A SIMPLE C^{*}-ALGEBRA GENERATED BY TWO FINITE-ORDER UNITARIES

MAN-DUEN CHOI

§ 1. Introduction. We present an example which illustrates several peculiar phenomena that may occur in the theory of C^{*}-algebras. In particular, we show that a C^{*}-subalgebra of a nuclear (amenable) C^{*}-algebra need not be nuclear (amenable).

The central object of this paper is a pair of abstract unitary matrices,

$$
u=\left[\begin{array}{c|c}
0 & 1 \\
\hline 1 & 0
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{c|cc}
0 & 0 & 1 \\
\hline 1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

acting on a common Hilbert space. For an explicit construction, we may decompose an infinite-dimensional Hilbert space H into $H=H_{0} \oplus H_{1}$, $\mathrm{H}_{1}=H_{\alpha} \oplus H_{\beta}$ with $\operatorname{dim} H_{0}=\operatorname{dim} H_{1}=\operatorname{dim} H_{\alpha}=\operatorname{dim} H_{\beta}$, letting u, $v \in B(H)$ be any two unitary operators such that

$$
u:\left\{\begin{array} { l }
{ H _ { 0 } \rightarrow H _ { 1 } } \\
{ H _ { 1 } \rightarrow H _ { 0 } }
\end{array} , \quad \text { v: } \left\{\begin{array}{l}
H_{0} \rightarrow H_{\alpha} \\
H_{\alpha} \rightarrow H_{\beta} \\
H_{\beta} \rightarrow H_{0}
\end{array}\right.\right.
$$

and $u^{2}=1, v^{3}=1$. Whereas many choices of u, v are possible, it might be surprising to see that $C^{*}(u, v)$, the C^{*}-algebra generated by u and v, is algebraically unique; namely, if (u_{1}, v_{1}) is another pair of such unitaries, then $C^{*}(u, v)$ is canonically *-isomorphic with $C^{*}\left(u_{1}, v_{1}\right)$ (Theorem 2.6). In fact, we deduce further that $C^{*}(u, v)$ is a simple C^{*}-algebra with a unique (faithful) trace (Theorem 2.8).

In spite of its very elegant structure, $C^{*}(u, v)$ does possess several "pathological" properties. Foremost, we show directly that $C^{*}(u, v)$ is non-amenable in the sense of Johnson [16]. This appears to be the first explicit example in literature that a C^{*}-algebra may have a non-vanishing cohomological coefficient with respect to a dual Banach bimodule. In answering a question of Thayer $[\mathbf{2 2}]$, we show that $C^{*}(u, v)$, as a tracial C^{*}-algebra, is not quasidiagonal. Another peculiar fact lies in the non-nuclearity of $C^{*}(u, v)$; actually, we prove that $C^{*}(u, v)$ fails to enjoy a completely positive metric approximation property. The last result, having an interesting counterpart in Banach space theory, leads to a highly plausible conjecture: $C^{*}(u, v)$ might not have a Schauder basis.

[^0]Recently, Cuntz has given a systematic investigation of \mathscr{O}_{2}, the simple C^{*}-algebra generated by 2 isometries s, t satisfying $s s^{*}+t t^{*}=1$. It has been shown that \mathscr{O}_{2} is nuclear [14] and even amenable $\lfloor\mathbf{1 9}]$. By a straightforward verification, we see that $C^{*}(u, v)$ is indeed a subalgebra of \mathscr{O}_{2}. This enables us to assert that a C^{*}-subalgebra of a nuclear (amenable) C^{*}-algebra need not be nuclear (amenable).

Notably, the proof of Theorem 2.8 is a variant of Powers' treatment [18] on $C_{\text {reg }}{ }^{*}\left(\mathbf{F}_{2}\right)$, the left regular representation of the free group on two generators. While some results of this paper are applicable to $C_{\text {reg }}{ }^{*}\left(\mathbf{F}_{2}\right)$ as well, we remark, however, that $C^{*}(u, v)$ is feasible for a space-free description and possesses a much more tractable structure. Typically, u, v being finite-order unitaries leads to immediate consequences: $C^{*}(u, v)$ is singly generated and contains nontrivial projections. It appears unlikely (in fact, it remains open) that $C_{\text {reg }}{ }^{*}\left(\mathbf{F}_{2}\right)$ could have similar properties.

Acknowledgement. The author would like to express his thanks to Edward G. Effros for many stimulating discussions on related topics.
§ 2. The basic structure. We begin with simple observations on words in u and v subject to the equality $u^{2}=v^{3}=1$. By a reduced word w, we mean a formal product $x_{1} x_{2} \ldots x_{l}$, with $x_{i} \in\left\{u, v, v^{-1}\right\}$, satisfying the condition: whenever $j<l$ we have

$$
\left\{\begin{array}{l}
x_{j}=u \Rightarrow x_{j+1}=v^{ \pm 1} \\
x_{j}=v^{ \pm 1} \Rightarrow x_{j+1}=u .
\end{array}\right.
$$

The subscript l is called the length of w. Obviously, each formal product, sub)ject to $u^{2}=v^{3}=1$, can be simplified to a unique reduced word.

Lemma 2.1. Let we a reduced word in $u, v\left(u^{2}=v^{3}=1\right)$ of length $l>0$, and $z_{n}=(v u)^{n} v^{-1}$. Then the reduced form for $z_{n}^{-1} w z_{n}$ begins with $v^{ \pm 1}$ and ends with $v^{ \pm 1}$ whenever $2 n \geqq l$.

Proof. We note that the last entry v^{-1} in z_{n} continues to be the last entry in the reduced form for $w z_{n}$, because length $(w)<$ length $\left(z_{n}\right)$. Suppose the reduced form for $z_{n}^{-1} w z_{n}$ were ending with u. Then the last entry v^{-1} in $w z_{n}$ would be cancelled out by the entry v in the left multiplication of $z_{n}^{-1}=v\left(u v^{-1}\right)^{n}$; i.e., $z_{n}^{-1} w z_{n}=1, w=1$, which were impossible from the assumption of length (w) >0. Therefore, the reduced form for $z_{n}^{-1} w z_{n}$ ends with $v^{ \pm 1}$, and similarly begins with $v^{ \pm 1}$. Thus the lemma is proved.

We will also need some manipulations on 2×2 matrix-operators. With respect to a fixed orthogonal decomposition of a Hilbert space $H=H_{0} \oplus H_{1}$, we can write each operator $a \in B(H)$ in the form

$$
a=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] .
$$

In particular, $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is the projection onto H_{0}, and

$$
\left\{\begin{array}{l}
a=\left[\begin{array}{ll}
0 & \# \\
\# & \#
\end{array}\right] \text { if and only if eae }=0 \\
a=\left[\begin{array}{ll}
\# & \# \\
\# & 0
\end{array}\right] \text { if and only if }(1-e) a(1-e)=0
\end{array}\right.
$$

where \#'s stand for entries we do not have to evaluate.
Lemma 2.2. Let $u_{1}, \ldots u_{n}$ be unitaries such that each $u_{i} u_{j}{ }^{*}$ is of the form $\left[\begin{array}{ll}\# & \# \\ \# & 0\end{array}\right]$ whenever $i \neq j$. Suppose b is an operator of the form $\left[\begin{array}{cc}0 & \# \\ \# & \#\end{array}\right]$; then $\left\|(1 / n) \sum_{i=1}{ }^{n} u_{i}{ }^{*} b u_{i}\right\| \leqq 2\|b\| / \sqrt{n}$.
Proof. We first assume that $b=\left[\begin{array}{ll}0 & 0 \\ \# & \#\end{array}\right]$. Then it is clear that whenever $c=\left[\begin{array}{cc}\# & \# \\ 0 & 0\end{array}\right]$, we have $\|b+c\|^{2} \leqq\|b\|^{2}+\|c\|^{2}$. From the fact

$$
\left(u_{j} u_{i}^{*}\right) b\left(u_{i} u_{j}^{*}\right)=\left[\begin{array}{cc}
\# & \# \\
\# & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
\# & \#
\end{array}\right]\left[\begin{array}{ll}
\# & \# \\
\# & 0
\end{array}\right]=\left[\begin{array}{cc}
\# & \# \\
0 & 0
\end{array}\right] \quad(i \neq j)
$$

we derive that

$$
\begin{array}{r}
\left\|\sum_{i=1}^{n} u_{i}^{*} b u_{i}\right\|^{2}=\| u_{1}\left(\sum_{\left.i=1^{n} u_{i}{ }^{*} b u_{i}\right) u_{1}{ }^{*}\left\|^{2}=\right\| b+\sum_{i=2^{n} u_{1} u_{i}{ }^{*} b u_{i} u_{1}{ }^{*} \|^{2}}}^{\leqq\|b\|^{2}+\left\|\sum_{i=2}^{n} u_{1} u_{i}^{*} b u_{i} u_{1}{ }^{*}\right\|^{2}=\|b\|^{2}+\left\|\sum_{i=2^{n} u_{i}}{ }^{*} b u_{i}\right\|^{2}}\right.
\end{array}
$$

and continuing this process,

$$
\left\|\sum_{i=1}{ }^{n} u_{i}^{*} b u_{i}\right\|^{2} \leqq n\|b\|^{2} .
$$

Now given $b=\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right]$, we write $b=b_{1}+b_{2}{ }^{*}$ where $b_{1}=\left[\begin{array}{ll}0 & 0 \\ \# & \#\end{array}\right]$, $b_{2}=\left[\begin{array}{ll}0 & 0 \\ \# & 0\end{array}\right]$. Then

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} u_{i}^{*} b u_{i}\right\| \leqq\left\|\sum_{i=1}^{n} u_{i}^{*} b_{1} u_{i}\right\| & +\left\|\sum_{i=1}^{n} u_{i}^{*} b_{2} u_{i}\right\| \\
& \leqq \sqrt{n}\left\|b_{1}\right\|+\sqrt{n}\left\|b_{2}\right\| \leqq 2 \sqrt{n}\|b\|
\end{aligned}
$$

Therefore, the desired inequality follows.
Proposition 2.3. Let e be a projection, and u, v be two unitary operators satisfying $u^{2}=v^{3}=1$ and $(1-e) u(1-e)=0$, eve $=0$. Then
(i) $C^{*}(u, v)$ has a unique tracial state τ.
(ii) For each $a \in C^{*}(u, v)$ and $\epsilon>0$, there exist an integer n and unitary operators $u_{1}, \ldots u_{n} \in C^{*}(u, v)$ such that

$$
\left\|\tau(a) 1-(1 / n) \sum u_{i}^{*} a u_{i}\right\| \leqq \epsilon .
$$

Proof. (0) Letting $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, we have $u=\left[\begin{array}{ll}\# & \# \\ \# & 0\end{array}\right]$, $v=\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right]$. Hence $v^{-1}=v^{*}=\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right], u v^{ \pm 1}=\left[\begin{array}{ll}\# & \# \\ 0 & \#\end{array}\right]$, and for $\delta_{i}= \pm 1$, $\left(u v^{\delta_{1}}\right)\left(u v^{\delta_{2}}\right) \ldots\left(u v^{\delta_{n}}\right)=\left[\begin{array}{ll}\# & \# \\ 0 & \#\end{array}\right]$, $\left(u v^{\delta_{1}}\right)\left(u v^{\delta_{2}}\right) \ldots\left(u v^{\delta_{n}}\right) u=\left[\begin{array}{ll}\# & \# \\ \# & 0\end{array}\right]$, $v^{\delta_{0}}\left(u v^{\delta_{1}}\right)\left(u v^{\delta_{2}}\right) \ldots\left(u v^{\delta_{n}}\right)=\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right]$.
That is, a reduced word beginning and ending with u is of the form $\left[\begin{array}{ll}\# & \# \\ \# & 0\end{array}\right]$, while a reduced word beginning and ending with $v^{ \pm 1}$ is of the form $\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right]$.
(1) On the algebra of all finite linear combinations of reduced words in $u, v\left(u^{2}=v^{3}=1\right)$, we define a linear functional τ such that $\tau(a)=\alpha$ whenever $a=\alpha 1+\sum \alpha_{i} w_{i}\left(w_{i}\right.$ are reduced words of length $\left.>0\right)$. A routine computation leads to $\tau(a b)=\tau(b a)$. We claim that τ is contractive in operator norm. Thus τ is well defined on the pre- C^{*}-algebra generated by u, v, and the extension of τ by continuity is a trace on $C^{*}(u, v)$. (Note that the positivity of τ follows from $\|\tau\|=1=\tau(1)$.)

To prove the claim, we note that if $a=\alpha 1+\sum_{i=1}{ }^{k} \alpha_{i} w_{i}$, then from Lemma 2.1, there exists a unitary operator $z\left(=z_{n}\right.$ for a sufficiently large $\left.n\right)$ such that the reduced form for $z^{*} w_{i} z$ begins with $v^{ \pm 1}$ and ends with $v^{ \pm 1}$ for each i. Therefore $z^{*} a z=\alpha 1+\sum \alpha_{i} z^{*} w_{i} z$ admits a 2×2 matrix-operator expression

$$
\left[\begin{array}{cc}
\alpha 1 & 0 \\
0 & \alpha 1
\end{array}\right]+\left[\begin{array}{ll}
0 & \# \\
\# & \#
\end{array}\right]=\left[\begin{array}{cc}
\alpha 1 & \# \\
\# & \#
\end{array}\right],
$$

and $|\tau(a)|=|\alpha| \leqq\left\|z^{*} a z\right\|=\|a\|$ as claimed.
(2) To prove (ii), it suffices to assume that a is a finite linear combination of words in u, v. Replacing a by its unitary equivalence, we may further assume from the preceding paragraph that $a=\alpha 1+b$, where $\tau(a)=\alpha, b=\left[\begin{array}{ll}0 & \# \\ \# & \#\end{array}\right]$.
Letting $u_{i}=u v^{-1}(u v)^{i}$, we get that Letting $u_{i}=u v^{-1}(u v)^{i}$, we get that

$$
u_{\imath} u_{j}^{*}=u v^{-1}(u v)^{i-j} v u= \begin{cases}u v^{-1}(u v)^{i-j-1} u v^{-1} u & \text { (if } i>j) \\ u v u\left(v^{-1} u\right)^{j-i-1} v u & \text { (if } i<j)\end{cases}
$$

has a reduced form beginning and ending with u when $i \neq j$; hence $u_{i} u_{j}{ }^{*}=$
$\left[\begin{array}{cc}\# & \# \\ \# & 0\end{array}\right](i \neq j)$. Therefore, by Lemma 2.2, we derive that

$$
\begin{aligned}
\left\|\tau(a) 1-(1 / n) \sum u_{i}^{*} a u_{i}\right\|=\|(1 / n) & \sum u_{i}^{*} b u_{i}\|\leqq 2\| b \| / \sqrt{n} \\
& =2\left\|_{(b}-\tau(a) 1\right\| / \sqrt{n} \leqq 4\|a\| / \sqrt{n}
\end{aligned}
$$

which is smaller than any prescribed ϵ when n is sufficiently large.
(3) It remains to prove that τ is the unique trace. Suppose $C^{*}(u, v)$ has another trace σ, then from (ii), we have

$$
\begin{aligned}
|\tau(a)-\sigma(a)|=\left|\sigma\left(\tau(a) 1-(1 / n) \sum u_{i}^{*} a u_{i}\right)\right| & \\
& \leqq\left\|\tau(a) 1-(1 / n) \sum u_{i}^{*} a u_{i}\right\| \leqq \epsilon .
\end{aligned}
$$

Since ϵ is arbitrary, we conclude that $\tau=\sigma$ as desired. Thus the theorem is proved.

We are going to deal with a pair of concrete unitary operators. Let H be an infinite-dimensional Hilbert space with orthogonal decompositions $H=$ $H_{0} \oplus H_{1}, H_{1}=H_{\alpha} \oplus H_{\beta}$, where $\operatorname{dim} H_{0}=\operatorname{dim} H_{1}=\operatorname{dim} H_{\alpha}=\operatorname{dim} H_{\beta}$. With respect to $H=H_{0} \oplus H_{1}$, we define $u \in B(H)$ by the expression $u=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (herein, H_{0} and H_{1} are identified via an arbitrary onto isometry). Similarly, with respect to $H=H_{0} \oplus H_{\alpha} \oplus H_{\beta}$, we write

$$
v=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \in B(H)
$$

by identifying $H_{0}=H_{\alpha}=H_{\beta}$. In other words, (u, v) is any pair of unitary operators in $B(H)$ such that $u^{2}=v^{3}=1$ and

$$
u:\left\{\begin{array}{l}
H_{0} \rightarrow H_{1} \\
H_{1} \rightarrow H_{0}
\end{array}, \quad v:\left\{\begin{array}{l}
H_{0} \rightarrow H_{\alpha} \\
H_{\alpha} \rightarrow H_{\beta} \\
H_{\beta} \rightarrow H_{0}
\end{array}\right.\right.
$$

To get an equational description, we let $e \in B(H)$ be the projection onto H_{0}; then $u, v \in B(H)$ are completely characterized by the equations

$$
\begin{align*}
& \text { (2.1) } u=u^{-1}=u^{*}, e+u^{*} e u=1, \tag{2.1}\\
& \text { (2.2) } v^{2}=v^{-1}=v^{*}, e+v^{*} e v+v e v^{*}=1 .
\end{align*}
$$

Lemma 2.4. Let e be a projection of the form $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Then an operator v satisfies (2.2) if and only if v is the form $\left[\begin{array}{cc}0 & s_{2}{ }^{*} \\ s_{1} & s_{2} s_{1}{ }^{*}\end{array}\right]$ where s_{1}, s_{2} are isometries satisfying
$s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}=1$.

Proof. The "if" part follows from a straightforward computation. Conversely, suppose v satisfies (2.2) and $v=\left[\begin{array}{cc}x & s_{2} * \\ s_{1} & y\end{array}\right]$ with x, y, s_{1}, s_{2} to be deter-
mined. Then the equation

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=e+v^{*} e v+v e v^{*}=\left[\begin{array}{cc}
1+x^{*} x+x x^{*} & \# \\
\# & s_{1} s_{1}^{*}+s_{2} s_{2}{ }^{*}
\end{array}\right]
$$

leads to

$$
1=s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}
$$

and $x=0$, i.e., $v=\left[\begin{array}{cc}0 & s_{2}{ }^{*} \\ s_{1} & y\end{array}\right]$. From v being an order-3 unitary, we derive that

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=v^{*} v=\left[\begin{array}{cc}
s_{1}{ }^{*} s_{1} & \# \\
\# & \#
\end{array}\right], \text { i.e., } s_{1} \text { is an isometry. }} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=v^{*}=\left[\begin{array}{cc}
s_{2}{ }^{*} s_{2} & \# \\
y s_{2} & \#
\end{array}\right] \text {, i.e., } s_{2} \text { is an isometry, } 0=y s_{2}}
\end{aligned}
$$

and

$$
\left[\begin{array}{cc}
0 & s_{1}^{*} \\
s_{2} & y^{*}
\end{array}\right]=v^{*}=v^{2}=\left[\begin{array}{cc}
\# & \# \\
y s_{1} & \#
\end{array}\right] \text {, i.e., } s_{2}=y s_{1} \quad \text { (c). }
$$

Combining (a) (b) (c), we get

$$
y=y\left(s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}\right)=y s_{1} s_{1}{ }^{*}=s_{2} s_{1}{ }^{*},
$$

i.e., $v=\left[\begin{array}{cc}0 & s_{2}{ }^{*} \\ s_{1} & s_{2} s_{1}{ }^{*}\end{array}\right]$, as desired.

We denote by \mathscr{O}_{2}, the C^{*}-algebra generated by two isometries s_{1}, s_{2} satisfying $s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}=1$, as analyzed in detail by Cuntz. An interesting feature of \mathscr{O}_{2} lies in the fact that \mathscr{O}_{2} is independent of the choice of s_{1}, s_{2} (namely, if t_{1}, t_{2} are isometries satisfying $t_{1} t_{1}{ }^{*}+t_{2} t_{2}{ }^{*}=1$, then $C^{*}\left(s_{1}, s_{2}\right)$ is canonically *-isomorphic with $\left.C^{*}\left(t_{1}, t_{2}\right)\right)$ ([14, Theorem 1.12]). The following lemma is a simple consequence.

Lemma 2.5. $M_{2}\left(\mathscr{O}_{2}\right)$ is ${ }^{*}$-isomorphic with \mathscr{O}_{2}
Proof. Letting $\mathscr{O}_{2}=C^{*}\left(s_{1}, s_{2}\right)$ where s_{1}, s_{2} are isometries satisfying $1=s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}$, we note that

$$
s_{1}{ }^{*} s_{2}=s_{1}{ }^{*}\left(s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}\right) s_{2}=s_{1}{ }^{*} s_{2}+s_{1}{ }^{*} s_{2}=2 s_{1}{ }^{*} s_{2},
$$

i.e., $s_{1}{ }^{*} s_{2}=0$ and, by taking adjoint, $s_{2}{ }^{*} s_{1}=0$. Now we write

$$
t_{1}=\left[\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right], \quad t_{2}=\left[\begin{array}{cc}
0 & 0 \\
s_{1} & s_{2}
\end{array}\right], \in M_{2}\left(\mathscr{O}_{2}\right) ;
$$

then

$$
t_{i}{ }^{*} t_{i}=\left[\begin{array}{ll}
s_{1}{ }^{*} s_{1} & s_{1}{ }^{*} s_{2} \\
s_{2}{ }^{*} s_{1} & s_{2}{ }^{*} s_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
$$

and

$$
t_{1} t_{1}{ }^{*}+t_{2} t_{2}{ }^{*}=\left[\begin{array}{cc}
s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*} & 0 \\
0 & s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Hence $C^{*}\left(t_{1}, t_{2}\right)$ is ${ }^{*}$-isomorphic with $C^{*}\left(s_{1}, s_{2}\right)$ from the fact mentioned before this lemma. On the other hand, a direct computation, through

$$
t_{1} t_{1}^{*}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad t_{2} t_{2}^{*}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad t_{1} t_{2}^{*}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],
$$

leads to an easy conclusion that $C^{*}\left(t_{1}, t_{2}\right)=M_{2}\left(\mathscr{O}_{2}\right)$. Therefore, $M_{2}\left(\mathscr{O}_{2}\right)$ is *-isomorphic with \mathscr{O}_{2} as desired.

Theorem 2.6. Suppose e is a projection and u,v are operators satisfying (2.1)-(2.2). Then $C^{*}(e, u, v)$ is ${ }^{*}$-isomorphic with \mathscr{O}_{2}. Consequently, $C^{*}(e, u, v)$ is algebraically unique; i.e., if e_{1}, e_{2} are projections and $\left(e_{i}, u_{i}, v_{i}\right), i=1,2$, are triples satisfying $(2.1)-(2.2)$, then $C^{*}\left(e_{1}, u_{1}, v_{1}\right)$ is canonically*-isomorphic with $C^{*}\left(e_{2}, u_{2}, v_{2}\right)$.

Proof. We write $e=\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right], u=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]$; then by Lemma 2.4,

$$
v=\left[\begin{array}{cc}
0 & s_{2}{ }^{*} \\
s_{1} & s_{2} s_{1}{ }^{*}
\end{array}\right]
$$

where s_{1}, s_{2} are isometries satisfying $s_{1} s_{1}{ }^{*}+s_{2} s_{2}{ }^{*}=1$. Hence it follows easily that

$$
C^{*}(e, u, v)=M_{2}\left(C^{*}\left(s_{1}, s_{2}\right)\right) \simeq M_{2}\left(\mathscr{O}_{2}\right) \simeq \mathscr{O}_{2}
$$

Since all ${ }^{*}$-isomorphisms are canonically defined, $C^{*}(e, u, v)$ is thus algebraically unique.

Corollary 2.7 Suppose e is a projection and u,v are operators satisfying (2.1)-(2.2). Then $C^{*}(u, v)$ is *-isomorphic with the left regular representation of a discrete group.

Proof. We denote by G, the quotient group of \mathbf{F}_{2} with a presentation $\left\{u, v: u^{2}=v^{3}=1\right\}$. Then there exists S, a sulset of G, satisfying the condition

$$
\begin{equation*}
S \cap u S=\emptyset, S \cap v S=\emptyset, \text { and } G=S \cup u S=S \cup v S \cup v^{-1} S . \tag{2.3}
\end{equation*}
$$

To construct such S, we may define the membership of S by induction on the length of reduced words as follows:
(i) The empty word $1 \notin S$.
(ii) Whenever z is a reduced word of length n ($\geqq 0$), and $w=x z$ ($x \in\left\{u, v, v^{-1}\right\}$) is a reduced word of length $n+1$, we have that

$$
\left\{\begin{array}{l}
w \in S \text { if } x \neq v^{-1} \text { and } z \notin S, \\
w \forall S \text { if } x=v^{-1} \text { or } z \in S .
\end{array}\right.
$$

Now on the Hilbert space $l^{2}(G)$, we let $E \in B\left(l^{2}(G)\right)$ be the projection onto $l^{2}(S)$, and let $L(u), L(v) \in B\left(l^{2}(G)\right)$ be the left translations induced by u, v respectively. It is straightforward to check that $L(u)$ and $L(v)$ are unitaries satisfying $L(u)^{2}=L(v)^{3}=1$. From the condition (2.3), we get

$$
E+L(u)^{*} E L(u)=1, E+L(v)^{*} E L(v)+L(v) E L(v)^{*}=1 .
$$

Therefore, by Theorem 2.6, we conclude that $C^{*}(e, u, v)$ is canonically ${ }^{*}$-isomorphic with $C^{*}(E, L(u), L(v))$. In particular, $C^{*}(u, v)$ is ${ }^{*}$-isomorphic with $C^{*}(L(u), L(v))=C_{\text {reg }}{ }^{*}(G)$ as desired.

The proof of the following theorem is an immitation of Powers' work on the simplicity of $C_{\text {reg }}{ }^{*}\left(F_{2}\right)$ ([18], see also [1, Theorem $\left.V D\right]$).

Theorem 2.8. Suppose e is a projection and u,v are operators satisfying (2.1)-(2.2). Then $C^{*}(u, v)$ is a simple C^{*}-algebra possessing a unique tracial state.

Proof. Clearly, u and v satisfy the hypothesis of Proposition 2.3. Hence $C^{*}(u, v)$ has a unique tracial state τ. We claim that τ is faithful. Indeed, τ is associated with a representation π_{τ} of $C^{*}(u, v)$ on a Hilbert space H_{τ} and a cyclic vector ξ_{τ}, satisfying $\tau(a)=\left\langle\pi_{\tau}(a) \xi_{\tau}, \xi_{\tau}\right\rangle$ for all $a \in C^{*}(u, v)$. It is straightforward to check that H_{τ} is identical with $l^{2}(G)$, where G is the group with a presentation $\left\{u, v: u^{2}=v^{3}=1\right\}$, under the correspondence

$$
\sum_{i}{ }^{n} \alpha_{i} w_{i} \in l^{2}(G) \mapsto \sum_{i}{ }^{n} \alpha_{i} \pi_{\tau}\left(w_{i}\right) \xi_{\tau} \in H_{\tau}\left(w_{i} \in G\right)
$$

Consequently, $\pi_{\tau}\left(C^{*}(u, v)\right)$ is just $C_{\text {res }}{ }^{*}(G)$. From Corollary 2.7, we deduce that $C^{*}(u, v)$ is canonically ${ }^{*}$-isomorphic with $\pi_{\tau}\left(C^{*}(u, v)\right)$; i.e., π_{τ} is faithful, thus τ is faithful as claimed.

Alternatively, we observe directly that $C_{\text {reg }}{ }^{*}(G)$, as of the proof of Corollary 2.7, has a faithful trace, defined by $a \mapsto\langle a \xi, \xi\rangle$ where $\xi \in l^{2}(G)$ satisfying $\xi(1)=1$ and $\xi(g)=0$ for $g \neq 1$.

Now suppose J is a non-zero 2 -sided ideal of $C^{*}(u, v)$; then J contains a positive element $a \neq 0$, whence $\tau(a)=\alpha \neq 0$ from the faithfulness of τ. By Proposition $2.3(i i)$, there exist unitaries $u_{1}, \ldots u_{n} \in C^{*}(u, v)$ such that $\| \alpha 1-(1 / n) \sum u_{i}^{*}\left(u u_{i} \| \leqq \alpha / 2\right.$. Hence $\sum u_{i}{ }^{*}\left(u u_{i}\right.$ is invertible, and the ideal generated by a is $C^{*}(u, v)$. Therefore $J=C^{*}(u, v)$ and we conclude that $C^{*}(u, v)$ is simple.
§ 3. Some peculiar properties. Throughout this section, we let e be a projection, and u, v be operators satisfying the conditions (2.1)-(2.2); i.e., u, v are unitary operators satisfying $u^{2}=v^{3}=1$ and

$$
e+u^{*} e u=1, e+v^{*} e v+v e v^{*}=1
$$

From $\S 2, C^{*}(u, v)$ is a tracial C^{*}-algebra that can be imbedded into \mathscr{O}_{2} as a subalgebra. Whereupon, we will show further that $C^{*}(u, v)$ is an explicit
example for several types of pathologies in C^{*}-algebraic structure theory. Notably, a condition similar to (\dagger) has been employed in recent literature ([8, p. 173], [12, Lemma 4.2], and [2]) for exploring some striking but different features of $C_{\text {reg }}{ }^{*}\left(\mathbf{F}_{2}\right)$. While partial results of this section are also applicable to $C_{\text {reg }}{ }^{*}\left(\mathbf{F}_{2}\right)$, we will work on $C^{*}(u, v)$ exclusively since $C^{*}(u, v)$ possesses a much more flexible and tractable structure.

In regard to some algebraic topological aspects of Banach algebras, Johnson [16] has introduced the notion of amenability. Namely, a unital Banach algebra A is amenable if and only if for each Banach A-bimodule X, each bounded derivation $D: A \rightarrow X^{*}$ is inner (i.e., given any bounded linear map $D: A \rightarrow X^{*}$ satisfying

$$
D(a b)(x)=D(a)(b x)+D(b)(x a) \text { for all } a, b \in A, x \in X
$$

there exists $\theta \in X^{*}$ such that $D(a)(x)=\theta(a x-x a)$ for all $\left.a \in A, x \in X\right)$.
The existence of non-amenable C^{*}-algebras is revealed in a result of Bunce $[5]$; the C^{*}-algebra generated by the left regular representation of a discrete group is amenable if and only if the group is amenable. Due to the recent work of Connes [13, Corollary 2] (see also [6, Corollary 5] for a different proof), we know further that every non-nuclear C^{*}-algebra is non-amenable. However, all known proofs, involving deep structure theory, probably do not admit easy interpretations on concrete examples. The following explicit demonstration on $C^{*}(u, v)$ may provide a clearer illustration of the non-amenability.

Example A: A separable non-amenable C^{*}-algebra.
Demonstration. Let X be the quotient Banach space $B(H) / C^{*}(u, v)$; then X^{*} can be identified with

$$
\mathscr{S}=\left\{\theta \in B(H)^{*}:\left.\theta\right|_{C^{*}(u, v)}=0\right\}
$$

and \mathscr{S} is thus a dual $C^{*}(u, v)$-bimodule under the action

$$
(a . \theta)(t)=\theta(t a),(\theta . a)(t)=\theta(a t)
$$

for $a \in C^{*}(u, v), t \in B(H), \theta \in \mathscr{S}$. We construct a linear map $D: C^{*}(u, v)$ $\rightarrow \mathscr{S}$ by $D(a)(t)=\rho(a t-t a)$, where ρ is any state on $B(H)$ satisfying $\left.\rho\right|_{C^{*}(u, v)}=$ trace τ. It is straightforward to check that $\left.D(a)\right|_{C^{*}(u, v)}=0$ and D is a bounded derivation. Now suppose that D is inner; i.e., there exists $\theta \in \mathscr{S}$ such that for all $a \in C^{*}(u, v), t \in B(H)$,

$$
\theta(a t-t a)=D(a)(t)=\rho(a t-t a) .
$$

Letting $\sigma=\rho-\theta$, we have that $\sigma(a t-t a)=0$, and

$$
\sigma(1)=\rho(1)-\theta(1)=\rho(1)=1 .
$$

Thus

$$
\sigma\left(u^{*} e u-e\right)=\sigma\left(u^{*} e u-u u^{*} e\right)=0
$$

and similarly,

$$
\sigma\left(v^{*} e v-e\right)=0, \sigma\left(v e v^{*}-e\right)=0
$$

Hence the condition (\dagger) leads to

$$
2 \sigma(e)=\sigma(1)=1,3 \sigma(e)=\sigma(1)=1
$$

which is impossible. Therefore, D is not inner, and $C^{*}(u, v)$ is not amenable.
Remark. Bunce ([4, Proposition 2]: See also [5, Proposition 1]) has proved that a unital C^{*}-algebra A is amenable if and only if for any A-bimodules $X \subseteq Y$, each $\theta \in X^{*}$ satisfying $\theta\left(w^{*} x w\right)=\theta(x)$ for all $x \in X$, unitary $w \in A$ has an extension $\theta_{1} \in Y^{*}$ satisfying $\theta_{1}\left(w^{*} y w\right)=\theta_{1}(y)$ for all $y \in Y$, unitary $w \in A$. Using this result, we can also deduce immediately that $C^{*}(u, v)$ is non-amenable. Namely, by letting $A=X=C^{*}(u, v), \quad Y=C^{*}(e, u, v)$ or $B(H)$, and $\theta=\operatorname{trace} \tau$, it is transparent that the condition (\dagger) does not admit θ to have the above extension.

We say that a C^{*}-algebra $A \in B(H)$ is quasi-diagonal if and only if there is an increasing net of finite-rank projections $p_{\nu} \in B(H)$ converging to 1 strongly and $\left\|a p_{v}-p_{v} a\right\| \rightarrow 0$ for all $a \in A$. In answering a question of Thayer [22, p. 56], we show that $C^{*}(u, v)$ serves as

Example B. A tracial separable C^{*}-algebra that is not quasi-diagonal.
Demonstration. Suppose there is a rank-n projection $p \in B(H)$ such that $\|u p-p u\| \leqq \epsilon$ and $\|v p-p v\| \leqq \epsilon$. Then

$$
\begin{aligned}
p\left(e-v e v^{*}\right) p=p e v^{*}(v p-p v) p+\left(p e v^{*} p\right)(p v p)- & (p v p)\left(p e v^{*} p\right) \\
& +p(v p-p v) e v^{*} p .
\end{aligned}
$$

Letting τ_{n} be the unital trace on $p B(H) p\left(\simeq M_{n}\right)$, we have

$$
\begin{aligned}
\left|\tau_{n}\left(p\left(e-v e v^{*}\right) p\right)\right|=\left|\tau_{n}\left(p e v^{*}(v p-p v) p\right)+\tau_{n}\left(p(v p-p v) e v^{*} p\right)\right| \\
\leqq 2\|v p-p v\| \leqq 2 \epsilon .
\end{aligned}
$$

Similarly,

$$
\left|\tau_{n}\left(p\left(e-v^{*} e v\right) p\right)\right| \leqq 2 \epsilon,\left|\tau_{n}\left(p\left(e-u^{*} e u\right) p\right)\right| \leqq 2 \epsilon
$$

But from (\dagger), we have

$$
\tau_{n}\left(p\left(e+u^{*} e u\right) p\right)=1, \tau_{n}\left(p\left(e+v^{*} e v+v e v^{*}\right) p\right)=1
$$

Hence,

$$
2 \tau_{n}(\text { pep }) \geqq 1-2 \epsilon, 3 \tau_{n}(\text { pep }) \leqq 1+4 \epsilon
$$

which are impossible, if ϵ is sufficiently small. Therefore, $C^{*}(u, v)$ is not quasidiagonal.

Remark. The meaning of a quasi-diagonal C^{*}-algebra is equivalent to that of a quasi-triangular C^{*}-algebra. On the other hand, by the spectral characteriza-
tion theorem for quasi-triangular operators [3], we can deduce that every operator in $C^{*}(u, v)$ is quasi-triangular. Hence, $C^{*}(u, v)$ serves as an example for another peculiar feature: a C^{*}-algebra such that every element is quasitriangular, but globally the C^{*}-algebra, as a whole, is not quasi-triangular.

We proceed to establish that $C^{*}(u, v)$ fails to have certain approximation properties. For this purpose, we will estimate how far a general unital completely positive linear map is away from being multiplicative.

We note that each unital completely positive linear map φ on a unital C^{*}-algebra A has the property:

$$
\varphi\left(a^{*} a\right) \geqq \varphi\left(a^{*}\right) \varphi(a) \geqq 0 \text { for all } a \in A
$$

In case $\varphi\left(a_{0}{ }^{*} a_{0}\right)=\varphi\left(a_{0}{ }^{*}\right) \varphi\left(a_{0}\right)$, we have then $\varphi\left(a a_{0}\right)=\varphi(a) \varphi\left(a_{0}\right)$ for all $a \in A$ (see e.g., [7, Theorem 3.1]). Hence the value of $\left\|\varphi\left(a_{0}{ }^{*} a_{0}\right)-\varphi\left(a_{0}{ }^{*}\right) \varphi\left(a_{0}\right)\right\|$ can be regarded as the "amount of non-multiplicativity" of φ at a_{0}. This notion can be further justified in the following proposition and its corollary.

Proposition 3.1. Let A be a unital C^{*}-algebra and φ be a unital completely positive linear map: $A \rightarrow B(H)$. If

$$
\begin{aligned}
& \left\|\varphi\left(a_{i}^{*}{ }^{*} a_{i}\right)-\varphi\left(a_{i}^{*}\right) \varphi\left(a_{i}\right)\right\| \leqq \delta_{i}{ }^{2}(i=0,1), \text { then } \\
& \| \varphi\left(a_{1}^{*}\left(a_{0}\right)-\varphi\left(a_{1}^{*}\right) \varphi\left(a_{0}\right) \| \leqq \delta_{1} \delta_{0} .\right.
\end{aligned}
$$

Proof. From Stinespring's decomposition theorem [20], there exist a ${ }^{*}$-representation π of A on a Hilbert space K, and an into isometry $s: H \rightarrow K$ such that $\varphi(a)=s^{*} \pi(a) s$ for all $a \in A$. Letting $x_{i}=\left(1-s s^{*}\right) \pi\left(a_{i}\right) s$, we get

$$
\begin{array}{r}
x_{i}^{*} x_{j}=s^{*} \pi\left(a_{i}{ }^{*}\right)\left(1-s s^{*}\right) \pi\left(a_{j}\right) s=s^{*} \pi\left(a_{i}{ }^{*}\left(a_{j}\right) s-s^{*} \pi\left(a_{i}{ }^{*}\right) s s^{*} \pi\left(a_{j}\right) s\right. \\
\\
=\varphi\left(a_{i}{ }^{*} a_{j}\right)-\varphi\left(a_{i}{ }^{*}\right) \varphi\left(a_{j}\right) .
\end{array}
$$

Therefore,

$$
\begin{aligned}
& \| \varphi\left(\left(a_{1}{ }^{*}\left(a_{0}\right)-\varphi\left(a_{1}{ }^{*}\right) \varphi\left(a_{0}\right)\|=\| x_{1}{ }^{*} x_{0}\|\leqq\| x_{1}{ }^{*} x_{1}\left\|^{1 / 2}\right\| x_{0}{ }^{*} x_{0} \|^{1 / 2}\right.\right. \\
& \quad=\| \varphi\left(a_{1}{ }^{*}\left(a_{1}\right)-\varphi\left(a_{1}{ }^{*}\right) \varphi\left(a_{1}\right)\left\|^{1 / 2} .\right\| \varphi\left(a_{0}{ }^{*}\left(a_{0}\right)-\varphi\left(a_{0}{ }^{*}\right) \varphi\left(a_{0}\right) \|^{1 / 2} \leqq \delta_{1} \delta_{0}\right.\right.
\end{aligned}
$$

as desired.
Corollary 3.2. Let A be a unital C^{*}-algebra and φ be a unital completely positive linear map: $A \rightarrow B(H)$. If

$$
\| \varphi\left(a_{0}^{*}\left(a_{0}\right)-\varphi\left(a_{0}^{*}\right) \varphi\left(a_{0}\right) \| \leqq \delta^{2},\right.
$$

then

$$
\left\|\varphi\left(a a_{0}\right)-\varphi(a) \varphi\left(a_{0}\right)\right\| \leqq \delta\|a\| \text { for all } a \in A .
$$

Proof. Note that

$$
0 \leqq \varphi\left(a a^{*}\right)-\varphi(a) \varphi\left(a^{*}\right) \leqq \varphi\left(a a^{*}\right) \leqq\left\|a a^{*}\right\|=\|a\|^{2} .
$$

So Proposition 3.1 applies.
We say that a unital C^{*}-algebra A is nuclear if and only if it satisfies one of
the following four equivalent conditions (see [9, Theorem 3.1] [10, Corollary 3.2] [11, Theorem 3]):
(I) There exist finite-rank unital completely positive linear maps $\varphi_{\nu}: A \rightarrow A$ such that φ_{ν} converge to the identity map in point-norm topology.
(II) There exist unital completely positive linear maps

$$
A \xrightarrow{\sigma_{\nu}} M_{n_{\nu}} \xrightarrow{\theta_{\nu}} A
$$

(certainly, n_{ν} changes with ν) such that $\theta_{\nu} \bigcirc \sigma_{\nu}$ converge to the identity map in point-norm topology.
(III) For each C^{*}-algebra B, the algebraic tensor product $A \otimes B$ has a unique C^{*}-norm.
(IV) The second dual of A is injective.

It is well known that there exist (non-nuclear) C^{*}-algebras failing to enjoy the condition (III) or ($I V$) (see e.g., [21, pp. 119-121] [23, Prop. 7.4] [17, p. 175] [8, pp. 172-173] [24, Corollary 1.9]). By virtue of abstract theorems, these C^{*}-algebras do not satisfy the condition (I) or (II) either. However, the abstract proofs involve deep W^{*}-algebra theory, throwing not much light on explicit examples. Thus, it might be desirable to see directly (without using any W^{*} algebra theory) that $C^{*}(u, v)$ fails to have completely positive metric approximation property. In fact, $C^{*}(u, v)$ serves as

Example C. A singly generated non-nuclear C^{*}-algebra.
Demonstration. Since v is a finite-order unitary, there exists a hermitian operator a such that $C^{*}(v)=C^{*}(a)$. Therefore, from u and a being hermitian, $C^{*}(u, v)=C^{*}(u, a)=C^{*}(u+\sqrt{-1} a)$ is a singly generated C^{*}-algebra.

Now suppose $C^{*}(u, v)$ is nuclear; then from condition (II), given $\delta>0$, there exist unital completely positive linear maps $C^{*}(u, v) \xrightarrow{\sigma} M_{n} \xrightarrow{\theta} C^{*}(u, v)$ such that

$$
\|\theta(\sigma(u))-u\| \leqq \frac{1}{2} \delta^{2}, \text { and }\|\theta(\sigma(v))-v\| \leqq \frac{1}{2} \delta^{2} .
$$

Extending σ to a completely positive linear map $\sigma_{1}: C^{*}(e, u, v) \rightarrow M_{n}$ and letting

$$
\varphi=\theta \bigcirc \sigma_{1}: C^{*}(e, u, v) \rightarrow C^{*}(u, v),
$$

we still have $\|\varphi(v)-v\| \leqq \frac{1}{2} \delta^{2}$ and

$$
\begin{aligned}
&\left\|\varphi\left(v^{*} v\right)-\varphi\left(v^{*}\right) \varphi(v)\right\|=\left\|1-\varphi\left(v^{*}\right) \varphi(v)\right\| \leqq\left\|v^{*}[v-\varphi(v)]\right\| \\
&+\left\|[v-\varphi(v)]^{*} \varphi(v)\right\| \leqq \frac{1}{2} \delta^{2}+\frac{1}{2} \delta^{2}=\delta^{2} .
\end{aligned}
$$

From Corollary 3.2, we get

$$
\begin{aligned}
\left\|\varphi\left(v^{*} e v\right)-\varphi\left(v^{*}\right) \varphi(e) \varphi(v)\right\| \leqq & \left\|\varphi\left(v^{*} e v\right)-\varphi\left(v^{*} e\right) \varphi(v)\right\| \\
& +\left\|[\varphi(e v)-\varphi(e) \varphi(v)]^{*} \varphi(v)\right\| \leqq 2 \delta .
\end{aligned}
$$

$$
C^{*} \text {-ALGEBRA }
$$

Hence,

$$
\begin{aligned}
\left\|\varphi\left(v^{*} e v\right)-v^{*} \varphi(e) v\right\| \leqq\left\|\varphi\left(v^{*} e v\right)-\varphi\left(v^{*}\right) \varphi(e) \varphi(v)\right\| & \\
+\left\|\varphi\left(v^{*}\right) \varphi(e)[\varphi(v)-v]\right\|+\left\|[\varphi(v)-v]^{*} \varphi(e) v\right\| & \leqq 2 \delta+\frac{1}{2} \delta^{2}+\frac{1}{2} \delta^{2} \\
& =2 \delta+\delta^{2},=\epsilon, \text { say. }
\end{aligned}
$$

Applying the trace τ, we derive

$$
\begin{aligned}
\left|(\tau \circ \varphi)\left(v^{*} e v-e\right)\right|=\left|\tau\left(\varphi\left(v^{*} e v\right)-v^{*} \varphi(e) v\right)\right| & \\
& \leqq\left\|\varphi\left(v^{*} e v\right)-v^{*} \varphi(e) v\right\| \leqq \epsilon,
\end{aligned}
$$

and similarly,

$$
\left|(\tau \circ \varphi)\left(u^{*} e u-e\right)\right| \leqq \epsilon,\left|(\tau \circ \varphi)\left(v e v^{*}-e\right)\right| \leqq \epsilon .
$$

Thus the equations $e+u^{*} e u=1, e+v^{*} e v+v e v^{*}=1$ lead to

$$
2 \tau(\varphi(e)) \geqq 1-\epsilon, 3 \tau(\varphi(e)) \leqq 1+2 \epsilon,
$$

which are impossible for a sufficiently small ϵ. Therefore, $C^{*}(u, v)$ is nonnuclear as asserted.

Finally, we conclude with an example that gives a negative answer to a widely held conjecture.

Example D. A non-nuclear (non-amenable) C^{*}-subalgebra of a nuclear (amenable) C^{*}-algebra.
Demonstration. From the demonstrations of Examples A and C, we know that $C^{*}(u, v)$ is neither nuclear nor amenable. From [14] and [19], we know that \mathscr{O}_{2} is nuclear and even amenable. As established in $\S 2, C^{*}(u, v) \subseteq$ $C^{*}(e, u, v) \simeq \mathscr{O}_{2}$. Thus we are done.

References

1. C. A. Akemann and P. A. Ostrand, Computing norms in group C^{*}-algebras, Amer. J. Math. 98 (1976), 1015-1047.
2. J. Anderson, $A C^{*}$-algebra A for which Ext A is not a group, Ann. of Math. 107 (1978), 455-458.
3. C. Apostal, C. Foias, and D. Voiculescu, Some results on non-quasi-triangular operators, IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
4. J. Bunce, Characterizations of amenable and strongly amenable C*-algebras, Pacific J. Math. 43 (1972), 563-572.
5. - Finite operators and amenable C^{*}-algebras, Proc. Amer. Math. Soc. 56 (1976), 145-151.
6. J. Bunce and W. L. Paschke, Quasi-expectations and amenable von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 232-236.
7. M. D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Ill. J. Math. 18 (1974), 565-574.
8. M. D. Choi and E. G. Effros, Injectivity and operator spaces, J. Func. Anal. 2/4 (1977), 156-209.
9. Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-79.
10. - Separable nuclear C^{*}-algebras and injectivity, Duke Math. J. 43 (1976), 309-322.
11. Nuclear C^{*}-algebras and injectivity: the general case, Indiana U. Math. J. 26 (1977), 443-446.
12. - Lifting problems and the cohomology of C^{*}-algebras, Can. J. Math. 2!) (1977), 10921111.
13. A. Connes, On the cohomology of operator algebras, J. Func. Anal. 28 (1978), 248-25:3.
14. J. Cuntz: Simple C*-algebras generated by isometries, Commun. Math. Phys. is (1977), 173-185.
15. E. G. Effros, Aspects of non-commutative order, Notes for a lecture given at the Second U.S.-Japan Seminar on C^{*}-algebras and Applications to Physics, 1977.
16. B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
17. E. C. Lance, On nuclear C^{*}-algebras, J. Func. Anal. 12 (1973) 157-176.
18. R. T. Powers, Simplicity of the C^{*}-algebra associated with the free group on two generators, Duke Math. J. 42 (1975), 151-156.
19. J. Rosenberg, Amenability of cross products of C^{*}-algebras, Comm. Math. Phys. 5 y (1977), 187-191.
20. W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
21. M. Takesaki, On the crossnorm of the direct product of C*-algebras, Tôhoku Math. J. 16 (1964), 111-122.
22. F. J. Thayer, Quasi-diagonal C*-algebras, J. Func. Anal. 25 (1977), 50--57.
23. J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras, Lecture Notes, Univ. of Copenhagen, 1970.
24. S. Wassermann, On tensor products of certain group C*-algebras, J. Func. Anal. 23 (1976), 239-254.

University of Toronto, Toronto, Ontario

[^0]: Received February 21, 1978 and in revised form April 28, 1978. This research was supported in part by NSERC of Canada.

