Canad. Math. Bull. Vol. 14 (1), 1971

ON COVERING THE UNIT BALL IN NORMED SPACES

by J. CONNETT

By compactness, the unit ball B^n in R^n has a finite covering by translates of rB^n , for any r>0. The main theorem of this note shows that a weaker covering property does not hold in any infinite-dimensional normed space.

THEOREM. Let E be an infinite-dimensional normed linear space, B the unit ball in E, and $\{r_i\}$ a sequence of nonnegative numbers such that

(i) $r_i < 1$ for each *i*, (ii) $\sum_{i=1}^{\infty} r_i^{\alpha} < \infty$ for some $\alpha > 0$.

Then B cannot be covered by a union of the form

$$\bigcup_{i=1}^{\infty} \{x_i+r_iB\}, \quad x_i \in E.$$

Proof. To simplify things we assume (without loss of generality) that α is a positive integer. Also, note that it suffices to prove the theorem for sequences $\{r_i\}$ such that $\sum_{i=1}^{\infty} r_i^{\alpha} < \infty$ and $0 \le \sup \{r_i\} < \sigma_0 < 1$, for some σ_0 : for, assume that $\{r_i\}$ is a sequence satisfying (i) and (ii) of the theorem and that

$$B \subset \bigcup_{i=1}^{\infty} \{x_i + r_i B\}.$$

Let $\sup \{r_i\} = \sigma < 1$. We obtain a new covering of *B* as follows: for each *i* such that $r_i \ge \sigma_0$, cover the ball-translate $x_i + r_i B$ by a union of the form $\bigcup_{j=1}^{\infty} \{r_{ij} + r_i r_j B\}$. Thus, we obtain a new countable covering of *B* by ball-translates with radii $\{r'_k\}$, where $0 \le r'_k \le \sup \{\sigma^2, \sigma_0\}$, and (since only finitely many of the original r_i are greater than σ_0), $\sum_{i=1}^{\infty} (r'_i)^{\alpha} < \infty$.

We repeat this process; only a finite number of repetitions are necessary because there exists a positive integer k such that $\sigma^k < \sigma_0$. After the kth repetition we obtain a countable covering $\bigcup_{i=1}^{\infty} \{x_i^{(k)} + r_i^{(k)}B\}$ of B such that $0 \le \sup\{r_i^{(k)}\} < \sigma_0$, and $\sum_{i=1}^{\infty} (r_i^{(k)})^{\alpha} < \infty$.

Thus in the rest of the proof we may assume that $\{r_i\}$ satisfies condition (i): $0 \le \sup\{r_i\} < \frac{1}{4}$, and condition (ii) of the theorem; and that α is a positive integer.

We shall need the following well-known lemma [1, p. 59]:

LEMMA. Let E be a normed linear space, and $F \subseteq E$ a closed proper subspace. For each $\beta < 1$, there exists $x \in E$ of norm 1 such that $||x - F|| > \beta$.

Using the lemma we construct a sequence $\{y_i\}$ of points in B such that

$$||y_i|| = 1$$
 and $||y_k - \text{span}\{y_1, \dots, y_{k-1}\}|| > \frac{3}{4}$.

If the unit ball is covered by a union of the form $\bigcup_{j=1}^{\infty} \{x_j + r_j B\}$, then no two of the y_i lie in the same ball-translate $x_j + r_j B$. Because $\sum r_i^{\alpha} < \infty$, we may find an integer M so large that if $J = \inf \{j \mid x_j + r_j B \text{ does not contain any of the } y_i, 1 \le i \le M\}$, then

$$\sum_{j\geq J}r_j^{\alpha}<(\frac{1}{4})^{\alpha}.$$

Let F_{α} be an α -dimensional subspace of E. Let $\phi: R^{\alpha} \to F_{\alpha}$ be a vector-space isomorphism. The set $\phi^{-1}(B)$ is closed, convex, and balanced in R^{α} , and has finite α -dimensional measure v. If $r \ge 0$, the set $\phi^{-1}(rB)$ has measure $r^{\alpha}v$. Thus we conclude the following: if $\bigcup_{n=1}^{\infty} \{z_n + r_nB\} \ge B \cap F_{\alpha}$, where $z_n \in F_{\alpha}$, then $\sum_{n=1}^{\infty} r_n^{\alpha} \ge 1$. A small generalization (left to the reader) of this implication is the following:

REMARK. If $\bigcup_{n=1}^{\infty} \{z_n + r_n B\} \supseteq rB \cap F_{\alpha}$, where $z_n \in E$, then $\sum_{n=1}^{\infty} r_n^{\alpha} \ge r^{\alpha}$. Now consider the set $B_0 = \frac{3}{4}y_{n+1} + \frac{1}{16}(B \cap F_{\alpha})$: by the hypotheses concerning M and the sequence $\{y_i\}$, we know that $B_0 \subset B$, and $B_0 \cap (\bigcup_{j=1}^{r-1} \{x_j + r_j B\}) = \phi$. Thus $B_0 \subset \bigcup_{j \ge J} \{x_j + r_j B\}$, which from the remark, is impossible, since $\sum_{j \ge J} r_j^{\alpha} < (\frac{1}{4})^{\alpha}$. Hence the theorem is proved.

COROLLARY 1. Let E be an infinite-dimensional normed linear space, B the unit ball, and $0 \le r < 1$. Then no finite union of translates of rB will cover B.

COROLLARY 2. Let $f: \mathbb{R}^1 \to E$ be a Lipschitz-continuous map, where E is an infinite-dimensional normed space. Then $E - f(\mathbb{R}^1)$ is dense in E.

Proof. It suffices to show that for arbitrary $\delta > 0$, δB is not contained in $f(R^1)$. Let L > 0 be the Lipschitz constant for f. Divide R^1 into a countable union of subintervals $\bigcup_{n=1}^{\infty} I_n$, where

$$0 \leq l(I_n) < \inf \left\{ \frac{\delta}{(n+1)L}, \delta L \right\}.$$

For each *n*, choose some $\xi_n \in I_n$. Then

$$f(R^1) \subset \bigcup_{n=1}^{\infty} \left(f(\xi_n) + \frac{\delta}{n+1} B \right).$$

From the main theorem, with $\alpha = 2$, we conclude that δB is not contained in $f(R^1)$. Q.E.D.

https://doi.org/10.4153/CMB-1971-019-9 Published online by Cambridge University Press

REMARK. This last corollary can, of course, be generalized to maps $f: \mathbb{R}^n \to E$ such that

$$||f(x) - f(y)|| \le L ||x - y||^{\beta},$$

where $L \ge 0, \beta > 0$.

Reference

1. L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Macmillan, New York, 1964.

Northern Illinois University, DeKalb, Illinois