A SIMPLE C*-ALGEBRA GENERATED BY TWO FINITE-ORDER UNITARIES

MAN-DUEN CHOI

§1. Introduction. We present an example which illustrates several peculiar phenomena that may occur in the theory of C^* -algebras. In particular, we show that a C^* -subalgebra of a nuclear (amenable) C^* -algebra need not be nuclear (amenable).

The central object of this paper is a pair of abstract unitary matrices,

$$u = \begin{bmatrix} 0 & | & 1 \\ 1 & | & 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & | & 1 & 0 \end{bmatrix}$,

acting on a *common* Hilbert space. For an explicit construction, we may decompose an infinite-dimensional Hilbert space H into $H = H_0 \bigoplus H_1$, $H_1 = H_{\alpha} \bigoplus H_{\beta}$ with dim $H_0 = \dim H_1 = \dim H_{\alpha} = \dim H_{\beta}$, letting u, $v \in B(H)$ be any two unitary operators such that

$$u: \begin{cases} H_0 \to H_1 \\ H_1 \to H_0 \end{cases}, \quad v: \begin{cases} H_0 \to H_\alpha \\ H_\alpha \to H_\beta \\ H_\beta \to H_0 \end{cases}$$

and $u^2 = 1$, $v^3 = 1$. Whereas many choices of u, v are possible, it might be surprising to see that $C^*(u, v)$, the C^* -algebra generated by u and v, is algebraically unique; namely, if (u_1, v_1) is another pair of such unitaries, then $C^*(u, v)$ is canonically *-isomorphic with $C^*(u_1, v_1)$ (Theorem 2.6). In fact, we deduce further that $C^*(u, v)$ is a simple C^* -algebra with a unique (faithful) trace (Theorem 2.8).

In spite of its very elegant structure, $C^*(u, v)$ does possess several "pathological" properties. Foremost, we show directly that $C^*(u, v)$ is non-amenable in the sense of Johnson [16]. This appears to be the first explicit example in literature that a C^* -algebra may have a non-vanishing cohomological coefficient with respect to a dual Banach bimodule. In answering a question of Thayer [22], we show that $C^*(u, v)$, as a tracial C^* -algebra, is not quasidiagonal. Another peculiar fact lies in the non-nuclearity of $C^*(u, v)$; actually, we prove that $C^*(u, v)$ fails to enjoy a completely positive metric approximation property. The last result, having an interesting counterpart in Banach space theory, leads to a highly plausible conjecture: $C^*(u, v)$ might not have a Schauder basis.

Received February 21, 1978 and in revised form April 28, 1978. This research was supported in part by NSERC of Canada.

Recently, Cuntz has given a systematic investigation of \mathcal{O}_2 , the simple C^* -algebra generated by 2 isometries s, t satisfying $ss^* + tt^* = 1$. It has been shown that \mathcal{O}_2 is nuclear [14] and even amenable [19]. By a straightforward verification, we see that $C^*(u, v)$ is indeed a subalgebra of \mathcal{O}_2 . This enables us to assert that a C^* -subalgebra of a nuclear (amenable) C^* -algebra need not be nuclear (amenable).

Notably, the proof of Theorem 2.8 is a variant of Powers' treatment [18] on $C_{\text{reg}}^*(\mathbf{F}_2)$, the left regular representation of the free group on two generators. While some results of this paper are applicable to $C_{\text{reg}}^*(\mathbf{F}_2)$ as well, we remark, however, that $C^*(u, v)$ is feasible for a space-free description and possesses a much more tractable structure. Typically, u, v being finite-order unitaries leads to immediate consequences: $C^*(u, v)$ is singly generated and contains non-trivial projections. It appears unlikely (in fact, it remains open) that $C_{\text{reg}}^*(\mathbf{F}_2)$ could have similar properties.

Acknowledgement. The author would like to express his thanks to Edward G. Effros for many stimulating discussions on related topics.

§ 2. The basic structure. We begin with simple observations on words in u and v subject to the equality $u^2 = v^3 = 1$. By a *reduced word* w, we mean a formal product $x_1x_2 \ldots x_l$, with $x_i \in \{u, v, v^{-1}\}$, satisfying the condition: whenever j < l we have

$$\begin{cases} x_j = u \Longrightarrow x_{j+1} = v^{\pm 1} \\ x_j = v^{\pm 1} \Longrightarrow x_{j+1} = u. \end{cases}$$

The subscript *l* is called the *length* of *w*. Obviously, each formal product, subject to $u^2 = v^3 = 1$, can be simplified to a unique reduced word.

LEMMA 2.1. Let w be a reduced word in u, v ($u^2 = v^3 = 1$) of length l > 0, and $z_n = (vu)^n v^{-1}$. Then the reduced form for $z_n^{-1} w z_n$ begins with $v^{\pm 1}$ and ends with $v^{\pm 1}$ whenever $2n \ge l$.

Proof. We note that the last entry v^{-1} in z_n continues to be the last entry in the reduced form for wz_n , because length $(w) < \text{length}(z_n)$. Suppose the reduced form for $z_n^{-1}wz_n$ were ending with u. Then the last entry v^{-1} in wz_n would be cancelled out by the entry v in the left multiplication of $z_n^{-1} = v(uv^{-1})^n$; i.e., $z_n^{-1}wz_n = 1$, w = 1, which were impossible from the assumption of length (w) > 0. Therefore, the reduced form for $z_n^{-1}wz_n$ ends with $v^{\pm 1}$, and similarly begins with $v^{\pm 1}$. Thus the lemma is proved.

We will also need some manipulations on 2×2 matrix-operators. With respect to a fixed orthogonal decomposition of a Hilbert space $H = H_0 \oplus H_1$, we can write each operator $a \in B(H)$ in the form

$$a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

868

In particular,
$$e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 is the projection onto H_0 , and

$$\begin{cases} a = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix} & \text{if and only if } eae = 0, \\ a = \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix} & \text{if and only if } (1 - e)a(1 - e) = 0, \end{cases}$$

where #'s stand for entries we do not have to evaluate.

LEMMA 2.2. Let $u_1, \ldots u_n$ be unitaries such that each $u_i u_j^*$ is of the form $\begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix}$ whenever $i \neq j$. Suppose b is an operator of the form $\begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$; then $\|(1/n)\sum_{i=1}^n u_i^* b u_i\| \leq 2\|b\|/\sqrt{n}$.

Proof. We first assume that $b = \begin{bmatrix} 0 & 0 \\ \# & \# \end{bmatrix}$. Then it is clear that whenever $c = \begin{bmatrix} \# & \# \\ 0 & 0 \end{bmatrix}$, we have $||b + c||^2 \le ||b||^2 + ||c||^2$. From the fact

$$(u_{j}u_{i}^{*})b(u_{i}u_{j}^{*}) = \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ \# & \# \end{bmatrix} \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix} = \begin{bmatrix} \# & \# \\ 0 & 0 \end{bmatrix} \quad (i \neq j),$$

we derive that

$$\begin{aligned} \|\sum_{i=1}^{n} u_i^* b u_i\|^2 &= \|u_1(\sum_{i=1}^{n} u_i^* b u_i) u_1^*\|^2 = \|b + \sum_{i=2}^{n} u_1 u_i^* b u_i u_1^*\|^2 \\ &\leq \|b\|^2 + \|\sum_{i=2}^{n} u_1 u_i^* b u_i u_1^*\|^2 = \|b\|^2 + \|\sum_{i=2}^{n} u_i^* b u_i\|^2 \end{aligned}$$

and continuing this process,

$$\|\sum_{i=1}^{n} u_{i}^{*} b u_{i}\|^{2} \leq n \|b\|^{2}.$$

Now given $b = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$, we write $b = b_{1} + b_{2}^{*}$ where $b_{1} = \begin{bmatrix} 0 & 0 \\ \# & \# \end{bmatrix}$
 $b_{2} = \begin{bmatrix} 0 & 0 \\ \# & 0 \end{bmatrix}$. Then

$$\|\sum_{i=1}^{n} u_{i}^{*} b u_{i}\| \leq \|\sum_{i=1}^{n} u_{i}^{*} b_{1} u_{i}\| + \|\sum_{i=1}^{n} u_{i}^{*} b_{2} u_{i}\|$$

$$\leq \sqrt{n} \|b_{1}\| + \sqrt{n} \|b_{2}\| \leq 2\sqrt{n} \|b\|.$$

Therefore, the desired inequality follows.

PROPOSITION 2.3. Let e be a projection, and u, v be two unitary operators satisfying $u^2 = v^3 = 1$ and (1 - e)u(1 - e) = 0, eve = 0. Then

(i) $C^*(u, v)$ has a unique tracial state τ .

(ii) For each $a \in C^*(u, v)$ and $\epsilon > 0$, there exist an integer n and unitary operators $u_1, \ldots u_n \in C^*(u, v)$ such that

$$\|\tau(a)1 - (1/n) \sum u_i^* a u_i\| \leq \epsilon.$$

Proof. (0) Letting
$$e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, we have $u = \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix}$, $v = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$. Hence
 $v^{-1} = v^* = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$, $uv^{\pm 1} = \begin{bmatrix} \# & \# \\ 0 & \# \end{bmatrix}$, and for $\delta_i = \pm 1$,
 $(uv^{\delta_1})(uv^{\delta_2})\dots(uv^{\delta_n}) = \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix}$,
 $(uv^{\delta_1})(uv^{\delta_2})\dots(uv^{\delta_n})u = \begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix}$,
 $v^{\delta_0}(uv^{\delta_1})(uv^{\delta_2})\dots(uv^{\delta_n}) = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$.

That is, a reduced word beginning and ending with u is of the form $\begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix}$, while a reduced word beginning and ending with $v^{\pm 1}$ is of the form $\begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$.

(1) On the algebra of all finite linear combinations of reduced words in u, v ($u^2 = v^3 = 1$), we define a linear functional τ such that $\tau(a) = \alpha$ whenever $a = \alpha 1 + \sum \alpha_i w_i$ (w_i are reduced words of length > 0). A routine computation leads to $\tau(ab) = \tau(ba)$. We claim that τ is contractive in operator norm. Thus τ is well defined on the pre-*C**-algebra generated by u, v, and the extension of τ by continuity is a trace on *C**(u, v). (Note that the positivity of τ follows from $||\tau|| = 1 = \tau(1)$.)

To prove the claim, we note that if $a = \alpha 1 + \sum_{i=1}^{k} \alpha_i w_i$, then from Lemma 2.1, there exists a unitary operator z ($=z_n$ for a sufficiently large n) such that the reduced form for $z^*w_i z$ begins with $v^{\pm 1}$ and ends with $v^{\pm 1}$ for each i. Therefore $z^*az = \alpha 1 + \sum \alpha_i z^*w_i z$ admits a 2×2 matrix-operator expression

$$\begin{bmatrix} \alpha 1 & 0 \\ 0 & \alpha 1 \end{bmatrix} + \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix} = \begin{bmatrix} \alpha 1 & \# \\ \# & \# \end{bmatrix},$$

and $|\tau(a)| = |\alpha| \leq ||z^*az|| = ||a||$ as claimed.

(2) To prove (ii), it suffices to assume that *a* is a finite linear combination of words in *u*, *v*. Replacing *a* by its unitary equivalence, we may further assume from the preceding paragraph that $a = \alpha 1 + b$, where $\tau(a) = \alpha$, $b = \begin{bmatrix} 0 & \# \\ \# & \# \end{bmatrix}$. Letting $u_i = uv^{-1}(uv)^i$, we get that

$$u_{i}u_{j}^{*} = uv^{-1}(uv)^{i-j}vu = \begin{cases} uv^{-1}(uv)^{i-j-1}uv^{-1}u & (\text{if } i > j) \\ uvu(v^{-1}u)^{j-i-1}vu & (\text{if } i < j) \end{cases}$$

has a reduced form beginning and ending with u when $i \neq j$; hence $u_i u_j^* =$

$$\begin{bmatrix} \# & \# \\ \# & 0 \end{bmatrix} (i \neq j). \text{ Therefore, by Lemma 2.2, we derive that} \\ \|\tau(a)1 - (1/n)\sum u_i^* a u_i\| = \|(1/n)\sum u_i^* b u_i\| \leq 2\|b\|/\sqrt{n} \\ = 2\|a - \tau(a)1\|/\sqrt{n} \leq 4\|a\|/\sqrt{n}$$

which is smaller than any prescribed ϵ when *n* is sufficiently large.

(3) It remains to prove that τ is the unique trace. Suppose $C^*(u, v)$ has another trace σ , then from (ii), we have

$$\begin{aligned} |\tau(a) - \sigma(a)| &= |\sigma(\tau(a)1 - (1/n)\sum u_i^* a u_i)| \\ &\leq ||\tau(a)1 - (1/n)\sum u_i^* a u_i|| \leq \epsilon. \end{aligned}$$

Since ϵ is arbitrary, we conclude that $\tau = \sigma$ as desired. Thus the theorem is proved.

We are going to deal with a pair of concrete unitary operators. Let H be an infinite-dimensional Hilbert space with orthogonal decompositions $H = H_0 \oplus H_1$, $H_1 = H_\alpha \oplus H_\beta$, where dim $H_0 = \dim H_1 = \dim H_\alpha = \dim H_\beta$. With respect to $H = H_0 \oplus H_1$, we define $u \in B(H)$ by the expression $u = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (herein, H_0 and H_1 are identified via an arbitrary onto isometry). Similarly, with respect to $H = H_0 \oplus H_\alpha \oplus H_\beta$, we write

$$v = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \in B(H)$$

by identifying $H_0 = H_{\alpha} = H_{\beta}$. In other words, (u, v) is any pair of unitary operators in B(H) such that $u^2 = v^3 = 1$ and

$$u: \begin{pmatrix} H_0 \to H_1 \\ H_1 \to H_0 \end{pmatrix}, \quad v: \begin{cases} H_0 \to H_\alpha \\ H_\alpha \to H_\beta \\ H_\beta \to H_0 \end{cases}$$

To get an equational description, we let $e \in B(H)$ be the projection onto H_0 ; then $u, v \in B(H)$ are completely characterized by the equations

(2.1)
$$u = u^{-1} = u^*, e + u^*eu = 1,$$

(2.2) $v^2 = v^{-1} = v^*, e + v^*ev + vev^* = 1.$

LEMMA 2.4. Let e be a projection of the form $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then an operator v satisfies (2.2) if and only if v is the form $\begin{bmatrix} 0 & s_2^* \\ s_1 & s_2 s_1^* \end{bmatrix}$ where s_1 , s_2 are isometries satisfying $s_1s_1^* + s_2s_2^* = 1$.

Proof. The "if" part follows from a straightforward computation. Conversely, suppose v satisfies (2.2) and $v = \begin{bmatrix} x & s_2^* \\ s_1 & y \end{bmatrix}$ with x, y, s_1 , s_2 to be deter-

mined. Then the equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = e + v^* ev + vev^* = \begin{bmatrix} 1 + x^* x + xx^* & \# \\ \# & s_1 s_1^* + s_2 s_2^* \end{bmatrix}$$

leads to

$$1 = s_1 s_1^* + s_2 s_2^* \quad (a)$$

and x = 0, i.e., $v = \begin{bmatrix} 0 & s_2^* \\ s_1 & y \end{bmatrix}$. From v being an order-3 unitary, we derive that $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = v^* v = \begin{bmatrix} s_1^* s_1 & \# \\ \# & \# \end{bmatrix}, \quad \text{i.e., } s_1 \text{ is an isometry.}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = vv^* = \begin{bmatrix} s_2^* s_2 & \# \\ vs_2 & \# \end{bmatrix}, \text{ i.e., } s_2 \text{ is an isometry, } 0 = ys_2 \quad (b),$

and

$$\begin{bmatrix} 0 & s_1^* \\ s_2 & y^* \end{bmatrix} = v^* = v^2 = \begin{bmatrix} \# & \# \\ ys_1 & \# \end{bmatrix}, \text{ i.e., } s_2 = ys_1 \quad (c).$$

Combining (a) (b) (c), we get

$$y = y(s_1s_1^* + s_2s_2^*) = ys_1s_1^* = s_2s_1^*,$$

i.e., $v = \begin{bmatrix} 0 & s_2^* \\ s_1 & s_2s_1^* \end{bmatrix}$, as desired.

We denote by \mathcal{O}_2 , the C^* -algebra generated by two isometries s_1, s_2 satisfying $s_1s_1^* + s_2s_2^* = 1$, as analyzed in detail by Cuntz. An interesting feature of \mathcal{O}_2 lies in the fact that \mathcal{O}_2 is independent of the choice of s_1, s_2 (namely, if t_1, t_2 are isometries satisfying $t_1t_1^* + t_2t_2^* = 1$, then $C^*(s_1, s_2)$ is canonically *-isomorphic with $C^*(t_1, t_2)$) ([14, Theorem 1.12]). The following lemma is a simple consequence.

LEMMA 2.5. $M_2(\mathcal{O}_2)$ is *-isomorphic with \mathcal{O}_2

Proof. Letting $\mathcal{O}_2 = C^*(s_1, s_2)$ where s_1, s_2 are isometries satisfying $1 = s_1s_1^* + s_2s_2^*$, we note that

$$s_1^*s_2 = s_1^*(s_1s_1^* + s_2s_2^*)s_2 = s_1^*s_2 + s_1^*s_2 = 2s_1^*s_2,$$

i.e., $s_1^*s_2 = 0$ and, by taking adjoint, $s_2^*s_1 = 0$. Now we write

$$t_1 = \begin{bmatrix} s_1 & s_2 \\ 0 & 0 \end{bmatrix}, \quad t_2 = \begin{bmatrix} 0 & 0 \\ s_1 & s_2 \end{bmatrix}, \in M_2(\mathscr{O}_2);$$

then

$$t_{i}^{*}t_{i} = \begin{bmatrix} s_{1}^{*}s_{1} & s_{1}^{*}s_{2} \\ s_{2}^{*}s_{1} & s_{2}^{*}s_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

872

and

$$t_1t_1^* + t_2t_2^* = \begin{bmatrix} s_1s_1^* + s_2s_2^* & 0\\ 0 & s_1s_1^* + s_2s_2^* \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

Hence $C^*(t_1, t_2)$ is *-isomorphic with $C^*(s_1, s_2)$ from the fact mentioned before this lemma. On the other hand, a direct computation, through

$$t_1t_1^* = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad t_2t_2^* = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad t_1t_2^* = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

leads to an easy conclusion that $C^*(t_1, t_2) = M_2(\mathcal{O}_2)$. Therefore, $M_2(\mathcal{O}_2)$ is *-isomorphic with \mathcal{O}_2 as desired.

THEOREM 2.6. Suppose e is a projection and u, v are operators satisfying (2.1)–(2.2). Then $C^*(e, u, v)$ is *-isomorphic with \mathcal{O}_2 . Consequently, $C^*(e, u, v)$ is algebraically unique; i.e., if e_1 , e_2 are projections and (e_i, u_i, v_i) , i = 1, 2, are triples satisfying (2.1)–(2.2), then $C^*(e_1, u_1, v_1)$ is canonically *-isomorphic with $C^*(e_2, u_2, v_2)$.

Proof. We write $e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $u = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$; then by Lemma 2.4,

$$v = \begin{bmatrix} 0 & s_2^* \\ s_1 & s_2 s_1^* \end{bmatrix}$$

where s_1, s_2 are isometries satisfying $s_1s_1^* + s_2s_2^* = 1$. Hence it follows easily that

$$C^*(e, u, v) = M_2(C^*(s_1, s_2)) \simeq M_2(\mathcal{O}_2) \simeq \mathcal{O}_2.$$

Since all *-isomorphisms are canonically defined, $C^*(e, u, v)$ is thus algebraically unique.

COROLLARY 2.7 Suppose e is a projection and u, v are operators satisfying (2.1)-(2.2). Then $C^*(u, v)$ is *-isomorphic with the left regular representation of a discrete group.

Proof. We denote by *G*, the quotient group of \mathbf{F}_2 with a presentation $\{u, v: u^2 = v^3 = 1\}$. Then there exists *S*, a subset of *G*, satisfying the condition

(2.3)
$$S \cap uS = \emptyset, S \cap vS = \emptyset$$
, and $G = S \cup uS = S \cup vS \cup v^{-1}S$.

To construct such *S*, we may define the membership of *S* by induction on the length of reduced words as follows:

(i) The empty word $1 \notin S$.

(ii) Whenever z is a reduced word of length $n \ (\geq 0)$, and w = xz $(x \in \{u, v, v^{-1}\})$ is a reduced word of length n + 1, we have that

$$\begin{cases} w \in S \text{ if } x \neq v^{-1} \text{ and } z \notin S, \\ w \notin S \text{ if } x = v^{-1} \text{ or } z \in S. \end{cases}$$

MAN-DUEN CHOI

Now on the Hilbert space $l^2(G)$, we let $E \in B(l^2(G))$ be the projection onto $l^2(S)$, and let L(u), $L(v) \in B(l^2(G))$ be the left translations induced by u, v respectively. It is straightforward to check that L(u) and L(v) are unitaries satisfying $L(u)^2 = L(v)^3 = 1$. From the condition (2.3), we get

$$E + L(u)^*EL(u) = 1, E + L(v)^*EL(v) + L(v)EL(v)^* = 1.$$

Therefore, by Theorem 2.6, we conclude that $C^*(e, u, v)$ is canonically *-isomorphic with $C^*(E, L(u), L(v))$. In particular, $C^*(u, v)$ is *-isomorphic with $C^*(L(u), L(v)) = C_{reg}^*(G)$ as desired.

The proof of the following theorem is an immitation of Powers' work on the simplicity of $C_{reg}^*(F_2)$ ([18], see also [1, Theorem VD]).

THEOREM 2.8. Suppose e is a projection and u, v are operators satisfying (2.1)-(2.2). Then $C^*(u, v)$ is a simple C^* -algebra possessing a unique tracial state.

Proof. Clearly, u and v satisfy the hypothesis of Proposition 2.3. Hence $C^*(u, v)$ has a unique tracial state τ . We claim that τ is faithful. Indeed, τ is associated with a representation π_{τ} of $C^*(u, v)$ on a Hilbert space H_{τ} and a cyclic vector ξ_{τ} , satisfying $\tau(a) = \langle \pi_{\tau}(a)\xi_{\tau}, \xi_{\tau} \rangle$ for all $a \in C^*(u, v)$. It is straightforward to check that H_{τ} is identical with $l^2(G)$, where G is the group with a presentation $\{u, v: u^2 = v^3 = 1\}$, under the correspondence

$$\sum {_i^n}lpha {_i}w{_i} \in ~l^2(G) \mapsto ~\sum {_i^n}lpha {_i}\pi_{_\tau}(w{_i})\xi_{_ au} \in ~H_{_ au}~(w{_i} \in ~G).$$

Consequently, $\pi_{\tau}(C^*(u, v))$ is just $C_{\text{reg}}^*(G)$. From Corollary 2.7, we deduce that $C^*(u, v)$ is canonically *-isomorphic with $\pi_{\tau}(C^*(u, v))$; i.e., π_{τ} is faithful, thus τ is faithful as claimed.

Alternatively, we observe directly that $C_{\text{reg}}^*(G)$, as of the proof of Corollary 2.7, has a faithful trace, defined by $a \mapsto \langle a\xi, \xi \rangle$ where $\xi \in l^2(G)$ satisfying $\xi(1) = 1$ and $\xi(g) = 0$ for $g \neq 1$.

Now suppose J is a non-zero 2-sided ideal of $C^*(u, v)$; then J contains a positive element $a \neq 0$, whence $\tau(a) = \alpha \neq 0$ from the faithfulness of τ . By Proposition 2.3(*ii*), there exist unitaries $u_1, \ldots, u_n \in C^*(u, v)$ such that $\|\alpha 1 - (1/n) \sum u_i^* a u_i\| \leq \alpha/2$. Hence $\sum u_i^* a u_i$ is invertible, and the ideal generated by a is $C^*(u, v)$. Therefore $J = C^*(u, v)$ and we conclude that $C^*(u, v)$ is simple.

§ 3. Some peculiar properties. Throughout this section, we let *e* be a projection, and *u*, *v* be operators satisfying the conditions (2.1)-(2.2); i.e., *u*, *v* are unitary operators satisfying $u^2 = v^3 = 1$ and

(†)
$$e + u^*eu = 1, e + v^*ev + vev^* = 1.$$

From §2, $C^*(u, v)$ is a tracial C^* -algebra that can be imbedded into \mathcal{O}_2 as a subalgebra. Whereupon, we will show further that $C^*(u, v)$ is an explicit

example for several types of pathologies in C^* -algebraic structure theory. Notably, a condition similar to (†) has been employed in recent literature ([8, p. 173], [12, Lemma 4.2], and [2]) for exploring some striking but different features of $C_{\text{reg}}^*(\mathbf{F}_2)$. While partial results of this section are also applicable to $C_{\text{reg}}^*(\mathbf{F}_2)$, we will work on $C^*(u, v)$ exclusively since $C^*(u, v)$ possesses a much more flexible and tractable structure.

In regard to some algebraic topological aspects of Banach algebras, Johnson [16] has introduced the notion of amenability. Namely, a unital Banach algebra A is *amenable* if and only if for each Banach A-bimodule X, each bounded derivation $D: A \to X^*$ is inner (i.e., given any bounded linear map $D: A \to X^*$ satisfying

$$D(ab)(x) = D(a)(bx) + D(b)(xa) \text{ for all } a, b \in A, x \in X,$$

there exists $\theta \in X^*$ such that $D(a)(x) = \theta(ax - xa)$ for all $a \in A, x \in X$).

The existence of non-amenable C^* -algebras is revealed in a result of Bunce [5]; the C^* -algebra generated by the left regular representation of a discrete group is amenable if and only if the group is amenable. Due to the recent work of Connes [13, Corollary 2] (see also [6, Corollary 5] for a different proof), we know further that every non-nuclear C^* -algebra is non-amenable. However, all known proofs, involving deep structure theory, probably do not admit easy interpretations on concrete examples. The following explicit demonstration on $C^*(u, v)$ may provide a clearer illustration of the non-amenability.

Example A: A separable non-amenable C*-algebra.

Demonstration. Let X be the quotient Banach space $B(H)/C^*(u, v)$; then X^* can be identified with

$$\mathscr{S} = \{ \theta \in B(H)^* : \theta |_{C^*(u,v)} = 0 \}$$

and \mathcal{S} is thus a dual $C^*(u, v)$ -bimodule under the action

$$(a.\theta)(t) = \theta(ta), \ (\theta.a)(t) = \theta(at)$$

for $a \in C^*(u, v)$, $t \in B(H)$, $\theta \in \mathscr{S}$. We construct a linear map $D: C^*(u, v) \to \mathscr{S}$ by $D(a)(t) = \rho(at - ta)$, where ρ is any state on B(H) satisfying $\rho|_{C^*(u,v)} = \text{trace } \tau$. It is straightforward to check that $D(a)|_{C^*(u,v)} = 0$ and D is a bounded derivation. Now suppose that D is inner; i.e., there exists $\theta \in \mathscr{S}$ such that for all $a \in C^*(u, v)$, $t \in B(H)$,

$$\theta(at - ta) = D(a)(t) = \rho(at - ta).$$

Letting $\sigma = \rho - \theta$, we have that $\sigma(at - ta) = 0$, and

$$\sigma(1) = \rho(1) - \theta(1) = \rho(1) = 1.$$

Thus

$$\sigma(u^*eu - e) = \sigma(u^*eu - uu^*e) = 0,$$

and similarly,

 $\sigma(v^*ev - e) = 0, \, \sigma(vev^* - e) = 0.$

Hence the condition (†) leads to

 $2\sigma(e) = \sigma(1) = 1, 3\sigma(e) = \sigma(1) = 1,$

which is impossible. Therefore, D is not inner, and $C^*(u, v)$ is not amenable.

Remark. Bunce ([4, Proposition 2]: See also [5, Proposition 1]) has proved that a unital C^* -algebra A is amenable if and only if for any A-bimodules $X \subseteq Y$, each $\theta \in X^*$ satisfying $\theta(w^*xw) = \theta(x)$ for all $x \in X$, unitary $w \in A$ has an extension $\theta_1 \in Y^*$ satisfying $\theta_1(w^*yw) = \theta_1(y)$ for all $y \in Y$, unitary $w \in A$. Using this result, we can also deduce immediately that $C^*(u, v)$ is non-amenable. Namely, by letting $A = X = C^*(u, v)$, $Y = C^*(e, u, v)$ or B(H), and θ = trace τ , it is transparent that the condition (†) does not admit θ to have the above extension.

We say that a C^* -algebra $A \in B(H)$ is quasi-diagonal if and only if there is an increasing net of finite-rank projections $p_{\nu} \in B(H)$ converging to 1 strongly and $||ap_{\nu} - p_{\nu}a|| \rightarrow 0$ for all $a \in A$. In answering a question of Thayer [22, p. 56], we show that $C^*(u, v)$ serves as

Example B. A tracial separable C*-algebra that is not quasi-diagonal.

Demonstration. Suppose there is a rank-*n* projection $p \in B(H)$ such that $||up - pu|| \leq \epsilon$ and $||vp - pv|| \leq \epsilon$. Then

$$p(e - vev^*)p = pev^*(vp - pv)p + (pev^*p)(pvp) - (pvp)(pev^*p) + p(vp - pv)ev^*p.$$

Letting τ_n be the unital trace on pB(H)p ($\simeq M_n$), we have

$$\begin{aligned} |\tau_n(p(e - vev^*)p)| &= |\tau_n(pev^*(vp - pv)p) + \tau_n(p(vp - pv)ev^*p)| \\ &\leq 2||vp - pv|| \leq 2\epsilon. \end{aligned}$$

Similarly,

$$|\tau_n(p(e - v^*ev)p)| \leq 2\epsilon, |\tau_n(p(e - u^*eu)p)| \leq 2\epsilon.$$

But from (\dagger) , we have

$$\tau_n(p(e + u^*eu)p) = 1, \tau_n(p(e + v^*ev + vev^*)p) = 1.$$

Hence,

$$2\tau_n(pep) \ge 1 - 2\epsilon, 3\tau_n(pep) \le 1 + 4\epsilon,$$

which are impossible, if ϵ is sufficiently small. Therefore, $C^*(u, v)$ is not quasidiagonal.

Remark. The meaning of a quasi-diagonal C^* -algebra is equivalent to that of a quasi-triangular C^* -algebra. On the other hand, by the spectral characteriza-

876

tion theorem for quasi-triangular operators [3], we can deduce that every operator in $C^*(u, v)$ is quasi-triangular. Hence, $C^*(u, v)$ serves as an example for another peculiar feature: a C^* -algebra such that every element is quasi-triangular, but globally the C^* -algebra, as a whole, is not quasi-triangular.

We proceed to establish that $C^*(u, v)$ fails to have certain approximation properties. For this purpose, we will estimate how far a general unital completely positive linear map is away from being multiplicative.

We note that each unital completely positive linear map φ on a unital C^* -algebra A has the property:

$$\varphi(a^*a) \ge \varphi(a^*)\varphi(a) \ge 0$$
 for all $a \in A$.

In case $\varphi(a_0^*a_0) = \varphi(a_0^*)\varphi(a_0)$, we have then $\varphi(aa_0) = \varphi(a)\varphi(a_0)$ for all $a \in A$ (see e.g., [7, Theorem 3.1]). Hence the value of $\|\varphi(a_0^*a_0) - \varphi(a_0^*)\varphi(a_0)\|$ can be regarded as the "amount of non-multiplicativity" of φ at a_0 . This notion can be further justified in the following proposition and its corollary.

PROPOSITION 3.1. Let A be a unital C*-algebra and φ be a unital completely positive linear map: $A \rightarrow B(H)$. If

$$\begin{aligned} \|\varphi(a_i^*a_i) - \varphi(a_i^*)\varphi(a_i)\| &\leq \delta_i^2 \ (i = 0, 1), then \\ \|\varphi(a_1^*a_0) - \varphi(a_1^*)\varphi(a_0)\| &\leq \delta_1\delta_0. \end{aligned}$$

Proof. From Stinespring's decomposition theorem [20], there exist a *-representation π of A on a Hilbert space K, and an into isometry $s: H \to K$ such that $\varphi(a) = s^*\pi(a)s$ for all $a \in A$. Letting $x_i = (1 - ss^*)\pi(a_i)s$, we get

$$x_i^* x_j = s^* \pi(a_i^*) (1 - ss^*) \pi(a_j) s = s^* \pi(a_i^* a_j) s - s^* \pi(a_i^*) ss^* \pi(a_j) s$$

= $\varphi(a_i^* a_j) - \varphi(a_i^*) \varphi(a_j).$

Therefore,

$$\begin{aligned} |\varphi(a_1^*a_0) - \varphi(a_1^*)\varphi(a_0)| &= ||x_1^*x_0|| \leq ||x_1^*x_1||^{1/2} ||x_0^*x_0||^{1/2} \\ &= ||\varphi(a_1^*a_1) - \varphi(a_1^*)\varphi(a_1)||^{1/2} \cdot ||\varphi(a_0^*a_0) - \varphi(a_0^*)\varphi(a_0)||^{1/2} \leq \delta_1 \delta_0 \end{aligned}$$

as desired.

COROLLARY 3.2. Let A be a unital C*-algebra and φ be a unital completely positive linear map: $A \to B(H)$. If

$$\|\varphi(a_0^*a_0) - \varphi(a_0^*)\varphi(a_0)\| \leq \delta^2,$$

then

$$\|\varphi(aa_0) - \varphi(a)\varphi(a_0)\| \leq \delta \|a\|$$
 for all $a \in A$.

Proof. Note that

$$0 \leq \varphi(aa^*) - \varphi(a)\varphi(a^*) \leq \varphi(aa^*) \leq ||aa^*|| = ||a||^2.$$

So Proposition 3.1 applies.

We say that a unital C*-algebra A is nuclear if and only if it satisfies one of

the following four equivalent conditions (see [9, Theorem 3.1] [10, Corollary 3.2] [11, Theorem 3]):

(I) There exist finite-rank unital completely positive linear maps $\varphi_{\nu}: A \to A$ such that φ_{ν} converge to the identity map in point-norm topology.

(II) There exist unital completely positive linear maps

 $A \xrightarrow{\sigma_{\nu}} M_{n_{\nu}} \xrightarrow{\theta_{\nu}} A$

(certainly, n_{ν} changes with ν) such that $\theta_{\nu} \bigcirc \sigma_{\nu}$ converge to the identity map in point-norm topology.

(III) For each C*-algebra B, the algebraic tensor product $A \otimes B$ has a unique C*-norm.

(IV) The second dual of A is injective.

It is well known that there exist (non-nuclear) C^* -algebras failing to enjoy the condition (*III*) or (*IV*) (see e.g., [**21**, pp. 119–121] [**23**, Prop. 7.4] [**17**, p. 175] [**8**, pp. 172–173] [**24**, Corollary 1.9]). By virtue of abstract theorems, these C^* -algebras do not satisfy the condition (*I*) or (*II*) either. However, the abstract proofs involve deep W^* -algebra theory, throwing not much light on explicit examples. Thus, it might be desirable to see directly (without using any W^* algebra theory) that $C^*(u, v)$ fails to have completely positive metric approximation property. In fact, $C^*(u, v)$ serves as

Example C. A singly generated non-nuclear C^* -algebra.

Demonstration. Since v is a finite-order unitary, there exists a hermitian operator a such that $C^*(v) = C^*(a)$. Therefore, from u and a being hermitian, $C^*(u, v) = C^*(u, a) = C^*(u + \sqrt{-1}a)$ is a singly generated C^* -algebra.

Now suppose $C^*(u, v)$ is nuclear; then from condition (II), given $\delta > 0$, there exist unital completely positive linear maps $C^*(u, v) \xrightarrow{\sigma} M_n \xrightarrow{\theta} C^*(u, v)$ such that

 $\|\theta(\sigma(u)) - u\| \leq \frac{1}{2}\delta^2$, and $\|\theta(\sigma(v)) - v\| \leq \frac{1}{2}\delta^2$.

Extending σ to a completely positive linear map $\sigma_1: C^*(e, u, v) \to M_n$ and letting

$$\varphi = \theta \bigcirc \sigma_1 \colon C^*(e, u, v) \longrightarrow C^*(u, v),$$

we still have $\|\varphi(v) - v\| \leq \frac{1}{2}\delta^2$ and

$$\begin{aligned} \|\varphi(v^*v) - \varphi(v^*)\varphi(v)\| &= \|1 - \varphi(v^*)\varphi(v)\| \le \|v^*[v - \varphi(v)]\| \\ &+ \|[v - \varphi(v)]^*\varphi(v)\| \le \frac{1}{2}\delta^2 + \frac{1}{2}\delta^2 = \delta^2. \end{aligned}$$

From Corollary 3.2, we get

$$\begin{aligned} \|\varphi(v^*ev) - \varphi(v^*)\varphi(e)\varphi(v)\| &\leq \|\varphi(v^*ev) - \varphi(v^*e)\varphi(v)\| \\ &+ \|[\varphi(ev) - \varphi(e)\varphi(v)]^*\varphi(v)\| \leq 2\delta. \end{aligned}$$

Hence,

$$\begin{aligned} \|\varphi(v^*ev) - v^*\varphi(e)v\| &\leq \|\varphi(v^*ev) - \varphi(v^*)\varphi(e)\varphi(v)\| \\ &+ \|\varphi(v^*)\varphi(e)[\varphi(v) - v]\| + \|[\varphi(v) - v]^*\varphi(e)v\| \leq 2\delta + \frac{1}{2}\delta^2 + \frac{1}{2}\delta^2 \\ &= 2\delta + \delta^2, = \epsilon, \text{ say.} \end{aligned}$$

Applying the trace τ , we derive

$$\begin{aligned} |(\tau \bigcirc \varphi)(v^*ev - e)| &= |\tau(\varphi(v^*ev) - v^*\varphi(e)v)| \\ &\leq ||\varphi(v^*ev) - v^*\varphi(e)v|| \leq \epsilon, \end{aligned}$$

and similarly,

$$|(\tau \odot \varphi)(u^*eu - e)| \leq \epsilon, |(\tau \odot \varphi)(vev^* - e)| \leq \epsilon.$$

Thus the equations $e + u^*eu = 1$, $e + v^*ev + vev^* = 1$ lead to

 $2\tau(\varphi(e)) \ge 1 - \epsilon, \ 3\tau(\varphi(e)) \le 1 + 2\epsilon,$

which are impossible for a sufficiently small ϵ . Therefore, $C^*(u, v)$ is non-nuclear as asserted.

Finally, we conclude with an example that gives a negative answer to a widely held conjecture.

Example D. A non-nuclear (non-amenable) C*-subalgebra of a nuclear (amenable) C*-algebra.

Demonstration. From the demonstrations of Examples A and C, we know that $C^*(u, v)$ is neither nuclear nor amenable. From [14] and [19], we know that \mathcal{O}_2 is nuclear and even amenable. As established in §2, $C^*(u, v) \subseteq C^*(e, u, v) \simeq \mathcal{O}_2$. Thus we are done.

References

- 1. C. A. Akemann and P. A. Ostrand, *Computing norms in group C*-algebras*, Amer. J. Math. 98 (1976), 1015–1047.
- 2. J. Anderson, A C*-algebra A for which Ext A is not a group, Ann. of Math. 107 (1978), 455-458.
- 3. C. Apostal, C. Foias, and D. Voiculescu, Some results on non-quasi-triangular operators, IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
- 4. J. Bunce, Characterizations of amenable and strongly amenable C*-algebras, Pacific J. Math. 43 (1972), 563-572.
- 5. —— Finite operators and amenable C*-algebras, Proc. Amer. Math. Soc. 56 (1976), 145–151.
- J. Bunce and W. L. Paschke, Quasi-expectations and amenable von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 232–236.
- 7. M. D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Ill. J. Math. 18 (1974), 565–574.
- 8. M. D. Choi and E. G. Effros, *Injectivity and operator spaces*, J. Func. Anal. 24 (1977), 156–209.
- 9. Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-79.
- 10. ——— Separable nuclear C*-algebras and injectivity, Duke Math. J. 43 (1976), 309-322.

MAN-DUEN CHOI

- Muclear C*-algebras and injectivity: the general case, Indiana U. Math. J. 26 (1977), 443-446.
- Lifting problems and the cohomology of C*-algebras, Can. J. Math. 29 (1977), 1092– 1111.
- 13. A. Connes, On the cohomology of operator algebras, J. Func. Anal. 28 (1978), 248-253.
- J. Cuntz: Simple C*-algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173-185.
- **15.** E. G. Effros, *Aspects of non-commutative order*, Notes for a lecture given at the Second U.S.-Japan Seminar on *C**-algebras and Applications to Physics, 1977.
- 16. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- 17. E. C. Lance, On nuclear C*-algebras, J. Func. Anal. 12 (1973) 157-176.
- R. T. Powers, Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151–156.
- J. Rosenberg, Amenability of cross products of C*-algebras, Comm. Math. Phys. 57 (1977), 187–191.
- W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
- **21.** M. Takesaki, On the crossnorm of the direct product of C*-algebras, Tôhoku Math. J. 16 (1964), 111–122.
- 22. F. J. Thayer, Quasi-diagonal C*-algebras, J. Func. Anal. 25 (1977), 50-57.
- 23. J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras, Lecture Notes, Univ. of Copenhagen, 1970.
- 24. S. Wassermann, On tensor products of certain group C*-algebras, J. Func. Anal. 23 (1976), 239–254.

University of Toronto, Toronto, Ontario