of instantaneous
C ′xx/Cxx at (a) y+ = 15, (b) y+ = 180 (centreline), where Cxx(y+ = 15) = 2.22 × 103 and
Cxx(y+ = 180)= 1.02× 102. The limits of the divergent colour map are set at the planar
maxima and minima of C ′xx/Cxx.

of the near-wall stretching all the way out to the centreline. In the present case, the
relaxation time is two to three times the half-channel transit time. Since material
points that are initially close are exponentially diverging in a turbulent flow (see
Johnson et al. 2017, for a study of Lagrangian stretching in Newtonian turbulent
channel flow), it is unsurprising to find adjacent regions of strongly and weakly
stretched polymers.

The reductionist explanation given above is useful for a basic understanding but is
insufficient to account for other observed features of the flow. For example, the present
considerations would suggest that the streamwise elongated shape of the isocontours
of ζ near the wall would lead to a similar shape at the centreline. However, this is
manifestly not the case. Instead, the ζ field appears to generate, on the whole, highly
curved isocontours at the centre of the channel.

The measure ζ does not distinguish between volume-preserving deformations. For
example, ζ does not distinguish between C and (det C)A for any A with determinant
= 1. In particular, ζ = 0, does not imply C = C. In order to identify regions where
C =C is true, and quantify the deviation when it is not, we use the squared distance
away from the origin (I) along the manifold, κ . Figure 6(c,d) shows isocontours of
instantaneous κ . Most of the conformation tensor field is significantly far away, in the
sense of distance along the manifold, from C. However, regions where C is a good
representation of C are interspersed between regions where κ is large. This behaviour
is true both in the near-wall region as well as the channel centre but more so in
the latter. In contrast, it is well known that kinetic energy fluctuations are weakest
at the centreline in a Newtonian channel flow. A different behaviour for the polymers
is unsurprising since, due to the strong memory effect, C at each point is strongly
dependent on the Lagrangian path that is obtained by a pull-back of the particular
Eulerian point of interest.

Figure 6(e, f ) shows isocontours of instantaneous ξ , the anisotropy index. This
index shows how close the shape of instantaneous conformation tensor is to the
shape of the mean conformation tensor, irrespective of volumetric changes. The
visual resemblance of κ and ξ suggests that deformations to the mean conformation
are largely anisotropic, or in other words, lead to shape change.

Figure 8 shows the mean values of ζ , κ and ξ in dimensions of distance along
the manifold. These statistics were generated using 225 convective time units. We
checked for convergence by halving the number of samples. This process led to only
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FIGURE 8. (Colour online) Mean scalar measures, plotted in equivalent dimensions, as
functions of y+. The solid line with star symbols (— ∗—) is minus the mean volume ratio,
−ζ =−〈ζ 〉; the dashed line with square symbols (– –@– –) is the square-root of the mean
geodesic distance from the identity, κ1/2

=
√
〈κ〉; the dashed-dot line with circle symbols

(– -E– -) is the square-root of the mean anisotropy index, ξ
1/2
=
√
〈ξ〉. Red dotted lines

(- - - - - -) are logarithmic fits to the profiles: the fit to the κ1/2 profile (– –@– –) is given
by 0.725 log y++ 2.15, the fits to the ξ

1/2
profile (– -E– -) are given by 0.65 log y++ 1.20

and −0.9 log y+ + 7.6. Note that the symbols are identifiers and are thus only a small
subset of all the data points used in the line plots.

minor deviations in the results, with no material significance to the discussion that
follows. As was inferred earlier, the average logarithmic volume ratio is negative
throughout the channel and is monotonically decreasing towards the centreline where
it becomes roughly constant, similar to the behaviour very near the wall y+. 2. This
behaviour of the mean logarithmic volume being smaller than the volume of the
mean is consistent with the ‘swelling’ problem associated with the arithmetic mean
of positive definite tensors that has been previously reported in the literature (Arsigny
et al. 2007). It also suggests that, although an arithmetic mean of the conformation
tensor may be unavoidable for modelling in the averaged equations, it may not be
the most representative conformation tensor for deducing the most likely physical
deformation of the polymers. A more extensive study, beyond the scope of the present
work, is required to determine better alternatives to the arithmetic mean.

The square-root mean squared distance from the origin along the manifold, κ1/2,
is logarithmically increasing up to close to the centreline but peaks at y+ ≈ 100. The
anisotropy, ξ

1/2
, shows logarithmic increase over a small range 3. y+. 20, peaking at

y+≈60, but then shows a logarithmic decrease towards the centreline. The logarithmic
behaviour in these quantities, especially in κ1/2 where the behaviour extends over a
significant range, resembles the behaviour that appears in the mean velocity as well
as in the statistical moments and two-point correlations of the velocity fluctuations in
wall-bounded shear flows (Meneveau & Marusic 2013; Yang, Marusic & Meneveau
2016).

If we momentarily accept the simplified picture of polymers being deformed closer
to the wall in an ‘active’ region and then passively transported out to the centreline of
the channel, then these results indicate that the active region of the channel exists all
the way up to y+≈ 100. Beyond this region, the stretching of polymers weakens and
thus κ1/2 decreases monotonically. The active region involves a region of logarithmic
increase, and so we can write κ1/2

= a1
∫

y−1 dy + a0 for constants a1 and a0. If
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FIGURE 9. (Colour online) Joint probability density functions (JPDF) of the logarithmic
volume ratio, ζ , and the geodesic distance from the identity, κ , at four different wall-
normal locations: (a) y+ = 2, (b) y+ = 15, (c) y+ = 100 and (d) y+ = 180 (centreline).
Dotted lines (- - - - -) are isocontours of the anisotropy index, ξ . The thick red dashed line
(– – –) denotes the realizability bound, κ= (1/3)ζ 2, derived in (4.18), which coincides with
the zero anisotropy index isocontour (ξ = 0).

the stretching at each wall-normal station is actually additive, the polymers undergo
deformation that on average leads to a diminishing increment in the deformation.
This behaviour is consistent with the velocity gradients weakening with wall-normal
distance. At y+ ≈ 100, the velocity gradients then either weaken or act on such
long time scales that polymers relax quickly enough not to retain any additional
deformation.

In order to quantify the fluctuations observed in figure 6 in more detail, we
calculated the joint probability density function (JPDF) for ζ and κ using 12
snapshots evenly spaced over 120 convective time units. The JPDFs, at four different
wall-normal locations, are shown in figure 9 along with isocontours of ξ , which is
purely a function of ζ and κ .

The JPDFs are non-zero primarily on the lower half of the realizability region,
which is consistent with the isocontours in figure 6(a,b) and ζ < 0 throughout
the channel in figure 8. In addition, the isocontours tend to concentrate along the
isotropy line (thick red dashed line) that was derived in (4.18) as a realizability
bound. However, with the exception of the centreline, the most probable (ζ , κ) are
located away from the isotropy line. This implies that the most likely conformation
tensor away from the centreline does not have the same shape as the local mean
conformation tensor. Although the most likely conformation tensor at the centreline
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FIGURE 10. Root-mean-square profiles of C ′, [Cij]rms =

√
〈C2

ij〉 − 〈Cij〉
2 based on the

Reynolds decomposition (1.2). (a) [Cxx]rms. (b) The solid line with star symbols (— ∗—)
is [Cyy]rms, the dashed line with square symbols (– –@– –) is [Czz]rms and the dashed-dot
line with circle symbols (– -E– -) is [Cxy]rms. Note that the symbols in (b) are identifiers
and are thus only a small subset of all the data points used in the line plots.

assumes the shape of the mean conformation tensor, the JPDF at the centreline
occupies a greater area in the (ζ , κ) plane than at y+ = 2 or y+ = 15, which implies
a greater degree of uncertainty. In addition, the most likely conformation tensor, as
determined by the peak of the JPDF, is further away from the mean than at any other
wall-normal location.

The JPDF indicate that the most intermittent region of the flow, determined by the
most extreme excursions away from the identity on Pos3, do not occur near the wall
or at the centreline. This can be seen in figure 9, where the JPDF at y+= 100 shows
events with up to κ = 100. This behaviour is consistent with the peak κ occurring
away from the centreline in figure 8.

Finally the r.m.s. of C ′, defined according to the Reynolds decomposition (1.2), is
shown in figure 10 for comparison to the present approach. The protocol used to
obtain these quantities was the same as that used to obtain the mean conformation
tensor in figure 3. The r.m.s. values of C ′ are of similar magnitude to the components
of 〈C〉. In fact, the peak r.m.s. of Cyy, Czz and Cxy are larger than their respective mean
values. Interestingly, the peak fluctuating deformation found at y+ ≈ 100 using our
present framework is not discernible from the r.m.s. fluctuations. Different components
of the r.m.s. tensor peak at different locations in the channel with [Cyy]rms showing
a peak that is closest to y+ = 100. The r.m.s. quantities only show the component-
wise behaviour of the conformation tensor, and hence are not indicative of the total
polymer deformation. A more appropriate quantity to evaluate in the context of C ′

would then be the JPDF of all six independent components of C ′. Owing to high-
dimensionality, this characterization is more difficult to both calculate and analyse.
The scalar measures suggested in the present work provide a good alternative to such
a characterization.

6. Conclusion

We have developed a geometric decomposition, given in (3.6), that overcomes the
difficulties associated with the traditional Reynolds decomposition of C. The geometric
decomposition yields a conformation tensor, G, that describes the deformation of the
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polymer with respect to the mean deformation. We characterized the fluctuations in
G by using a geometry specifically constructed for Pos3 and obtained three scalar
measures: the logarithmic volume ratio, ζ , given in (4.10), the squared geodesic
distance of the perturbation conformation tensor away from the origin, κ , given in
(4.12) and the anisotropy index, ξ , given in (4.20), defined as the squared geodesic
distance to the closest isotropic tensor. The average values and JPDFs of these scalar
measures provided interesting insights about the fluctuating polymer deformation that
are not readily available from a Reynolds decomposition of C. These insights include
the following.

(i) The anisotropy in C, measured as geodesic distance away from I on Pos3,
decreases logarithmically from y+ = 5 to close to the centreline.

(ii) The mean conformation tensor tends to be significantly different to the most
likely conformation tensor observed in the flow.

(iii) The mean polymer deformation, measured in terms of κ , increases logarithmically
from y+ = 10 and peaks at y+ ≈ 100.

(iv) As evidenced by the JPDF of κ , the peak turbulence intensity in the polymers
occurs in between the wall and centreline, at approximately y+ ≈ 100.

The universality of the trends mentioned above, and others documented in the
present work, and their connection to larger issues in viscoelastic turbulence are open
questions. The framework we have developed can be used to probe the dynamics in
viscoelastic turbulence beyond channel flow and can also be exploited for developing
and benchmarking reduced-order models for viscoelastic turbulence. The approach can
also be adapted to other similar problems, for example in the analysis of deforming
droplets in turbulence using a model based on the droplet conformation tensor
(Maffettone & Minale 1998; Biferale, Meneveau & Verzicco 2014).

An important, open question that needs to be resolved in future work is the
relationship between the fluctuating conformation tensor G and elastic energy of the
polymers. In contrast to the clear meaning of the kinetic energy associated with
the fluctuating velocity field, a deeper understanding of the elastic energy and its
relation to G and the scalar measures introduced in the present work is unavailable.
The attainment of such an understanding is partially hindered by the myriad of
constitutive models prevalent in the literature (Beris & Edwards 1994). Instead of
using the details of a particular constitutive model, the aim of the present work was
to maintain as much generality as possible by exploiting the mathematical structure
of G to characterize the fluctuating polymer deformation.
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Appendix A. Riemannian structure of the set of positive definite matrices

The theoretical results presented in this section on the geometric structure of Posn

are standard with detailed accounts available in pp. 322–339 of Lang (2001) and also
pp. 201–235 of Bhatia (2015).
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A.1. Riemannian metric
We can define an inner product (·, ·) :Rn×n

×Rn×n
→R

(A, B)X = tr (X−1
· AT
· X−1

· B) (A 1)

for A,B ∈Rn×n where X ∈Posn is fixed. When X = I , (A 1) reduces to the definition of
the standard Frobenius inner product. The guaranteed factorization X =X 1/2 ·X 1/2 and
the cyclical property of the trace ensures the positivity of ‖A‖X , while the remaining
properties of the inner product and the norm follow on from the standard Frobenius
theory. The space Rn×n is a Hilbert space when equipped with such an inner product
and the norm induced by it: ‖A‖X =

√
(A, A)X . The subset of Rn×n consisting of

symmetric matrices forms a vector space, Symn, and can also be Hilbertized under
the inner product (A 1). Posn is an open subset of Rn×n (and also Symn) in the ‖ · ‖X

metric and is thus a (smooth) manifold.
The tangent bundle of Posn, which consists of the manifold Posn equipped with a

tangent space TX Posn at each point X of Posn, provides a natural projection that can
be used to study the geometry of Posn. A simple argument shows that the tangent
space at each point of Posn coincides with Symn. (Let Y be defined by Y = X +
εS, for some X ∈ Posn, ε ∈ R, S ∈ Symn. By Weyl’s inequality, there exists some
ε > 0 sufficiently small such that Y ∈ Posn. This implies that Symn ⊆ TX Posn. Since
Y /∈ Posn for any ε 6= 0 and S /∈ Symn, we have Symn = TX Posn.) The latter result is
the geometric underpinning of numerical algorithms that time-march the conformation
tensor by translations of C by symmetric matrices (the right-hand side of the evolution
equation for C).

A manifold M equipped with a scalar product over TX M for each X ∈ M is a
Riemannian manifold. The set of such scalar products is called the Riemannian metric
of the manifold. Posn is a Riemannian manifold with Riemannian metric given by
(Lang 2001; Bhatia 2015)

g= {(·, ·)X |X ∈ Posn} (A 2)

with the understanding that the scalar product on TX Posn is (·, ·)X ∈ g and the domain
of (·, ·)X is restricted to Symn= TX Posn. An infinitesimal distance around the point X
on the manifold is given by

ds2
= ‖dX‖2

X = tr [(X−1
· dX)2]. (A 3)

The metric given by (A 2) ensures that distances between points X ,Y ∈Posn along the
manifold calculated using (A 3) are invariant under the action [·]A of any A∈GLn, i.e.
invariant to transformations such as (3.6).

A.2. Geodesic curves and distances
Consider a parametrized curve on Posn connecting points X ,Y ∈Posn, i.e. P : [0, 1]→
Posn with P(0)=X and P(1)=Y . The distance, in the sense of the metric g, traversed
on the manifold along the curve P = P(r) is given by

`P(r)≡
∫ r

0

∥∥∥∥dP(r′)
dt

∥∥∥∥
P(r′)

dr′. (A 4)

`P has an attractive property in that it is invariant under affine transformations.
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LEMMA 1 (Affine invariance). For each positive definite A and differentiable path P
on the Riemannian manifold of positive definite matrices, we have

`P = `[P]A . (A 5)

Proof. § 6.1.1 in Bhatia (2015).

We call a curve P(r) on Posn that minimizes `P(1) a geodesic curve connecting
X and Y . In general, the existence and/or uniqueness of a geodesic curve is not
guaranteed. We also define d(X , Y ), the geodesic distance between X and Y , as the
infimum of `P(1) over all possible curves P connecting X and Y :

d(X , Y )≡ inf
P
{`P(1)|P(r) ∈ Posn, P(0)= X , P(1)= Y }. (A 6)

A corollary of affine invariance is that d(X , Y )= d([X ]A, [Y ]A).
It turns out that the existence and uniqueness of geodesics is guaranteed on Posn.

Furthermore, we can obtain analytical expressions for these geodesics. Following
Bhatia (2015), we present three key theorems that allow this construction.

THEOREM 1 (Exponential metric increasing property). For any two real symmetric
X and Y

d(eX , eY)6 ‖X −Y‖I (A 7)

where we note that eX , eY are positive definite matrices.

Proof. § XII.2 in Lang (2001) and § 6.1.4 in Bhatia (2015).

Equality is achieved in (A 7) when X and Y commute and we can also parametrize
the geodesic in this case, as expressed in the proposition below.

PROPOSITION 1. Let X = eX and Y = eY be positive definite matrices such that
X · Y= Y · X. Then, the exponential function maps the line segment

(1− r)X + rY, 0 6 r 6 1 (A 8)

in the Euclidean space of symmetric matrices to the geodesic between X and Y on
the Riemannian manifold of positive definite matrices and

d(X, Y)= ‖X −Y‖I. (A 9)

Proof. Chapter 6 in Bhatia (2015).

Finally, using the affine-invariance property of the Riemannian metric and noting
that I commutes with every element of Posn, one can prove the following theorem.

THEOREM 2. Let X and Y be positive definite matrices. There exists a unique
geodesic X#rY on the Riemannian manifold of positive definite matrices that joins X
and Y with the following parametrization:

X#rY= X1/2
· (X−1/2

· Y · X−1/2)r · X1/2, (A 10)

which is natural in the sense that

d(X, X#rY)= r d(X, Y) (A 11)

for each r ∈R. Furthermore, we have

d(X, Y)= ‖ log(X−1/2
· Y · X−1/2)‖I =

[
3∑

i=1

(log σi(X
−1
· Y))2

]1/2

. (A 12)

Proof. Chapter 6 in Bhatia (2015).
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Appendix B. Details of the numerical evolution of the conformation tensor
equations

The conformation tensor field is solved on a temporal grid that is staggered
by half a time step with respect to that of the velocity field. We use linear
interpolation to transfer between the two temporal grids. The conformation tensor
is time-marched using an equal sub-step second-order Runge–Kutta scheme. The
advection and stretching terms employ an Adams–Bashforth discretization at each
sub-step. Following Dubief et al. (2005), we ensure that the polymer does not exceed
its maximum extensibility by using a semi-implicit approach for the relaxation term
in the conformation tensor.

The advection term in the conformation tensor is second-order accurate in space
with the exception of a small number points where it is only first-order accurate:
∼0.1–0.3 % in the x and y directions and ∼3–5 % in the z direction. This change
in order is due to the special treatment of the advection term in the conformation
tensor that is needed to avoid numerical issues which lead to the conformation
tensor losing positive-definiteness. The special treatment is an adaptation of the
slope-limiting approach of Vaithianathan et al. (2006) (see also Dallas et al. (2010)
for an implementation). The approach of Vaithianathan et al. (2006) requires the
evaluation of three schemes, utilizing forward, backward and centred stencils, to
approximate the flux at the boundaries of each computational cell, at each time
step. The scheme that maximizes the eigenvalues of the conformation tensor at the
boundaries is then chosen. We modify this approach by evaluating the following
schemes in order, and choosing the first one that yields a positive definite tensor at
the boundaries: (i) centred stencil, (ii) upwind biased stencil, (iii) downwind biased
stencil and (iv) first-order approximation that equates the conformation tensor at
the cell centre and the boundary. Our approach is mathematically consistent with
Vaithianathan et al. (2006) but is computationally more efficient and defers to the
unbiased approximation when possible. In practice, we find that case (i) is sufficient
for the vast majority of the points in the domain (>90 %).

The evolution equation for the conformation tensor has no associated boundary
conditions since it is hyperbolic. The conformation tensor at the walls, where no
derivatives of the conformation tensor are needed, is then explicitly marched in time.
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