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Abstract

The structure of Kronecker class of an extension K : k of algebraic number fields of degree
\K : k\ < 8 is investigated. For such classes it is shown that the width and socle number are
equal and are at most 2, and for those of width 2 the Galois group is given. Further, if \K : k\
is 3 or 4, or if 5 < \K : k\ < 8 and K : k is Galois, then the groups corresponding to all
"second minimal" fields in & are determined.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 B 25, 12 F 10.

1. Introduction

The study of Kronecker classes of algebraic number fields has led to several
questions about covering properties of subgroups of a finite group. We ex-
amine these and obtain information about the structure of a Kronecker class
over k which contains a field K such that the extension K : k has small
degree.

For an algebraic number field k and a finite extension K of k the Kro-
necker set D{K\k) of K over k is defined as the set of all prime ideals of
the ring of integers of k having a prime divisor of relative degree 1 in K.
Following Jehne [3], we define two finite extensions of k to be Kronecker
equivalent relative to k if their Kronecker sets over k have finite symmet-
ric difference. The equivalence classes of this relation are called Kronecker
classes. In [3, §2] it is shown that all the minimal fields in a Kronecker class
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298 Cheryl E. Praeger [2]

3? relative to k have the same Galois hull (normal closure) M say over k;
the field M is called the Galois hull M{3T) of 3? and the Galois group
G{3T) of M : k is called the Galois group of J?. Thus there are a finite
number of minimal fields in 3? and the number of G(^)-classes of min-
imal fields in X is called the width of X and denoted (0k{3T). The set
J?{3?) of intermediate subfields of M{3f): k which lie in X can be con-
sidered as a graph with respect to inclusion; this is called the socle graph of
3? and the number of G(«3T)-classes in JPffl) is called the socle number of
3? and is denoted nk{3?). For example, if a Kronecker class 3T over k
contains a minimal field K such that K : k is Galois, then M(3?) = K and
Hk{3?) = wk{X) = 1. In fact the socle graph consists of just a single vertex.
In the first part of this paper we consider Kronecker classes 3? containing
a minimal field K such that the degree of K : k is at most 8 and show
that nk{3T) = tok{3T) < 2; in the case of width 2 Kronecker classes 3?, the
group G(3f) and the conjugacy classes of the fixed groups of the two classes
of minimal fields of 3? are determined.

THEOREM 1. Suppose that a Kronecker class X relative to k contains a
field K such that the extension K : k has degree n < 8. Then nk{3T) =
cok(X) is I or 2. In the case where 3? has width 2 one of the following
holds, where U and V are the fixed groups of K and of a representative L
of the second class of minimal fields in X respectively.

(a) n = 5, G(3f)=A5, U^AA, V~S3,so \L : k\ = 10.
(b) n = 7, G{JT) = PSL(2, 7), f/ ~ F ~ 5 4 , U and V are not conjugate

in G(JT) ,and\L:k\ = l.
(c) « = 8, \L : k\ = %, and one of the following holds:
(i) G{3?) = GL(2, 3), U ~ V ~ S3, and U and V are not conjugate in

G(3f);
(ii) G{3ir) is the holomorph of a cyclic group of order 8, U and V are

both elementary abelian of order 4 but are not conjugate in G{3?);
(iii) G{3T) = Z2wrC = %\ • C where C = Z4 or Z2 x Z2, U ~V ~z\

with both U and V contained in the base group of the wreath product, but
with U and V not conjugate in

The Kronecker equivalence of two extensions L and K of k is equiva-
lent to a group theoretic condition; namely if M : k is a Galois extension
containing L and K as intermediate fields and if G is the Galois group
of M : k and U, V are the fixed groups of K and L respectively, then it
is shown in [3, §1] that K and L are Kronecker equivalent over k if and
only if UG = VG where, for a subgroup H of G, HG denotes the set theo-
retic union \Jg€G Hg . This group theoretic condition is studied in Section 2;
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the group theoretic analogue, Theorem 2, of Theorem 1, is proved there and
Theorem 1 is deduced from it. A similar result to Theorem 2 was obtained
independently by N. Klingen in [7, Theorem 3.2]. In his paper the result
is exploited to yield information about a variety of decomposition laws for
number fields, where Kronecker equivalence corresponds to possessing the
same weak decomposition law. In this paper the result is used to explore fur-
ther the structure of Kronecker classes containing small degree extensions.
A field L in a Kronecker class Jt over k is called a second minimal field
in 3? if k < l! < L for some l! e «3T and L is minimal with respect
to this property. For Kronecker classes containing a Galois extension K : k
of degree at most 8, the second minimal fields are completely determined:
namely for each second minimal field L the Galois group of the Galois hull
L : k of L is determined together with the fixed groups of L and K. This
was done in [9, 10] for K : k of degree 4 or 8. There are no second minimal
fields when \K : k\ = 2 by [12], and the degrees 3 , 5 , 6 and 7 are dealt with
in Theorem 3.3. The case of non-Galois extensions is considerably more
complicated computationally. Section 3 contains a discussion of the general
problem, and then determines the Galois group of the Galois hull L : k of
each second minimal L in ^T in the cases n = 3 , 4 . The results for n = 3
and n = 4 may be summarised as follows.

THEOREM 3. Suppose that a Kronecker class X relative to k contains a
field K such that the extension K : k has degree n = 3 or n = 4. Then
the only minimal fields in J? are conjugates of K, and either X consists
entirely of the algebraic conjugates of K, or S£ contains exactly one class
of second minimal fields and there is afield L in this class containing K;
further L and the Galois group G of the Galois hull L of L:k is such that
one of the following holds.

(a) n = 3, K : k is Galois, \L:K\ = 2, and G is A4.
(b) n = 4, K : k is Galois, \L : K\ = 3, and G is a Frobenius group of

order 72.
(c) n = 4, K : k is not a Galois extension, \L : K\ = 3, and G is a

semidirect product S • Q, where S is elementary abelian of order 9 and Q
is a semidihedral group of order 16.

This theorem follows immediately from [9, Theorem 4.3], Theorem 3.3,
and Lemmas 3.5 to 3.7. It has the following immediate corollary about Kro-
necker classes.

COROLLARY. Let Jf be a Kronecker class relative to k containing a non-
Galois extension K of k. If either \K : k\ = 3, or \K : k\ = 4 and the
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Galois group of X is A4 or 5 4 , then X consists entirely of the algebraic
conjugates of K; that is, the decomposition law of K over k is absolutely
rigid in the sense ofKlingen [7].

Note that in these situations K was known to be "rigid" over k by [6],
and this result establishes the stronger property of absolute rigidity.

Moreover if X contains an extension K : k of degree n and has Galois
group An with n > 5 , or Sn , then Guralnick [2] showed that K is absolutely
rigid over k. Theorems 1 and 3 show that K is not absolutely rigid in
the cases where n is 3 or 5 and the Galois group is An . Thus we have a
complete solution to the problem of absolute rigidity in the case of alternating
or symmetric Galois groups.

2. Covering properties of subgroups of small index

Suppose as in Theorem 1, that a Kronecker class X over k contains a
minimal field K with \K : k\ = n < 8. If K : k is Galois then X has
width and socle number 1 so assume that K : k is not Galois and let M
be the normal closure of K : k, that is, M = M{X) is the Galois hull of
X. Then if A = G(3T) is the Galois group of M : k and U is the fixed
group of K, the .4-core of U, UA = f]aeA Ua , is trivial and hence A acts
faithfully and transitively by right multiplication as a permutation group on
the set Sl = [A:U] of n right cosets of U in A. If L e X and L < M
then the fixed group V of L in A is such that UA = VA . We determine
all possibilities for V in the following Theorem 2.

THEOREM 2. Suppose that A is a transitive permutation group of degree
n < 8 and that the stabilizer U of a point is nontrivial. Suppose also that V
is a subgroup of A such that UA = VA . Let t =\A:V\. Then one of the
following holds.

(a) U and V are conjugate in A, so t = n.
(b) n = 5, t=lO, A = A5, U = A4, V = (S2x S3)nA5~ S3.
(c) n = 6, t = 3, A~A4, U = Z2, U < V = Z2 x Z2 < A.
(d) n = t = 7 , A = PSL(2, 7) and U =s V ~ S4 with U and V in

different conjugacy classes.
(e) n = t = 8 and one of the following holds:
(i) A = GL(2, 3) , U~V~S3,and V has orbits of lengths 2 , 3 , 3 ;
(ii) A is a holomorph of a cyclic group of order 8, U ~ V are elementary

abelian of order 4 , and V has orbits of lengths 2 , 2 , 4 ;
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(iii) A = Z2wrZ4 preserving the partition {12|34|56|78}, and U = {(34),
(56), (78)) and V = ((12), (34)(56), (34)(78)) are both elementary abelian
of order 8;

(iv) A = Z2WT (Z2xZ2) preserving the partition {12|34|56|78} with U
and V as in (iii).

It is easy to deduce Theorem 1 from Theorem 2. Clearly nk{%) =
o}k{3?) = 1 unless one of (b) to (e) of Theorem 2 holds. In case (c) the
group U does not correspond to a minimal field in JT. In cases (b), (d) and
(e) there are nk{3?) = (okffl) = 2 classes of intermediate fields of M : k
in 3£ and Theorem 1 follows. This result was obtained independently by
Klingen [7, Theorem 3.2] (see also [4, 5, 6]). The proof in [7] makes use of a
computer verification of certain properties whereas the proof given here does
not require a computer.

PROOF OF THEOREM 2. The set UA = VA is a union of conjugacy classes
of A . Since U contains a conjugate of a non-identity element of V we may
replace V by one of its conjugates if necessary and assume that U n V ^ {1}
and that | UC\ V\ is maximal among the intersection sizes | Un Va\, for a e A.
If G is An or Sn then, by [6], G = A5 and (b) is true, so we may assume that
G is not An or Sn . Then since U ^ {1} we must have n > 4 . If n = 4,

then A is D%, and as UA = VA , we obtain U = V. If n = 5 then A is Dl0

or a Frobenius group F of order 20, and as UA = VA , U = V. Assume now
that n = 6. If A is primitive of degree 6 then A is PGL(2, 5) or PSL(2, 5)
[13] and so U and hence V contains an element of order 5. If V fixes a
point then V < U and in each case V = U. If V does not fix a point then
V is transitive, and as 5 divides \V\, V is 2-transitive of degree 6 and hence
V > PSL(2, 5). This means however that V contains an element of type 32

which contradicts the fact that VA = UA . Thus we may assume that A is
imprimitive of degree 6. Assume first that A < 53 wr52 . Then U < S2 x S3

and so neither U nor V contains elements of type 32 . In particular V is
intransitive and does not have two orbits of length 3. If U and hence V
contains an element of order 3 then V has an orbit of length 3 and V fixes a
point; thus V < U and as UA = VA we obtain V = U. If 3 does not divide
\U\ then, as U is nontrivial, A = Dl2 and U = V ~ Z 2 . Thus we may
assume that A < S2 wr S3 = B • S3, the group of permutations preserving the
partition {12|34|56}, and that U < Ds, the stabilizer of the point 1. The

stabilizer Z>g of 1 contains permutations of types I 6 , 21 , 22 (two classes),
and 41 only. If V fixes a point then V < U and it is easily checked that
V = U. (Recall that there are two classes in S2wrS3 of permutations of
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type 22.) Assume then that V has no fixed points. Suppose that V contains
an element g of type 41 , say g = (3456). Then V has orbits {1,2} and
{ 3 , 4 , 5 , 6 } . Now V must contain an element {\2)h and hence also {\2)hg
for some h e ((3456), (35)), and as V contains no elements of types 23 or
2l4l we obtain a contradiction. Thus V contains no element of type 41 and
hence U and V are elementary abelian. Suppose now that V contains an
element g of type 2 1 , say g = (12). Now V contains an element h that
moves the point 5 and not both of h and gh can have type 2 1 . Hence V
contains an element h of type 22 moving the point 5. Since V contains no
elements of type 23 and since h centralizes g we must have h = (12)(56)
so that V contains (56). Similarly V contains (34) and hence V contains
(12)(34)(56) which is a contradiction. Thus U and V contain elements of
types I6 and 22 only. As V fixes no points, \V\ > 4 . If V has an orbit
of length 4 it must act regularly on it and hence there are elements of type
21 or 23 in V which is not allowed. Thus V has three orbits of length 2
and \V\ = 4 . It follows that V = AnB = BnA6, A = V • Z3 ~ AA and

z2 ~ u < v.
If n = 7 then A is PSL(2, 7), or is a Frobenius group of order dividing

42 (see [13]). In the latter case V = U since VA = UA . If A = PSL(2, 7)
then U ~ S4 contains permutations of types 22 , 32 and 2XAX, and it follows
that the F-orbits have lengths 1, 6 or 3, 4. In the former case V < U and
as V contains elements of orders 3 and 4, V = U. In the latter case also
V ~ 54 and is not conjugate to U. Thus we may assume that n = 8. If
A is PSL(2, 7) or PGL(2, 7) then U is a Frobenius group of order 21 or
42 respectively and we must have V = U. If A is primitive with a regular
normal subgroup N then by [13], 7 divides \U\ and \V\. In this case if V is
transitive then either V contains N or A = AGL(3, 2) > V = PSL(2, 7) by
[11], and so V contains a fixed point free element, contradicting UA = VA .
Thus V fixes a point and so V < U and it follows that V = U. So we may
assume that A is imprimitive.

Suppose first that a minimal block of imprimivity for A has size 4. Then
A < 5 4 w r 5 2 and 3 divides \A\. It follows that U and V contain an element
of type 32 . If V fixes a point then V < U < S3 x 54 and it follows that
V = U. So suppose that V does not fix a point. Since V contains an
element of type 32 and V contains no fixed point free element, V has two
orbits of length 4, namely the blocks of imprimitivity for A . If the stabilizer
of a point in V fixes more than one point an easy counting argument shows
that V contains an element with no fixed points. Hence the stabilizer in V
of a point in one block is still transitive on the other block, so V contains
O2 (SA -WTS2) which contains a fixed point free element, a contradiction.
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Finally assume that A has blocks of size 2 so that A < S2 wr54 = B • S4 ,
the group of permutations preserving the partition {12|34|56|78} . We may
assume that U is the stabilizer of the point 1. Suppose first that UnB = {1}.
Then U < 5 3 . If U had order 2 or 3 then U and V would be equal so
we may assume that U ~ 5 3 and hence that A is Z2 x S4 or GL(2, 3) . In
the former case elements of order 2 in U are of type 22 and it follows that
V =U fixes a point, or V ~ 5 3 has orbits of lengths 2, 3, 3, and case (e)(i)
holds. Next suppose that UnB has order 2. Then ,4 DB has order 4 and it
follows that UnB fixes four points, say 1 , 2 , 3 and 4. Thus A preserves
the partition {1234|5678} and hence \U\ < 4 . Suppose that U ^ V. Then
C/ is elementary abelian of order 4 and hence A/(A n B) ~ Z>g and we may
assume that [ / n F = [/nfl = (a = (56)(78)) and that V has no fixed point.
Then A nB = {a, b = (12)(34)). Suppose first that A contains an element
of order 8. Then without loss of generality A contains c = (15372648).
Also A contains an element d such that d inverts c modulo A n B, and
(by multiplying by ab if necessary) we may assume that d e U fixes 1, 2
and fixes {3, 4} setwise. It follows that d is either d' = (34)(57)(68) or
d" = (34)(58)(67) = ad' (from the fact that U is not cyclic), and U =
{1, a, d', d"}. Now V contains a conjugate of each of d! and d", and up
to conjugacy in A, V = {1, a , d'c = (14)(23)(78), ad'c = (14)(23)(56) =

(d")c } . Thus (e)(ii) holds. Now suppose that A has an element c of
order 4 cyclically permuting the 5-orbits: we may take c = (1537)(2648).
Also U contains an element d which inverts c modulo A n B, and as U
is not cyclic, d is either d' = (57)(68) or d" = d'a = (58)(67). Then
U = {1, a, d!, d"}. Now V must contain conjugates of d' and d" which
do not fix 1, and there is only one possibility for these elements, namely d'c =
(13)(24) and d"c = (14)(32). However (a, d'c, d"c) contains an element
with no fixed points, which is a contradiction to the fact that UA = VA .

Now suppose that \U n B\ = 4 . It follows that A n B = B n A% and so
VnB consists of permutations of types I8 and 22 only. It then follows that
V n B fixes a point. If 3 divides \A\ then V = U. If A = {A n B) • Z)g or
A = (AnB)-Z4 then there are two conjugacy classes of involutions of type 22

in AnB and therefore U, and hence V, contain members of both classes; it
follows that V = U. If A = (AnB)-(Z2xZ2) there are three conjugacy classes
of involutions of type 22 in AnB and again U and V contain members of
each class so V = U. Assume now that \U nB\ = 8, that is, B c A . Then,
as F n f l must contain permutations of types 2 1 , 2 2 , 23 but none of type
2 4 , we may assume that VnB is one of UnB, V2 = ((34), (56)(78)), V3 =
((12), (34)(56), (34)(78)). If 3 divides \A\ then U contains an element of
type 61 and it follows that V = U. Assume then that A < B D%. Then
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there are at least two conjugacy classes of permutations of type 2 in B
and hence if V fixes a point then V = U. So assume that V f)B = V3. If

A-BDi then V must contain a permutation of type 2 interchanging two
blocks of the partition. We may assume that V = (F3, (35)(46)), but then
V contains (12)(35)(46)(34)(78) = (12)(3456)(78) which is a contradiction.
Thus A = B • Z4 or A = B • (Z2 x Z2) and U <B, V = V3, and (e)(iii) or
(iv) holds.

3. Kronecker classes of field extensions of small degree

Here we investigate further the structure of a Kronecker class 3T relative
to k containing a field K with 2<|A::fc | = n < 8 . W e assume that A" is a
minimal field in ^ . For n = 2 it was shown by Saxl in [12] that & = {K}
so we shall assume that 3 < n < 8. The results of the previous sections give
the width and socle number for 3?, determine all minimal fields in 3T and
give information about the Galois hull of 3?. Here we investigate second
minimal fields in 3£. (Recall that a field L e X is called second minimal
in ^ if k < L' < L for some L' e ^ and L is minimal with respect to
this property.)

Let L be an arbitrary field in X and let L be the Galois hull of L : k.
By the Reduction Theorem in [3, §2], KC\L e 3? and as K is a minimal field
in 3?, K = KC\L < L. Let A be the Galois group of L : k and let U, V be
the fixed groups of K, L respectively. Then UA = VA , VA = f)aeG Va = {1}
and \A : U\ = n. (A subgroup V of a group 4̂ is said to be corefree in A
if F^ = {1} .) Let H = UA , a possibly trivial normal subgroup of A .

First we shall examine the case where K : k is a Galois extension. Here
V < U = H and VA = H. A subgroup V of a normal subgroup if of a
group ,4 , is called an A-covering subgroup of # if F^ = /f. In this case
determining all second minimal fields in 3T (when such exist) is equivalent
to determining all maximal ^-covering subgroups V of H such that V is
corefree in A. This has been done in [9] for n = 4 and in [10] for n = 8,
so we need to consider the cases n = 3 , 5, 6, 7. We shall need, now and
later, the following generalization of [10, Propositions 2.1 and 2.2].

PROPOSITION 3.1. Suppose that H is a normal subgroup of index r in
a finite group A and that W is an A-covering subgroup of H which is a
maximal subgroup of H and is corefree in A. Let S be the socle of H, (the
product of the minimal normal subgroups of H). Then either S is elementary
abelian or the following hold.
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(i) The socle S = Nx x • • • x Ns is a direct product of s > 5 minimal
normal subgroups of H where for each i < s, Nl; ~ Tk is a direct product
of k > 1 copies of a nonabelian simple group T. Moreover if s — 5 then

^ 5

(ii) The group A acts transitively by conjugation on {N{,... , Ns} and has
an orbit J on unordered pairs of elements of this set of length \J\> st/2 > 2s,
where t is the number of conjugacy classes of AutTfe in Tk . Moreover if
\J\ = 2s then Ni = T = Ai.

(iii) For some {N^Nj} e J, W n S = D x (Ui&jNi) where D is a
diagonal subgroup of Nt x Nj. Moreover r is divisible by \J\ and by s. In
particular r>2s> 10.

PROOF. Most of the proposition follows from [10, Propositions 2.1 and
2.2 and their proofs], where it is shown that W is as in (iii), \J\ divides r
and | / | > s. To obtain the better lower bound on |7 | we define a graph T
with vertex set VT = {N{, ... , Ns} and edge set / . Now each element x
of 5 = iVj x • • • x Ns lies in (WnS)" for some a e A and hence the entries in
x in positions /" and j " lie in the same conjugacy class of Aut T in T .
Let 3~ be the set of such conjugacy classes. Then x determines a mapping
</>x : VF -* y by denning (^.)^>x to be the conjugacy class containing the
ith entry in x, and as x varies over S all mappings VT -• 9~ arise. Thus
for each mapping (j> : VT —» 3~ there is some edge {Nb, Nc} in T such
that (Nb)(t> = (Nc)<j>, that is to say, it is not possible to colour the vertices
of F with | y | colours such that adjacent vertices have different colours.
Now it is clear that the vertices of a graph of valency v can be coloured by
a set of v + 1 colours and hence \ST \ is at most the valency of T, that is
| ^ | < 2\J\/s. So |7| > s\^\/2 and it was shown in [10, Proposition 2.2]
that 1^1 > 4 and \&"\ = 4 if and only if Nt = T = A5.

COROLLARY 3.2. With the notation of Proposition 3.1, let T be the graph
with vertex set {N{,... , Ns} and edge set J = {i, j}A, where W n S -
D x (11/^, j ty) > Z) a diagonal subgroup of Ni x Nj. Then, if there are t

conjugacy classes of Aut Tk in Tk, the vertices of T cannot be coloured with
t colours such that adjacent vertices have different colours.

THEOREM 3.3. Let A be a finite group with a nontrivial normal subgroup
H of index n where n is 3 , 5 , 6 or 7. Let V be a maximal subgroup of
H which is corefree in A and which is an A-covering subgroup of H. Then
up to conjugacy in A one of the following holds.
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(a) n = 3 , A = AA, H = Z2xZ2 and V = Z2.
(b) n is 5 or 7, A ~ Zn

2~
x -Zn, H ~ Z2~

i is the subgroup of elements
of 1*2 with an even number of nonzero entries, and V is the subgroup of H
of index 2 consisting of all elements of H with first entry zero.

(c) n = 6, A is S4 or A4 x Z2, H is the normal subgroup of AA of order
4, and V is a subgroup of H of order 2.

(d) n = 6, A = SR where S = Z5 x Z5 and either R = Z24 or
R = (x,y\x3 = y* = 1, y~lxy = x~l) with R acting regularly on the
six subgroups of S of order 5; H = S T where T is the normal subgroup
of R of order 4, and V = Z5-T.

(e) n = 6, A = HR where H = Z* and R is 53 or Z6, (further
A4 A AA < A < SA wr Z2 and R interchanges the two S4 's); V ~Z3

2.
(f) n = 7, A = z\ • Z7 is a Frobeniusgroup, H = z\ and V = z\.

REMARKS. (1) The examples in parts (a) and (b) belong to a general family
of examples of covering subgroups: let Af = Z", let H be the subgroup of
N of elements with an even number of nonzero entries, and let V be the
subgroup of H of elements with first entry 0. Let T be any group of order
n , and let A = H • T be the semidirect product with T acting regularly on
the n entries of elements in H (so A has index 2 in NT = Z2 wr T). Then
V is an ^-covering subgroup of H if and only if n is odd.

(2) The group theory package CAYLEY [1] was used to verify that the
groups given in (d) and (e) are examples and that these are the only groups
occurring here up to conjugacy. I am grateful to Derek Holt for some help-
ful discussions about this. The group A in part (d) is a subgroup of the
affine group AGL(2, 5), and T ~ Z4 is the subgroup of scalar matrices in
GL(2,5) .

(3) For Kronecker classes ^ relative to k containing a Galois extension
K of degree 3 , 5 , 6 or 7, this proposition determines the Galois group A
of L : k and the fixed group V of L : k for all second minimal fields
LeJ.

PROOF. By Proposition 3.1, the socle S of H is elementary abelian. Now
A acts transitively and faithfully by right multiplication on the set £2 =
[A : V] of right cosets of V in A and H has \A : H\ = n orbits Q{ =
[H : V],Cl2, ... ,Qn in Q on each of which it acts primitively. Since
S is abelian, S(l) = V D S is the kernel of the action of S on Qj and

s = {v n S)A = U K , < *
 s(i) > w h e r e s(i) i s t h e k e m e l o f s o n

Lemma 3.1], S(i) £ {1}. Now |5(i)| = |5|/|Q,.| = \S\/m, say, and S(i) is
a normal subgroup of H, so S(i) is either trivial or transitive on Q. for
each j (since H is primitive on £2.). Suppose first that S{i) = S(j) for
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some i ^ j . Then J{i) = {j\S(j) = S(i)} is a proper nontrivial block of
imprimitivity for A in { 1 , . . . , « } (where we let A act on {1, . . . , «} in
the same way as it acts on {£2, , . . . ,Sln}) and we have

\S\ = \\JS(i)\ < (»/|/(i)|)|5(i)| = n\S\/m\J(i)\

so that 2 < m < n/\J(i)\ < n/2. Thus | / ( / ) | = 2, n = 6, and m = 2.
If |5 | = 4 then H = S > V = Z2 and either ^ / i / = 53 and ^ = S4 as
in (c) or A/H = Z6. In the latter case let A = (H, a). Then a6 e H is
centralized by a and as a permutes the 3 involutions in H transitively we
have a6 = 1. Also as a3 normalizes S(i) for all / , a3 lies in the centre
of A. Thus A = A4 x (a3) and (c) is true. If |5 | ̂  4 then |5 | = 8 =
| |J5( i ) | = 3.4 - 3.2 + 1 = 7 by the inclusion-exclusion principle, which is
absurd. Thus we may assume that all the subgroups S(i) are distinct. For
subsets J of { 1 , . . . , « } we write S(J) for the intersection f]jeJS(j), and
we write S({i,j}) as S(i,j) etc.

Next suppose that S(i, j) = {1} for some i ^ j . Then 151 = m2 and
hence S(i, j) = {1} for all i # j . We have m2 = \S\ = n(m - 1) + 1 so
that n = m + 1 is 3 ,5 or 6. (Note that m is a prime power.) If n = 3
then (a) holds. If n = 5 then, since H is primitive on each Q,{ and is
faithful on ft, U Q2 we have z\ • Z3 < H < S4 x S4 so that # has only
two normal subgroups of order 4 (not the 5 distinct S(i), 1 < / < 5).
If n = 6 then S = Z5 x Z5 is self-centralizing in .4 (since any element
centralizing S centralizes each S(i) and hence lies in H, and hence in S)
and so A < AGL(2, 5) and H = ST where {1} < T < Z(GL(2, 5)) ~ Z4 .
We may take V = S(l)-T and A/H is a subgroup of PGL(2, 5) of order
6 acting regularly on the six subgroups of S of order 5. It follows that (d)
holds.

Thus we may suppose that S(i, j) ^ {1} for all distinct i, j . If n = 3
then m3 = |5| = 3w2 - 3w + 1, which implies that m = 1, which is a
contradiction. Thus from now on n > 5. Suppose now that S(i, j), for
/ ^ j , fixes a third set Qfc pointwise. Set J(i, j) = {k\S{i, j) = S{i, j , k)} .
Then each pair of points lies in at most one image of / ( / , j) under elements
of A, each point lies in the same number of images, and the number of
images divides n . It follows that | / ( j , ;')| = 3 and either n = 1 and we can
take the images of J(i, j) as the cyclic shifts of the set { 1 , 2 , 4 } under the
permutation (1234567), or n = 6 and there are just two disjoint images, say
{1 ,2 , 3} and {4, 5,6} of J(i, j). If n = 7 then S(J) = {1} for each set
/ of size 4 so we have

rn = \S\ = l{m2 - 3(m - 1) - 1) + 7(m - 1) + 1

= lm2 - 14m+ 8,
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that is, m = 2 or 4. If m = 2 then (f) holds, but if m = 4 then, as H
is primitive on each Q,., # cannot have as many as seven distinct nor-
mal subgroups of order 4. If n = 6 then applying [9, Lemma 3.2] to
5(1 , 2, 3) x 5(4, 5, 6) shows that 5 (1 , 2, 3 , 4) ± {1} so that m4 = \S\
and 5 (1 , 2, 3) = 5 ( 1 , 2, 3,4)^' where A{ = NA(S{1,2,3)). It follows
that m = 2 , H = S = Z4 and ^ < 54 wr5 2 . Now A/H has order 6. Let
T be a Sylow 3-subgroup of A . Then T has trivial centralizer in 5 and so
its normalizer R = NA(T) has order 6 and is a complement for H in A,
R must interchange 5 ( 1 , 2, 3) and 5(4, 5, 6) and there are examples with
R ~ 53 and R ~ Z6 . Thus (e) holds.

We may now assume that S(i, j) fixes only tyuQ, pointwise. If \S\ — m3

then

rn = n(m2 - (n - l)(m - 1) - 1) + n(n - l)(/n - l ) / 2 + 1;

this equation has no prime power solutions m for n = 5, 6, 7. Thus \S\ >
m4 and 5(/) # {1} for subsets / of size 3. Suppose that S(i, j , k) fixes
a f o u r t h ilt p o i n t w i s e a n d set / ( / , j , k ) = {l\S(i, j , k) = S(i, j , k, I ) } .
Then each 3-subset lies in at most one image of J(i, j , k), each point lies
in the same number of images and the number of images divides n. Thus
\J{i, j , k)\ = 4 and either n = 1 and we may take the / ( / , j , k) to be
the images of { 1 , 2 , 3 , 5 } under (1234567), or n = 6 and we may take
the images as {1, 2, 3, 4} , { 1 , 2 , 5 , 6 } , and {3, 4, 5, 6} . If n = 1 then
S(J) = {1} for any 5-set / so

rn = \S\ = 7w 3 -21m 2 +35m-(7/n+28)+21-7+l = 7m3-21m2+28w-13

which has no solutions. If n = 6 then by [9, Lemma 3.2] for each 5-set / ,
S(J) = {1}, and so

m4 = \S\ = 6m3 - 15m2 + 20m - (3m + 12) + 6 - 1 = 6m3 - 15m2 + 17m - 7

which has no solutions. Thus S(i, j , k) fixes only Qf U Qj U Qk pointwise

for all distinct i,j,k. If \S\ = m4 then

m =nm - [ 2 ) m + ( ^ j m - ( ^ j + (̂  5 j + ••• + ( - 1 ) ,

and hence n = 5, m = 2 and (b) holds. So we may assume that |5 | > m5.
By [9, Lemma 3.2], n > 6, and |5 | < m""1. Then if n = 6 we have

w
5 = |5 | = 6 m 4 - 15m3 + 2 0 m 2 - 15m + 6 - l

which has no solutions. Thus n = 1. If, for some J of size 4, 5 ( / ) fixes
a fifth £lk pointwise then S(J) = S(J u {k}) fixes exactly 5 of the ili and
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the stabilizer of every 4-set fixes 5 of the ilt; we then have

m5 = \S\ = Irn - 21m3 + 35m2 - 35m + (7m + 14) - 7 + 1

which has no solutions. Thus 8(J) fixes only 4 of the Qf and we have

\S\ = rn+S = mS(7m4 - 21m3 + 35m2 - 35m + 21) - 7 + 1

where S is 0 or 1. It follows that \S\ = 26 and (b) holds. This completes
the proof of Theorem 3.3.

Now we consider the case where the extension K : k is not Galois. Here
U ±H. Theorem 2 lists all the possibilities for the groups A/H, U/H and
VH/H. Thus if U is corefree in A , that is, if H = {1} , then all possibilities
for the groups A, U and V are given by Theorem 2 (a), (b), (d), (e), and
all of these groups V correspond to minimal fields L in 3?. (Note that
the groups in part (c) do not give examples here since K minimal implies
that U is not a proper subgroup of V.) Thus if L is second minimal in
• ^ then H = UA is nontrivial, and, as V is corefree in A, V ^ VH.
Further UA = VA = (VH)A, so if VH is the fixed group of the subfield
L' of L then l! is a minimal field in <̂T and L' is contained in L.
Now if M is a maximal subgroup of VH containing V then MA = VA

so, for L" the subfield of L with fixed group M, we have L" e J3T and
L' < L" < L. Thus if L is second minimal in 3? then V is a maximal
subgroup of VH. Determining all second minimal fields in 3£ in this case
is equivalent to determining all maximal subgroups V of VH which are
corefree in A and satisfy VA = (VH)A, where A/H, U/H, and VH/H
satisfy one of the conclusions (a) to (e) of Theorem 2. We are able to complete
this classification for n = 3 and n = 4 and we discuss further the cases of
larger n < 8.

From now on let A, U, VH, V be as in the previous paragraph with V
maximal in VH, and let t = \A : VH\. Clearly V n H is an ^-covering
subgroup of H and if W is a maximal subgroup of H containing V C\H
then W is also an ^4-covering subgroup of H. Moreover, as we see below,
W is corefree in A (see Figure 1).

LEMMA 3.4. Suppose that a finite group A has a normal subgroup H and
a corefree subgroup V such that V is a proper maximal subgroup of VH.
If W is a maximal subgroup of H which contains V nH then W is also
corefree in A.

PROOF. Since V is corefree, A acts faithfully and transitively by right
multiplication on the set fl = [A : V] of right cosets of V in A. As V is
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maximal in VH, the set A = [VH : V] of cosets of V in VH is a minimal
block of imprimitivity for A in this action. The subgroup V is the stabilizer
of the point 5 = V e A and V n H is the subgroup of H fixing S . Thus
W is intransitive on A and hence WA is intransitive on A. Since WA is a
normal subgroup of F i / and VH acts primitively on A it follows that WA

fixes A pointwise and hence that WA = {1} .
Let S be the socle of H (the product of the minimal normal subgroups of

H). Now, as V is corefree in A, A acts faithfully and transitively on the set
A = [A : V] of right cosets of V in A, and the set X, = [Fif : F] is a block
of imprimitivity. Since V is maximal in VH, the setwise stabilizer VH
of X, acts primitively on £ , , and its normal subgroup S acts transitively
on X,. Let £ = {5^ , . . . , Z J be the set of images of L, under elements
of A and, for 1 < i < t, let S{i) denote the kernel of S on Z( . Then
5(1) = (VnS)H . We shall consider A permuting the index set { 1 , 2 , . . . , / }
in the same way that it permutes 2 ; for J C {1,2,... , t} we shall write
S(J) for the intersection f\j€j S(j), and we shall write S(i, j) for S({i, j})
etc.

First we consider the case where S is nonabelian.

LEMMA 3.5. If n is 3 or 4 then S is elementary abelian. If S is non-
abelian (and hence n > 5) then VH induces on £, a primitive group of
(simple or compound) diagonal type.

Recall that a primitive group is said to be of diagonal type if its socle
S — T ', for a nonabelian simple group T and k > 1, / > 2, and the
stabilizer of a point in S is a direct product D where D ~ T is a diagonal
subgroup of a product Tl of / of the simple direct factors of S (see [8]).
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PROOF. Suppose that S is not elementary abelian. By Lemma 3.4, W is
corefree in A. By Proposition 3.1, S = N{ x ••• x Ns where s > 5 and

each fy ~ Tk for some nonabelian simple group T and k > 1. The N( are
minimal normal subgroups of H and are conjugate in A . Also we may take
W n S to be DxN3x-xNs, where 7J> is a diagonal subgroup of N{xN2.
Now F n S < W n S so S = NjX 5(1) for some / c {1, 2, . . . , s}, where
Ni = n , € /

 Ni a c t s faithfully on X, and {1, 2} C / . Since (VnS)A = S, by
[9, Theorem 2.1] we have F n S" ~ T and V n 5 is a subdirect product of

V, • Thus by the O'Nan Scott Theorem [8], VH1* is a group of diagonal
1type. Now F771' has at most two minimal normal subgroups so either

VH is transitive on 7 or has two orbits 71 and 72 of equal length in / .
Define a graph 7 with vertex set / and edges the images under VH of the
pair {1,2} (considering A to act on the index set {1,2,... , s} as it acts
on {Ny, ... , Ns}). Then as V is maximal in VH it follows that V n S
is a product of a diagonal subgroup Dc of Ilygc ^} f° r e a c ^ connected
component C of 7 and VH is transitive on these components. (Moreover
if VH has two orbits 7j and I2 in / then 7, contains points of each
component. If 7 = {1, 2} then VnS = WnS so V C\H =W and the
orbit {1, 2}A has length dividing \A : VH\ = t; by Proposition 3.1 we have
t > 2s > 10 so that by Theorem 2, « = 5, t = 10 and 5 = 5, Nt = A5.
Thus we may assume that |7| > 3.)

As in the proof of Proposition 3.1, each x e S determines a mapping
<f>x : { 1 , . . . , s} -»• y where ^" is the set of Aut Tk classes in Tfc and i(j>x

is the class containing x.. Elements of S~ may be considered as "colours"
and <f>x as a colouring of the set { 1 , . . . , s} . For x e VnD, 4>x is constant
on each connected component of 7, that is, each connected component of 7
is monochromatic with respect to this colouring. Then since (V n S)A = S,
each x in S lies in (F nS)a for some a e A and hence with respect to
the colouring induced by 0X, the connected components of the graph I" are
all monochromatic. Thus for each colouring of { 1 , . . . , s} by the colour
set y there is some a e A such that the components of the graph 7° are
monochromatic.

Suppose that n = 3 . Then by Theorem 2, also t = 3 , A/H = S3,
and as s > 5 divides \A/H| , 5 = 6. Since there are three distinct images
of 7 under elements of A, with each of 1, ... , y belonging to a constant
number of them it follows that |7| = 4 . Now S contains an element x with
Xj = x2 = Xj = 1, and the other three entries in distinct nontrivial Aut Tk-
conjugacy classes in Tk . The corresponding colouring <f>x does not have the
required property for any set 7 of size 4. Thus n > 4 .
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Suppose that n = 4 so by Theorem 2, t = 4 . Now \VH'\ divides
\VH/H\ which divides 6. If 3 divides \VH'\ then |/| is 3, 6 or 12. If not
then \VH!\ divides 2 so |/| = 4 and VH1 has two orbits of length 2. If
|/| = 12 then VH1 has two orbits of length 6 so ,4/ i / = 54 and, as 5 > | / | ,
5 = 24; here 7t say is a block of length 6 and colouring the four images
of /j monochromatically with four different colours gives a contradiction.
Thus |/| f 12. If 5 = 24 then A/H = SA, and |/ | = 6 and / is a block of
imprimitively for A ; if we colour each image of I using four colours then
no component of any image of / is monochromatic. Thus s < 24. Suppose
next that s = 12. Then 3 divides \VH*\ so |/ | is 3 or 6. In the former
case / is a block of imprimitivity and colouring the three points of each
block with three different colours gives a contradiction. Thus |/| = 6. If
VH1 has two orbits of length 3 then I{ is a block and colouring each image
of 7j monochromatically with a different colour gives a contradiction. Thus
VH1 is transitive, A/H = S4 , and either VH has two orbits of length 6 in
{1, . . . , 12} or VH is the stabilizer of a block B in { 1 , . . . , 12} of size 3.
In the former case I consists of one point from each of six blocks of length
2, and colouring these blocks monochromatically using four colours yields
a contradiction. In the latter case, I consists of two points of three of the
images of B and colouring the images of B monochromatically with four
different colours or colouring two monochromatically and two using three
colours yields a contradiction. Thus s < 12. If s = 8 then VH is the
stabilizer of a block B in {1, . . . , s} of size 2 and is transitive on the other
six points. Thus |/| = 6 and VH transitive on I. Then colouring the images
of B monochromatically with four different colours yields a contradiction.
Thus as 5 > 5 and s divides 24, s = 6, A/H is A4 or S4, and as 3 divides
\VHr\ and s > |/ | we must have |/ | = 3 . It is possible to colour {1, . . . , 6}
with 4 colours with no monochromatic triple. Thus n ^ 4 .

REMARKS. The cases 5 < n < 8 are much more tedious but the techniques
above would probably be sufficient to determine whether H could have a
nonabelian socle. In particular, if the subset / above had size 2 we saw that
n = 5,t=\Q,s = 5, and A/H = A5 (by Theorem 2) and N( ~ A5 (by
Proposition 3.1); also VH1' < (A5 x A5) • (Out^5 x S2) and it follows that
S = A5

5 and H = S or S • 2. For V n S to be an ^-covering subgroup of
S it is necessary for VnS to contain elements of the form (x, x, 1, 1, 1)
and (x, x , 1, 1, 1) where x, x are of order 5 but not conjugate in A%.
With A < (As-2)- As this was seen to be not possible (using CAYLEY to
check some calculations). Thus always the set / has size at least 3.

Now we assume that S is elementary abelian. Then S is regular on each
Z,. and so V nS = S(l) and S = \Jl<i<tS(i); also |X,| = m is a prime
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power and |5(/)| = \S\/m. By [9, Lemma 3.1 and 3.2], S(i) / {1}, S(i)
is trivial or transitive on each Z ; , and S(J) = {1} for each subset J of

{ 1 , . . . , t} of size t - 1, so m2 <\S\ = ma < m'~l.

LEMMA 3.6. / / 3 < n < 8 then \S\ < m'~2. In particular, n > 4 and
t>4.

PROOF. Suppose that \S\ = m''1. Then by the inclusion-exclusion prin-
ciple we have

m-l = \\JS(i)\= £ (-I)"
1<i<t-1

that is (m - 1)' = {-l)'~l(m - 1) and hence m = 2 and t is odd. If n = t
then, in its action on A, A is a subgroup of index 2 in S2 wr T < S2t where
T ~ A/H is a transitive nonregular subgroup of St; the subgroup H = S is
the subgroup of the base group Sl

2 of all Muples with an even number of
nonzero entries and V n H is the subgroup of H of Muples with first entry
zero. For n = t = 3, 5, 7 and for all possible subgroups T we can check
that the extension A of H by T splits, that is, y! ~ H • T; in all cases we
find an element of VH which has no fixed point in A so that VA ^ (VH)A ,
a contradiction. (For example, take the blocks of size 2 to be {2/ - 1, 2 /} ,
1 < / < t. Then VH contains x = (12)(34), and, if \T\ is even and T is
not PSL(2, 7) of degree 7, then V contains an element y such that yH
has order 2 and y fixes only the block {1,2} setwise; then xy e VH and
xy is fixed point free. If T = PSL(2, 7) or |T| is odd (in which case T is
a Frobenius group of order 21) we take y e V with yH of order 3.)

On the other hand if n ^ t and t is odd then by Theorem 2, n = 6,
t = 3 , A/H = A4 and VH is a normal subgroup of A of index 3. However
in its action on A of degree tm = 6 we have A < S2 wr53 so that a Sylow
3-subgroup of ,4 cannot normalize a subgroup of order 16. Thus m2 < \S\ <
m'~2 so t>4, and by Theorem 2, n > 4 .

LEMMA 3.7. / / 4 < « < 8 and \S\ = m2 < m'~2 then t = m + 1 e
{4, 5, 6, 8, 10} or t = %, m = 3. Moreover ifn = 4
A G L ( 2 , 3 ) , W / K ? / * G = < ( f 1 ) , ( o ? ) > isa S y l o w ^ s u b g r o u p of G L ( 2 , 3 ) ,

\H = SZ(Q), S = i\,and V = 5(1) • ( ( g o ) , - / > .

PROOF. Suppose that |5 | = m 2 . Then each S(i) has order m, and dis-
tinct S(i) intersect in {1} . Since S = liS(i) we have m2 = r(m - 1) + 1
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where r is the number of distinct subgroups S(i). Hence (see Theorem 2)
either t = r = m + 1 € {4, 5, 6, 8, 10} or t = 2r = 2(m + l ) e { 6 , 8, 10}.

Suppose that t = 2r = 6, m = 2. Then A < S2 wrS6 and, as \H\ = 4, A
has 3 blocks of imprimitivity of size 4 and each nontrivial element of H fixes
exactly four points, namely one of the blocks. By Theorem 2, n = 6 and as
U ^ H also VH ^ H. It follows that V contains a 2-element y which fixes
only two of the blocks of size 2 setwise. Then for x e H - S(l), xy e VH
is fixed point free so that VA ^ (VH)A . Suppose that t = 2r = 10, m = 4.
Then by Theorem 2, n = 5, A/H = ,45 and F i / / i 7 = S3. Now Fi7 fixes
only one of the £( setwise, namely Z j . On the other hand, as 5(1) = S(i)
for some i > 1 (since there are only five distinct S(i)), the stabilizer of Zt

also fixes Z( , which is a contradiction.
Suppose now that n = 4 . Then, f = 4 , w = 3 , and the four subgroups

S(i) are all distinct. It follows that 5 is self-centralizing in A and hence
that A/S < GL(2, 3). Now A < 512 and ^ has a set Z of 4 blocks of size
3. If V contains an element y fixing only one block setwise and fixing that
block pointwise then for some x e H, xy £ VH is fixed point free and so
(VH)A # VA . If A/H > A4 then a 3-element y in V\S(l) has this property
so we must have A/H = Ds and hence A = S • Q where Q is a Sylow 2-
subgroup of GL(2, 3), and H = X • Z(Q). Taking Q = <(2 | ) , (§»))
we may assume that VH = S • V n Q where F n Q = ( ( § } ) , - / ) and it
is readily checked that VH contains no fixed point free elements, that is,
{VH)A = VA.
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