A MAXIMUM PRINCIPLE FOR DIRICHLET-FINITE HARMONIC FUNCTIONS ON RIEMANNIAN SPACES

Y. K. KWON AND L. SARIO

Representations of harmonic functions by means of integrals taken over the harmonic boundary Δ_R of a Riemann surface R enable one to study the classification theory of Riemann surfaces in terms of topological properties of Δ_R (cf. [6; 4; 1; 7]). In deducing such integral representations, essential use is made of the fact that the functions in question attain their maxima and minima on Δ_R .

The corresponding maximum principle in higher dimensions was discussed for bounded harmonic functions in [3]. In the present paper we consider Dirichlet-finite harmonic functions. We shall show that every such function on a subregion G of a Riemannian N-space R attains its maximum and minimum on the set $(\overline{G} \cap \Delta_R) \cup \overline{\partial G}$, where ∂G is the relative boundary of G in R and the closures are taken in Royden's compactification R^* . As an application we obtain the harmonic decomposition theorem relative to a compact subset K of R^* with a smooth $\partial(K \cap R)$.

We start by stating in § 1 some preliminary results, using the notation and terminology of [3]. In § 2 we prove a topological correspondence of Royden's compactification G^* of a subregion G and its closure \overline{G} in \mathbb{R}^* . The maximum principle for Dirichlet-finite harmonic functions and the harmonic decomposition theorem are established in § 3.

1. Given a Riemannian *N*-space *R*, Royden's algebra $\mathbf{M}(R)$ consists of bounded real-valued continuous functions on *R* with finite Dirichlet integrals over *R*. Royden's compactification R^* of *R* is defined by the following properties:

(i) R^* is a compact Hausdorff space,

(ii) R is an open dense subspace of R^* ,

(iii) every function in $\mathbf{M}(R)$ has a continuous extension to R^* ,

(iv) $\mathbf{M}(R)$ separates closed sets in R^* .

The vector lattice $\mathbf{\tilde{M}}(R)$ of Dirichlet-finite real-valued continuous functions on R is complete in the CD-topology: if $f = \text{CD-lim}_n f_n$ on R for $f_n \in \mathbf{\tilde{M}}(R)$, i.e., $D_R(f - f_n) \to 0$ as $n \to \infty$ and $\{f_n\}$ converges to f uniformly on compact subsets of R, then $f \in \mathbf{\tilde{M}}(R)$. If we further have uniform boundedness of

Received September 16, 1969. The research was sponsored by the U.S. Army Research Office—Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

 $\{f_n\}$ on R we write $f = \text{BD-lim}_n f_n$ on R. Clearly $\mathbf{M}(R)$ is BD-complete. For a detailed discussion we refer the reader to [1; 7].

Let $\mathbf{M}_0(R)$ be the algebra of functions in $\mathbf{M}(R)$ with compact supports in R and $\mathbf{M}_{\Delta}(R)$ the BD-closure of $\mathbf{M}_0(R)$ in $\mathbf{M}(R)$. The harmonic boundary $\Delta_R = \{ p \in R^* | f(p) = 0 \text{ for all } f \in \mathbf{M}_{\Delta}(R) \}$ is a compact subset of the Royden boundary $\Gamma_R = R^* - R$. The CD-closure $\mathbf{\tilde{M}}_{\Delta}(R)$ of $\mathbf{M}_0(R)$ in $\mathbf{\tilde{M}}(R)$ also plays an important role in our discussion.

The following theorem was proved in [3]. For any non-empty compact subset E of $\Gamma_R - \Delta_R$, there exists an Evans superharmonic function, i.e., a positive continuous function v on R^* , superharmonic on R, such that $v \equiv 0$ on Δ_R , $v \equiv \infty$ on E, and v has a finite Dirichlet integral on R.

2. Let G be a subregion of a given Riemannian N-space R. We can construct two compactifications of G, viz., Royden's compactification G^* of G and the closure \overline{G} of G in \mathbb{R}^* . First we shall show that there is a topological relation between them (cf. [7]).

PROPOSITION 1. There exists a unique continuous mapping η of G^* onto \overline{G} such that

(i) $\eta(p) = p$ for $p \in G$, (ii) $f(p^*) = f(\eta(p^*))$ for $p^* \in G^*$ and $f \in \mathbf{M}(R)$.

Proof. Observe that $f|_{\mathcal{G}}$ belongs to $\mathbf{M}(\mathcal{G})$ for every $f \in \mathbf{M}(\mathcal{R})$ and so $f|_{\mathcal{G}}$ has a continuous extension to \mathcal{G}^* .

For each $p^* \in G^*$ define a character x_{p^*} on $\mathbf{M}(G)$ by $x_{p^*}(g) = g(p^*)$ for all $g \in \mathbf{M}(G)$. We can consider x_{p^*} as a character on $\mathbf{M}(R)$ by the above observation. We shall first show that there exists a unique point $\eta(p^*) \in \overline{G}$ such that $x_{p^*}(f) = f(\eta(p^*))$ for all $f \in \mathbf{M}(R)$. Since $\mathbf{M}(R)$ separates points in R^* , the uniqueness of such an $\eta(p^*)$ is obvious.

Let $I = \{f \in \mathbf{M}(R) | x_{p^*}(f) = 0\}$. It is easy to see that I is a non-trivial maximal ideal of the algebra $\mathbf{M}(R)$. Suppose that there exists an $f_{\overline{p}} \in I$ for each $\overline{p} \in \overline{G}$ such that $f_{\overline{p}}(\overline{p}) \neq 0$. On squaring and then multiplying by a constant we may assume that $f_{\overline{p}} \ge 0$ on R and $f_{\overline{p}}(\overline{p}) > 1$. Since \overline{G} is compact, there exists a finite subset $\{\overline{p}_1, \ldots, \overline{p}_n\}$ of \overline{G} such that

$$f = \sum_{i=1}^{n} f_{\overline{p}_i} > 1$$

on \overline{G} . Define \overline{f} on R^* by $\overline{f}(p) = f(p)$ for f(p) > 1 and $\overline{f}(p) = 1$ for $f(p) \leq 1$. Clearly $\overline{f} \equiv f$ on G and $\overline{f} \in \mathbf{M}(R)$. Hence $x_{p^*}(\overline{f}) = x_{p^*}(f) = 0$ since $f \in I$ and $1 = \overline{f} \cdot (1/\overline{f}) \in I$, which violates the maximality of I. We have shown that there exists a unique point $\eta(p^*) \in \overline{G}$ such that $f(\eta(p^*)) = 0$ for all $f \in I$. For any $f \in \mathbf{M}(R)$, $f - f(p^*) \in I$ and $f(\eta(p^*)) = f(p^*)$.

We can define a mapping $\eta: G^* \to \overline{G}$ such that

$$f(p^*) = f(\eta(p^*))$$

for all $p^* \in G^*$ and $f \in \mathbf{M}(R)$. Since $\mathbf{M}(R)$ separates points in R^* , $\eta(p) = p$ for $p \in G$. To prove the continuity of η choose an arbitrary net

$$\{p_{\lambda}^{*} \in G^{*} | \lambda \in \Lambda \text{ and } \Lambda \text{ is a directed set}\}$$

which converges to p^* in G^* . Since every $f \in \mathbf{M}(R)$ can be considered as a continuous function on G^* , the net $\{f(p_{\lambda^*}) | \lambda \in \Lambda\}$ converges to $f(p^*)$. Since $f(p_{\lambda^*}) = f(\eta(p_{\lambda^*}))$ and $f(p^*) = f(\eta(p^*))$, the net $\{f(\eta(p_{\lambda^*})) | \lambda \in \Lambda\}$ converges to $f(\eta(p^*))$ for all $f \in \mathbf{M}(R)$, and $\eta(p^*)$ is a cluster point of the net $\{\eta(p_{\lambda^*}) | \lambda \in \Lambda\}$ in \overline{G} in view of the Urysohn property of $\mathbf{M}(R)$. Since \overline{G} is compact, it suffices to show that $\eta(p^*)$ is the unique cluster point in \overline{G} . On the contrary, suppose that there exists a subnet $\{\eta(p_{\lambda^*})\}$ which converges to \overline{p} in \overline{G} with $\overline{p} \neq \eta(p^*)$. Choose an $f \in \mathbf{M}(R)$ such that $f(\overline{p}) \neq f(\eta(p^*))$. On the other hand,

$$f(\bar{p}) = \lim_{\lambda_i} f(\eta(p_{\lambda_i}^*)) = \lim_{\lambda} f(\eta(p_{\lambda}^*)) = f(\eta(p^*)),$$

a contradiction.

It remains to show that η is surjective. Let \bar{p} be an arbitrary point in \bar{G} . Since G is dense in \bar{G} , there exists a net $\{\bar{p}_{\lambda} | \lambda \in \Lambda\}$ in G which converges to \bar{p} in \bar{G} . Since $\bar{p}_{\lambda} \in G \subset G^*$ and G^* is compact, we may assume that the net $\{\bar{p}_{\lambda} | \lambda \in \Lambda\}$ converges to a point p^* in G^* . For every $f \in \mathbf{M}(R)$,

$$f(\bar{p}) = \lim_{\lambda} f(\bar{p}_{\lambda}) = f(p^*)$$

and so $\bar{p} = \eta(p^*)$.

In general, the projection $\eta: G^* \to \overline{G}$ is not a homeomorphism but its restriction to a certain subset of G^* yields a homeomorphism. This result is essential for the proof of the maximum principle for Dirichlet-finite harmonic functions.

We are ready to show the following result (cf. [7]).

PROPOSITION 2. Let
$$\beta(G) = (\overline{G} - \overline{\partial G}) \cap \Gamma_R$$
. Then the projection
 $\eta: \{p^* \in G^* | \eta(p^*) \in G \cup \beta(G)\} \to G \cup \beta(G)$

is a surjective homeomorphism.

Proof. In view of the previous proposition, all we have to verify is that η is injective and η^{-1} is continuous.

First we shall show that η is injective. Suppose that there existed two points p_1^*, p_2^* in G^* such that $\eta(p_1^*) = \eta(p_2^*) = \overline{p} \in G \cup \beta(G)$. Choose a $g \in \mathbf{M}(G)$ such that $g(p_1^*) \neq g(p_2^*)$. Since $\{\overline{p}\}$ and $(\overline{R} - \overline{G})$ are disjoint closed subsets of R^* , there exists a function $f \in \mathbf{M}(R)$ such that $f(\overline{p}) = 1$ and $f \equiv 0$ on $(\overline{R} - \overline{G})$. Clearly $fg \in \mathbf{M}(G)$. Since $f \equiv 0$ on R - G, we can consider fg as an element of $\mathbf{M}(R)$. By Proposition 1,

$$(fg)(\bar{p}) = (fg)(\eta(p_i^*)) = (fg)(p_i^*) = f(p_i^*)g(p_i^*) = f(\bar{p})g(p_i^*) = g(p_i^*),$$

$$i = 1, 2.$$

This contradicts the choice of g. Thus η is injective.

To prove the continuity of η^{-1} , take a net $\{p_{\lambda} | \lambda \in \Lambda\}$ in $G \cup \beta(G)$ which converges to a point p in $G \cup \beta(G)$. Since G^* is compact, the net $\{\eta^{-1}(p_{\lambda}) | \lambda \in \Lambda\}$ has a cluster point in G^* , i.e., there exist a point $p^* \in G^*$ and a subnet $\{\eta^{-1}(p_{\lambda_i})\}$ of the net $\{\eta^{-1}(p_{\lambda}) | \lambda \in \Lambda\}$ which converges to p^* in G^* . By the continuity of $\eta: G^* \to \overline{G}$, the net $\{p_{\lambda_i}\}$ converges to $\eta(p^*)$. Hence $p = \eta(p^*)$ since \overline{G} is a Hausdorff space. Thus $\eta^{-1}(p)$ is a cluster point of the net $\{\eta^{-1}(p_{\lambda}) | \lambda \in \Lambda\}$. As in the proof of the previous proposition, it suffices to show that $\eta^{-1}(p)$ is the only cluster point in G^* . Suppose that there existed another cluster point $q^* \in G^*$ and a subnet $\{\eta^{-1}(p_{\lambda_j})\}$ of the net

$$\{\eta^{-1}(p_{\lambda}) \mid \lambda \in \Lambda\}$$

such that $\{\eta^{-1}(p_{\lambda_i})\}$ converges to q^* in G^* . For every $f \in \mathbf{M}(R)$,

 $f(q^*) = \lim_{j \to j} f(\eta^{-1}(p_{\lambda_j})) = \lim_{j \to j} f(p_{\lambda_j}) = f(p)$

and similarly $f(p^*) = f(p)$. Thus we have

 $f(p^*) = f(q^*)$ or equivalently $f(\eta(p^*)) = f(\eta(q^*))$

for all $f \in \mathbf{M}(R)$. Hence $\eta(q^*) = \eta(p^*) = p \in G \cup \beta(G)$ and $q^* = p^*$ since η^{-1} is well-defined on $G \cup \beta(G)$.

The proof of the proposition is herewith complete.

COROLLARY. Every $f \in \mathbf{M}(G)$ has a continuous extension to $G \cup \beta(G)$.

3. Let \mathcal{O}_G be the class of Riemannian spaces on which there exist no Green's functions. It is known that the class HD(R) of Dirichlet-finite harmonic functions on R consists of constants for $R \in \mathcal{O}_G$ (cf. [8]). Throughout our discussion we understand that $HD(R) = \{0\}$ for $R \in \mathcal{O}_G$. Thus the class $HBD(R) = \{u \in HD(R) | \sup_R |u| < \infty\}$ is identical with HD(R) for $R \in \mathcal{O}_G$. Our next question is: How many HBD-functions are there in the space HD(R) for an arbitrary Riemannian space R?

First we prove the following result.

LEMMA. Every $f \in \mathbf{\tilde{M}}(R)$ has a unique decomposition in the form

f = u + g,

where $u \in HD(R)$ and $g \in \tilde{\mathbf{M}}_{\Delta}(R)$. In particular, u can be chosen as the CD-limit of a sequence in the space HBD(R).

Proof. By our convention $HD(R) = \{0\}$ for $R \in \mathcal{O}_G$ it suffices to prove the assertion for $R \notin \mathcal{O}_G$.

First we assume that $f \ge 0$ on R. For each $n \ge 1$ set $f_n = f \cap n \in \mathbf{M}(R)$. Let $\{R_m\}_0^{\infty}$ be a regular exhaustion of R such that R_0 and R_1 are parametric balls at a fixed point $p_0 \in R$.

Since $f_n \in \mathbf{M}(R)$, it has the unique decomposition

$$f_n = u_n + g_n,$$

where $u_n \in \text{HBD}(R)$ and $g_n \in \mathbf{M}_{\Delta}(R)$. Here $u_n = \text{BD-lim}_m u_{nm}$ on R, with $u_{nm} \in \mathbf{M}(R)$, $u_{nm} \in \mathbf{H}(R_m)$, and $u_{nm} = f_n$ on $R - R_m$ (cf. [3]).

Let w_m be the harmonic measure of ∂R_m with respect to $R_m - \bar{R}_1$, i.e., $w_m \equiv 1$ on \bar{R}_1 , $w_m \in H(R_m - \bar{R}_1)$, and $w_m \equiv 0$ on $R - R_m$. By Green's formula,

$$D_R(f_n - u_{nm}, w_m) = D_{R_m - R_1}(f_n - u_{nm}, w_m)$$

= $\int_{\partial(R_m - R_1)} (f_n - u_{nm}) * dw_m$
= $\int_{\partial R_1} u_{nm} * dw_m - \int_{\partial R_1} f_n * dw_m.$

Hence in view of $*dw_m \leq 0$ on ∂R_1 and $u_{nm} \geq 0$ on R, we have

$$\left(\inf_{\partial R_1} u_{nm} \right) \cdot D_R(w_m) = \left(\inf_{\partial R_1} u_{nm} \right) \cdot \left(-\int_{\partial R_1} *dw_m \right)$$

$$\leq -\int_{\partial R_1} u_{nm} *dw_m$$

$$\leq -\int_{\partial R_1} f_n *dw_m + |D_R(f_n - u_{nm}, w_m)|$$

$$\leq \left(\sup_{\partial R_1} f_n \right) \cdot D_R(w_m) + 2D_R(f_n)^{\frac{1}{2}} D_R(w_m)^{\frac{1}{2}}.$$

On the other hand, $w = \text{BD-lim}_m w_m$ exists on R and $D_R(w_m) \ge D_R(w) > 0$ since $R \notin \mathcal{O}_G$. Thus we obtain

$$u_{nm}(p_0) \leq k \inf_{\partial R_0} u_{nm} \leq k \inf_{\partial R_1} u_{nm}$$
$$\leq k \left\{ \sup_{\partial R_1} f_n + 2D_R(f_n)^{\frac{1}{2}} \cdot D_R(w_m)^{-\frac{1}{2}} \right\} \leq k \left\{ \sup_{\partial R_1} f + 2D_R(f)^{\frac{1}{2}} \cdot D_R(w)^{-\frac{1}{2}} \right\}$$

for all m and $n \ge 1$, where $k = k(\bar{R}_0, R_1)$ is Harnack's constant for R_1 . Since $u_n = \text{BD-lim}_m u_{nm}$ on R, the sequence $\{u_n(p_0)\}$ is bounded. On taking a subsequence if necessary we may assume that $\{u_n(p_0)\}$ is convergent. Since $(f_{n+p} - f_n) = (u_{n+p} - u_n) + (g_{n+p} - g_n)$ is the decomposition of $f_{n+p} - f_n$ in a lemma in [3, § 2, Lemma] we have

$$D_R(f_{n+p} - f_n) = D_R(u_{n+p} - u_n) + D_R(g_{n+p} - g_n).$$

Because of $\lim_{n} D_{R}(f_{n+p} - f_{n}) = 0$, the sequences $\{u_{n}\}$ and $\{g_{n}\}$ are D-Cauchy on *R*. Thus by the convergence theorem in [8, p. 128],

$$u = \text{CD-lim}_n u_n$$

exists on R and $u \in HD(R)$. Since $f = CD-\lim_n f_n$ on R, $g = CD-\lim_n g_n$ exists on R and $g \in \mathbf{\tilde{M}}_{\Delta}(R)$ in view of the CD-completeness of $\mathbf{\tilde{M}}_{\Delta}(R)$.

For an arbitrary $f \in \mathbf{\tilde{M}}(R)$ we can construct decompositions of $f \cup 0$ and $-f \cap 0$ separately and combine them to obtain

$$f = u + g,$$

where $g \in \tilde{\mathbf{M}}_{\Delta}(R)$ and $u \in HD(R)$ is the CD-limit of a sequence in the space HBD(R).

To prove uniqueness let f = u' + g' be another decomposition. Then $v \equiv u - u' = g' - g \in HD(R) \cap \tilde{\mathbf{M}}_{\Delta}(R)$. Choose a sequence $\{v_m\}$ in $\mathbf{M}_0(R)$ such that $v = \text{CD-lim}_m v_n$ on R. Then $D_R(v, v_m) = 0$ by Green's formula and v is a constant on R. Since $v \equiv 0$ on Δ_R , $v \equiv 0$ on R, as desired.

Using the above lemma we shall prove the following result (cf. [5; 4]).

PROPOSITION 3. For an arbitrary Riemannian space R, the space HBD(R) is CD-dense in HD(R).

Proof. As we remarked earlier, we may assume that $R \notin \mathcal{O}_G$. By virtue of $HD(R) \subset \mathbf{\tilde{M}}(R)$, every $u \in HD(R)$ has a unique decomposition by the above lemma. Since u = u + 0 is such a decomposition, u is the CD-limit of a sequence in HBD(R). This completes the proof.

As a direct consequence we have the following result (cf. [5]).

COROLLARY. The Virtanen identity

$$\mathcal{O}_{\rm HD} = \mathcal{O}_{\rm HBD}$$

is valid for Riemannian spaces.

We are now ready to establish the maximum principle for HD-functions. It is one of the most important theorems in the study of HD-functions. In the case of a Riemann surface, the proof offers no difficulties since the double of a subregion can be used (cf. [7]).

THEOREM 1. Let G be a subregion of an arbitrary Riemannian space R. If $u \in HD(G)$ has the property

$$m \leq \liminf_{p \in G, p \to q} u(p) \leq \limsup_{p \in G, p \to q} u(p) \leq M$$

for all $q \in (\overline{G} \cap \Delta_R) \cup \overline{\partial G}$, then

$$m \leq u \leq M$$

throughout the subregion G.

Proof. It suffices to show that $u \ge m$ on G whenever

$$\liminf_{p \in G, p \to q} u(p) \ge m$$

for all $q \in (\overline{G} \cap \Delta_R) \cup \overline{\partial G}$. We may assume that $m > -\infty$. Observe that every $g \in \mathbf{\tilde{M}}(G)$ has a continuous extension to G^* and therefore to $G \cup \beta(G)$ by the corollary in § 2.

https://doi.org/10.4153/CJM-1970-097-8 Published online by Cambridge University Press

Set

$$E_n = \left\{ q \in \bar{G} - G \right| \liminf_{p \in G, p \to q} u(p) \leq m - \frac{1}{n} \right\}$$

for all $n \ge 1$. It is easily seen that E_n is a closed set in $\Gamma_R - \Delta_R$. Let v_n be the Evans superharmonic function on R such that $v_n \equiv \infty$ on E_n and $v_n \equiv 0$ on Δ_R . For each $\epsilon > 0$ we have

$$\liminf_{p \in G, p \to q} (u + \epsilon v_n)(p) > m - \frac{1}{n}$$

for all $q \in \overline{G} - G - E_n$ since $\epsilon v_n > 0$ on R.

By the above theorem there exists a sequence $\{u_n\}$ in HBD(G) such that $u = \text{CD-lim}_n u_n$ on G. Since $u + \epsilon v_n = \text{CD-lim}_k (u_k + \epsilon v_n)$ on G and these functions are continuously extendable to $G \cup \beta(G)$,

$$(u + \epsilon v_n)(q) = \lim_k (u_k + \epsilon v_n)(q)$$

for all $q \in E_n \subset \beta(G)$. Since u_k is bounded on G and $v_n \equiv \infty$ on E_n , we have

$$\liminf_{p \in G, p \to q} (u_k + \epsilon v_n)(p) = (u_k + \epsilon v_n)(q) = \infty$$

for all $q \in E_n$. Thus we obtain

$$\liminf_{p \in G, p \to q} (u + \epsilon v_n)(p) > m - \frac{1}{n}$$

for all $q \in \overline{G} - G$ and $n \ge 1$. Here $u + \epsilon v_n$ is superharmonic on G and therefore $u + \epsilon v_n > m - 1/n$ on G. On letting $\epsilon \to 0$ and then $n \to \infty$ we obtain the assertion.

Among various consequences of the above theorem we state here the harmonic decomposition theorem (cf. [6; 4]). Recall that a compact subset K on R^* is called a distinguished compact set if $K = (\overline{K \cap R})$ and $\partial(K \cap R)$ is smooth.

THEOREM 2. Let K be a distinguished compact subset of R^* and f a Dirichlet finite Tonelli function on R. Then

(i) f has a unique decomposition f = u + g, where $u \in \mathbf{\tilde{M}}(R) \cap HD(R - K)$ and $g \in \mathbf{\tilde{M}}_{\Delta}(R)$ with $g \equiv 0$ on K,

(ii) every $h \in \tilde{\mathbf{M}}_{\Delta}(R)$ with $h \equiv 0$ on K is orthogonal to u, i.e. $D_{R}(u, h) = 0$, (iii) the Dirichlet principle is valid: $D_{R}(f) = D_{R}(u) + D_{R}(g)$,

(iv) $|u| \leq sup_{\partial(K \cap R) \cup \Delta_R} |f|$ on R - K,

(v) if v is a superharmonic (subharmonic) function on R - K such that $v \ge f$ ($v \le f$) on R - K, then $v \ge u$ ($v \le u$) on R - K. Here we assume that $K \cup \Delta_R \neq \emptyset$.

References

1. J. Chang, Royden's compactification of Riemannian spaces, Doctoral dissertation, University of California, Los Angeles, 1968.

- 2. Y. K. Kwon, Integral representations of harmonic functions on Riemannian spaces, Doctoral dissertation, University of California, Los Angeles, 1969.
- 3. Y. K. Kwon and L. Sario, A maximum principle for bounded harmonic functions on Riemannian spaces, Can. J. Math. 22 (1970), 847-854.
- 4. M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J. 17 (1960), 181–218.
- 5. H. Royden, Harmonic functions on open Riemann surfaces, Trans. Amer. Math. Soc. 73 (1952), 40-94.
- 6. —— On the ideal boundary of a Riemann surface, Ann. of Math. (2) 30 (1953), 107-109.
- 7. L. Sario and M. Nakai, *Classification theory of Riemann surfaces* (Springer-Verlag, New York, 1970).
- 8. L. Sario, M. Schiffer, and M. Glasner, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134.

University of California, Los Angeles, California