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2Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,
Caixa Postal 66.281, CEP 05311-970, São Paulo SP,

Brazil (polcino@ime.usp.br)

(Received 9 December 2003)

Abstract Let L be an RA loop, that is, a loop whose loop ring in any characteristic is an alternative,
but not associative, ring. Let f : L → {±1} be a homomorphism and, for α =

∑
α�� ∈ ZL, define

αf =
∑

f(�)α��
−1. Call α f-unitary if αf = α−1 or αf = −α−1. In this paper, we identify the RA

loops L with the property that all units in ZL are f -unitary. Along the way, we extend a famous theorem
of Higman to a case still undecided in group rings.
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1. Introduction

A loop ring is an algebraic object RL, constructed in the same way as a group ring, but
in which the underlying loop L is not necessarily associative. This paper is concerned
with loop rings which are alternative, but not associative. Loops which give rise to such
loop rings (over commutative associative rings R of any characteristic) are called RA
(ring alternative) loops. The best reference for information about RA loops and their
loop rings is the monograph [15], though we record here some properties of particular
relevance to this paper.

RA loops are Moufang and hence dissociative; that is, the subloop generated by two
elements is always associative (so parentheses are never needed to indicate order of mul-
tiplication in monomials). We use implicitly throughout this paper the fact that if two
elements of an RA loop commute, then they associate with every third element [15, The-
orem IV.1.1 and Corollary IV.1.3]. An RA loop L has the so-called LC property ; namely,
elements x, y ∈ L commute if and only if x or y or xy is central [15, § IV.2] (see also [6]).
An RA loop L possesses a special element (which we always label s) that is both a unique
non-identity commutator and a unique non-identity associator; that is, if a, b ∈ L do not
commute, then ba = sab and, if a, b, c ∈ L do not associate, then (ab)c = [a(bc)]s. (It is
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easy to see that s is necessarily central and of order 2.) Letting (a, b) denote the com-
mutator of a and b, and (a, b, c) the associator of a, b and c, we then have that for any
a, b, c ∈ L,

(a, b) = 1 or s and (a, b, c) = 1 or s.

In L, the map

� �→ �∗ =

{
� if � is central,

s� if � is not central,
(1.1)

for � ∈ L extends (by linearity) to an involution (that is, an antiautomorphism of period
two) of the alternative ring RL.

Finally, we note that an RA loop L is generated by its centre and any three elements
x, y, u ∈ L that do not associate. Letting G be the group generated by x and y, the loop
L is completely determined by G, ∗ and u2 (see [15, § II.5.2 and Theorem IV.3.1]), so we
use the notation L = M(G, ∗, u2).

Let f : L → {±1} be a homomorphism and, for α =
∑

α�� ∈ RL, define αf =∑
f(�)α��

−1. We say that α is f-unitary if αf = α−1 or αf = −α−1. It is easy to
verify that α �→ αf is an antiautomorphism of the loop ring and that the set Uf (RL) of
f -unitary units of RL is a subloop of the full loop U(RL) of units.

The concept of an f -unitary unit in a group ring RG was introduced by Bovdi [1].
In the special case in which f(g) = 1 for all g ∈ G, αf is generally denoted α∗ and
a unit is called simply unitary if α∗ = α−1. This situation has received quite a bit of
attention recently. Bovdi and Kovacs determined when U∗(KG) (K a field) is normal
in U(KG) [4]. Bovdi and Erdei have considered the possibility that a group may have
a normal complement in the unitary group U∗(ZL) [3]. Gonçalves and Passman have
studied groups G whose unitary subgroup in KG does not contain a free group [9], and
Giambruno and Polcino Milies determined conditions for this subgroup to satisfy a group
identity [8].

The purpose of this paper is to determine precisely which RA loops L have the property
that every unit in the integral loop ring ZL is f -unitary (for some f). Equivalently, when
is it the case that Uf (ZL) = U(ZL)? This problem has been studied for group rings by
Bovdi and Sehgal [1,2].

In the next two sections, we give instances of where all units are f -unitary and then,
in § 4, we show that our list is complete. Interestingly, our investigations led to an exten-
sion to arbitrary RA loops of a theorem of Higman, a generalization still undecided in
group rings (see Theorem 2.3).

2. A generalized theorem of Higman in the alternative case

An element � in a group (or loop) L is torsion if �n = 1 for some n ∈ N. If L is an
RA loop, the set of torsion elements forms a subloop of L, in fact, a subloop that is
locally finite and normal [15, Theorem VIII.4.1]. One of the earliest, most-fundamental
(and oft-quoted) results in the theory of group rings is due to Graham Higman, who
determined when all the units in an integral group ring ZG (with G torsion) are trivial
in the sense that U(ZG) = ±G = {±g | g ∈ G}.
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Theorem 2.1 (see [18]). If G is a torsion group, then all units in ZG are trivial if
and only if G is

(1) an abelian group of exponent dividing 4 or 6, or

(2) a Hamiltonian 2-group.

This theorem has been generalized to loops whose loop rings are alternative, but not
necessarily associative (see [12] but also [15, Theorem VIII.3.2] for an elegant modern
proof).

Theorem 2.2. Let L be a torsion RA loop. Then all units in ZL are trivial if and
only if L is a Hamiltonian Moufang 2-loop.

Recently, we have found another theorem characterizing RA loops with trivial unit
loops without any restriction on the loop. Recall that the augmentation map on a loop
ring RL is the homomorphism ε : RL → R defined by ε(α) =

∑
α� for α =

∑
α�� ∈ RL.

The scalar ε(α) is called the augmentation of α.

Theorem 2.3. Let L be an RA loop with torsion subloop T . Then all units of ZL

are trivial if and only every subloop of T is normal in L, and T is an abelian group of
exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop.

Proof. Our argument, and many others in this paper, uses the fact that in an RA
loop (unlike in Moufang loops in general), the test for normality of a subloop is the same
as it is for groups [15, Corollary IV.1.11] (see also [7, Corollaries 2.4 and 2.11]).

Assume that all units of ZL are trivial. In particular then, U(ZT ) = ±T , which is a
torsion group or a torsion RA loop. Thus, by Theorems 2.1 and 2.2, T is an abelian group
of exponent dividing 4 or 6 or a Hamiltonian Moufang (possibly associative) 2-loop. Next,
let t ∈ T , x ∈ L and suppose that x−1tx /∈ 〈t〉. Let t̂ = 1 + t + t2 + · · · + tn−1, where n

is the order of t. The element (1 − t)xt̂ has square 0, so 1 + (1 − t)xt̂ ∈ ZL is a unit and
is not trivial [15, Lemma VIII.2.2]. This contradiction shows that every subloop of T is
normal in L.

Conversely, assume that every subloop of T is normal in L and that T is an abelian
group of exponent dividing 4 or 6 or a Hamiltonian Moufang 2-loop. In any event, T has
an exponent dividing 4 or 6. In an RA loop L, squares are central, so elements of odd
order are also central [15, Theorem IV.1.8] (see also [10]). If t ∈ L has order 2, then t

too must be central since, for any x ∈ L, x−1tx ∈ 〈t〉 = {1, t}. There are no non-central
elements t of order 6, since x−1tx = st = t5 implies t4 = s and t8 = 1, a contradiction. It
follows that any non-central element in T must have order 4. If ξ is a primitive fourth root
of unity, the map σ : ξ �→ ξ(4/2)+1 is in the Galois group of Q(ξ)/Q, so every idempotent
of QT is central in QL [15, Theorem XIII.1.10] (see also [14, Theorem 3.3]).

Now let µ ∈ U(ZL). Replacing L by the subloop generated by a finite set containing
the support of µ and three elements which do not associate, we may assume that L is
finitely generated. By Corollary XIII.2.2 of [15], QL contains no (non-zero) nilpotent
elements, so the same applies to QT , which is therefore the direct sum of division rings.
Now Corollary XII.1.2 of [15] (see also [13, Lemma 2.3]) says that U(ZL) = L · U(ZT ).
Since U(ZT ) = ±T by Theorem 2.2, the result follows. �
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Corollary 2.4. Let L be an RA loop with torsion subloop T . If every subloop of
T is normal in L, and T is either an abelian group of exponent dividing 4 or 6 or a
Hamiltonian Moufang 2-loop, then every unit in ZL is f -unitary (for any homomorphism
f : L �→ {±1}).

Proof. The hypothesis and Theorem 2.3 imply that if µ ∈ ZL is a unit, then µ = ±�

for some � ∈ L. For any f : L �→ {±1}, µf = ±�−1 = ±µ−1, so µ is f -unitary. �

3. Further examples

In this section, we give further instances of RA loops L for which all units of ZL are
f -unitary.

We begin with a useful lemma, first established for groups by Li [19, Theorem 2.1].

Lemma 3.1. Let L0 be an RA loop and let f : L0 → {±1} be a non-trivial homo-
morphism. Let E be an abelian group of exponent two, let L = L0 × E and extend f to
f1 : L → {±1} by setting f1(E) = 1. If every unit of ZL0 is f -unitary, then every unit of
ZL is f1-unitary.

Proof. Let µ ∈ U(ZL). Then µ is a finite integral linear combination of terms of the
form �e, � ∈ L0, e ∈ E. Thinking of E as a vector space over the field of two elements,
each such e is a finite linear combination of basis elements. It follows that µ is a linear
combination of terms in a loop L0 × C2 × C2 × · · · × C2, so it suffices to establish the
lemma for the case L = L0 × 〈c〉, c2 = 1.

Write µ = µ1 +µ2c, µ1, µ2 ∈ ZL0. Let ν = ν1 + ν2c = µ−1, ν1, ν2 ∈ ZL0. The equation
µν = 1 implies

µ1ν1 + µ2ν2 = 1

and

µ1ν2 + µ2ν1 = 0,

so (µ1 ±µ2)(ν1 ±ν2) = 1. Thus µ1 +µ2 and µ1 −µ2 are units in ZL0 and hence f -unitary.
It follows that

(µ1 + µ2)f = ±(µ1 + µ2)−1 = ±(ν1 + ν2)

and

(µ1 − µ2)f = ±(µ1 − µ2)−1 = ±(ν1 − ν2).

In the case in which all the signs here are the same, we obtain µf
1 = ±ν1, µf

2 = ±ν2,
so µf

1 = ±ν1 and µ−1 = ν1 + ν2c = µf
1 + νf

2 c = ±µf1 . We can complete the proof,
therefore, by showing that neither ‘mixed case’ can occur. Suppose, for example, that
(µ1 + µ2)f = (µ1 + µ2)−1 but (µ1 − µ2)f = −(µ1 − µ2)−1. Thus

(µ1 + µ2)(µ
f
1 + µf

2 ) = 1 = (µ1 − µ2)(−µf
1 + µf

2 ).
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We obtain

µ1µ
f
1 + µ1µ

f
2 + µ2µ

f
1 + µmuf

2 = 1,

−µ1µ
f
1 + µ1µ

f
2 + µ2µ

f
1 − µmuf

2 = 1,

and addition gives
µ1µ

f
2 + µ2µ

f
1 = 1. (3.1)

Let µ1 =
∑

�∈L0
α��, α� ∈ Z, and µ2 =

∑
�∈L0

β��, β� ∈ Z. Then µf
1 =

∑
f(�)α��

−1,
µf

2 =
∑

f(�)β��
−1, and the coefficient of 1 on the left-hand side of (3.1) is a sum of terms

of the form f(�)α�β� + f(�)β�α�, which is even, a contradiction. The proof of the other
mixed case, (µ1 + µ2)f = −(µ1 + µ2)−1, (µ1 − µ2)f = +(µ1 − µ2)−1, is similar. �

In the next three theorems, we give specific examples of loops L for which all units in
ZL are unitary.

Theorem 3.2. Let L = C × 〈b〉 × E be the direct product of the Cayley loop, C, a
cyclic group 〈b〉 of order 4 and a (possibly trivial) abelian group E of exponent two. Let
A = C × 〈b2〉 × E. Then every unit in ZL is f -unitary, where ker f = A.

Proof. Because of Lemma 3.1, we may assume that E is trivial. Let µ be a unit
of ZL. Without loss of generality, the augmentation of µ is 1. Now µ̄ is a unit in the
integral loop ring of L/〈b2〉, which is a Hamiltonian 2-loop, so µ̄ = �̄ for some � ∈ L

(Theorem 2.2), hence µ = � + (1 − b2)α for some α ∈ ZL. Similarly, µ̄ = U(Z[L/L′]) is
trivial, so �̄ + (1̄ − b̄2)ᾱ = k̄ for some k ∈ L. Multiplying by 1̄ + b̄2, we obtain

�̄(1̄ + b̄2) = k̄(1̄ + b̄2),

so �̄ = k̄ or �̄ = b̄2k̄. In the latter case, µ = b2� + (1 − s)β, β ∈ ZL and, since b2� =
� − (1 − b2)�,

µ = � + (1 − b2)α = � + (1 − s)γ,

for some γ ∈ ZL, so (1 − b2)α = (1 − s)γ. Write γ = γ0 + γ1b + γ2b
2 + γ3b

3, γi ∈ ZC. In
a similar way, write α = α0 + α1b + α2b

2 + α3b
3, but note that

(1 − b2)α = (1 − b2)[(α0 − α2) + (α1 − α3)b].

Thus we may assume that α2 = α3 = 0, hence that α = α0 + α1b. Consider the equation

(1 − s)(γ0 + γ1b + γ2b
2 + γ3b

3) = (1 − b2)(α0 + α1b) = α0 + α1b − α0b
2 − α1b

3.

Since the supports of α0 and α1b are disjoint, and since the supports of γ0, γ1b, γ2b
2, γ3b

3

are also disjoint, it follows that α0 = (1−s)γ0 and α1 = (1−s)γ1, so α = (1−s)(γ0+γ1b)
and µ = � + (1 − b2)(1 − s)γ, � ∈ L, and γ = γ0 + γ1b, γ0, γ1 ∈ ZC. Thus

µf = ±�−1 + (1 − b2)(1 − s)γf

and
µµf = ±1 + (1 − b2)(1 − s)[�γf ± γ�−1 + 4γγf ].
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There are two cases to consider, according to whether � ∈ C or � ∈ Cb, but before we do
so, it is important to observe that since f(�) = 1 and

�−1 =

{
� if � is central,

s� if � is not central,

for all � ∈ C, we have �−1 = �∗ (see (1.1)) and the restriction of the map f to ZC is the
canonical involution α �→ α∗ in an alternative loop ring.

Case 1. If � ∈ C, then

µµf = +1 + (1 − b2)(1 − s)[�γf + γ�−1 + 4γγf ].

Remembering that b is central, we have

�γf + γ�−1 = �(γ∗
0 − γ∗

1b−1) + (γ0 + γ1b)�∗

= (�γ∗
0 + γ0�

∗) − �γ∗
1b−1 + γ1b�

∗. (3.2)

The first term, �γ∗
0+γ0�

∗, has the form β+β∗, which is central in ZC [15, Theorem III.2.1].
Writing

β =
∑

zi∈S1

βizi +
∑

�i∈S2

β′
i�i,

where the elements in S1 are central and those in S2 are not, we have

β∗ =
∑

zi∈S1

βizi + s
∑

�i∈S2

β′
i�i and β + β∗ = 2

∑
βizi + (1 + s)τ, τ ∈ ZC,

so (1 − s)(β + β∗) = 2(1 − s)
∑

βizi. The product of 1 − b2 with the remaining terms in
(3.2) is

(1 − b2)(−�γ∗
1b−1 + γ1b�

∗) = (γ1�
∗ + �γ∗

1 )b − �γ∗
1b−1 − γ1b

3�∗.

Now (γ1�
∗ + �γ∗

1 )b is of the form (β + β∗)b so, as before, it is an element with even
coefficients, and the same is true for −�γ∗

1b−1 − γ1b
3�∗ = −(�γ∗

1 + γ1�
∗)b−1. All this

shows that µµf belongs to the group ring of the centre of L, which is an abelian group
of exponent four, and that µµf has the form 1+ τ , where τ has even coefficients. So µµf

is trivial. Since it has 1 in its support, µµf = 1, so µf = µ−1 and µ is f -unitary.

Case 2. If � = gb, g ∈ C, then

µµf = −1 + (1 − b2)(1 − s)[gbγf − γg−1b−1 + 4γγf ].

Now

gbγf − γg−1b−1 = gb(γ∗
0 − γ∗

1b−1) − (γ0 + γ1b)g−1b−1

= gbγ∗
0 − gγ∗

1 − γ0g
∗b−1 + γ1g

∗.

The element γ1g
∗ − gγ∗

1 , being of the form β − β∗, is a multiple of 1 − s, so the product
with 1 − s gives an element with even coefficients. The product of gbγ∗

0 − γ0g
∗b−1 with

1 − b2 is (gγ∗
0 + γ0g

∗)b − (γ0g ∗ +gγ∗
0 )b−1. As in Case 1, this an element in the group

ring of the centre of L with even coefficients and, as before, we obtain µµf = −1. Thus
µf = −µ−1 and µ is f -unitary. �
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Theorem 3.3. Suppose L = A〈b〉 is the product of a Hamiltonian Moufang 2-loop,
A, and a cyclic group 〈b〉 of order 2, b /∈ A. Suppose also that x−1ax = a−1 for all a ∈ A

and all x /∈ A. Then every unit in ZL is f -unitary, where ker f = A.

Proof. Let µ be a unit in ZL and write µ = µ1 + µ2b, µ1, µ2 ∈ ZA. As noted in the
proof of Theorem 3.2, the map f coincides with the canonical involution α �→ α∗ in the
alternative loop ring ZA. Thus µf = µ∗

1 − bµ∗
2. Furthermore, since ba−1 = ab for a ∈ A,

we have bµ∗
2 = µ2b, so

µµf = (µ1 + µ2b)(µ∗
1 − µ2b)

= µ1µ
∗
1 − (µ2b)(µ2b) − µ1(µ2b) + (µ2b)µ∗

1.

Using diassociativity and bµ2 = µ∗
2b, the product (µ2b)(µ2b) = µ2µ

∗
2b

2 = µ2µ
∗
2. If x is

in the support of µ2b, then x /∈ A, so (µ2b)µ∗
1 = µ1(µ2b). Thus µµf = µ1µ

∗
1 − µ2µ

∗
2 is a

unit in the loop ring ZA and is hence trivial. For α ∈ ZA, let ᾱ denote the image of α in
Z[L/L′]. Since ᾱ∗ = ᾱ, we have µµf = µ̄2

1 − µ̄2
2. It follows that µ̄1 ± µ̄2 are units in the

group ring of an abelian group of exponent two. By Theorem 2.2, they are both trivial.
There are four cases to consider. The arguments in each case are similar. We present one.

Suppose µ̄1 + µ̄2 = ā and µ̄1 − µ̄2 = �̄, a, � ∈ A. It follows readily that ā = �̄ = µ̄1 and
µ̄2 = 0̄, so µ1 = a + (1 − s)γ1 and µ2 = (1 − s)γ2 with γ1, γ2 ∈ ZL. So

µµf = [a + (1 − s)γ1][a∗ + (1 − s)γ∗
1 ] − 2(1 − s)γ2γ

∗
2

= 1 + (1 − s)(γ1�
∗ + �γ∗

1 − 2γ2γ
∗
2 )

(since a∗ = a−1). Now γ1�
∗ + �γ∗

1 has the form β + β∗, so it can be written 2
∑

βizi +
(1+s)τ , with zi ∈ A central and τ ∈ ZA. Since the product of such an element with 1−s

has even coefficients, 1 is in the support of the trivial unit µµf , so µµf = 1, µf = µ−1

and µ is f -unitary. �

Let 16Γ2c2 be the group 〈a, b | a4 = b4 = (a2, b) = 1, (a, b) = a2〉. (The notation
is due to Hall and Senior [17].) The RA loop M(16Γ2c2, ∗, a2), which Chein denotes
M32(16Γ2c2, 16Γ2c2, 16Γ2c

�
2, 16Γ2c

�
2) [5], is 32/65 in the catalogue of Moufang loops of

small order by Goodaire et al . [16]. As an RA loop, this can be generated by a, b and a
third element u. The unique non-identity/commutator in this loop is s = a2 = u2.

Theorem 3.4. Let E be an abelian group of exponent two. Then every unit of
M(16Γ2c2, ∗, a2) × E is f -unitary, where ker f = 〈a, u〉 × E.

Proof. By Lemma 3.1, we may assume that E is trivial. In [11, Theorem 6.1], it is
proven that the unit loop of ZL is ±LV, where µ ∈ V has the form

µ = 1 + (1 − s)(1 + b2)[(α0 + α1a + α2b + α3ab) + (β0 + β1a + β2b + β3ab)u],

where α0, . . . , α3, β0, . . . , β3 are integers satisfying a certain condition that is not relevant
here. It suffices to show that every unit of this form is f -unitary. On the one hand (by

https://doi.org/10.1017/S0013091503001081 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503001081


132 E. G. Goodaire and C. Polcino Milies

Theorem 6.1 of [11]), we have

µ−1 = 1 + (1 − s)(1 + b2)[(α0 + α1a
−1 − α2b − α3ab)

+ β0u
−1 + β1(au)−1 − β2bu − β3ab · u].

On the other hand,

µf = 1 + (1 − s)(1 + b2)[(α0 + α1a
−1 − α2b

−1 − α3(ab)−1)

+ β0u
−1 + β1(au)−1 − β2(bu)−1 − β3(ab · u)−1].

Thus it is enough to show that

(1 − s)(1 + b2)[−α2b − α3ab − β2bu − β3ab · u

+ α2b
−1 + α3(ab)−1 + β2(bu)−1 + β3(ab · u)−1] = 0.

Remembering that every element x /∈ A = 〈a, u〉 has square b2, we have

x−1 − x = x3 − x = x(x2 − 1) = x(b2 − 1).

Since (1 + b2)(b2 − 1) = 0, the result follows. �

We conclude this section with a final scenario in which the units of a loop ring are
f -unitary.

Theorem 3.5. Suppose L is an RA loop containing a subloop A of index 2 and that
L = A ∪ Ab for some b /∈ A. Suppose every subloop of T , the torsion subloop of L, is
normal in L. If T = 〈b〉 × C is a direct product with b of order 8 and C an abelian group
of exponent dividing 4, or b of order 4 and C an abelian group of exponent dividing 6,
then every unit of ZL is f -unitary, where ker f = A.

Proof. The hypotheses imply that U(ZL) = U(ZT ) · L [15, Proposition XII.1.3].
Suppose b has order 8 and C has exponent dividing 4. Applying Theorem 2 of [1] with
G = T , part 5.3 says every unit of ZT is f -unitary. Since the elements of L are f -unitary,
the same holds true for U(ZL).

Suppose b has order 4 and C has exponent dividing 6. This time, part 5.2 of [1,
Theorem 2] says that every unit of ZT is f -unitary so again, the same holds true for
U(ZL). �

4. The classification

In this section, we state and complete the proof of the major theorem of this paper,
which follows.

Theorem 4.1. Let L be an RA loop with torsion subloop T . Then Uf (ZL) = U(ZL)
for some homomorphism f : L → {±1} if and only if L is described by one of the
conditions below.
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(1) Every subloop of T is normal in L, and T is either an abelian group of exponent
dividing 4 or 6 or a Hamiltonian Moufang 2-loop.

(2) Every subloop of T is normal in L and T = 〈b〉 × C with b of order 8 and C an
abelian group of exponent dividing 4 or b of order 4 and C an abelian group of
exponent dividing 6.

(3) L = A〈b〉 is the product of a Hamiltonian Moufang 2-loop A and a cyclic group 〈b〉
of order 2, b /∈ A, and x−1ax = a−1 for all a ∈ A and all x /∈ A.

(4) L is the direct product of an abelian group of exponent two and the loop
M(16Γ2c2, ∗, a2).

(5) L = C × 〈b〉 × E is the direct product of the Cayley loop, C, a cyclic group 〈b〉 of
order 4, and an abelian group E of exponent two.

In §§ 2 and 3, we showed that loops with the indicated structure have the desired
property, so here, we assume that all units of ZL are f -unitary and show that L has
one of the structures described. Some of our arguments follow those of Bovdi [1], whose
paper inspired this one. Throughout, L is an RA loop, f : L �→ {±1} is a homomorphism
and Uf (ZL) = U(ZL) (whether or not this is explicitly stated).

We begin with an elementary lemma.

Lemma 4.2. If f(�) = 1 for all � ∈ L, then Uf (ZL) = U(ZL) implies that all units in
ZL are trivial, so L is described by Theorem 4.1 (1).

Proof. Let µ =
∑

�∈L µ�� be a unit. We have µµf = ±1. Since µf =
∑

µ��
−1, the

coefficient of 1 in µµf is
∑

µ2
� > 0. In particular, µµf = +1, implying that µ�0 = ±1 for

a unique �0 and µ� = 0 for all � �= �0. Thus U(ZL) = ±L and reference to Theorem 2.3
completes the proof. �

Now assume that f is not identically 1 on L. We collect some information about this
situation, which we assume for the rest of this paper.

First of all, A = ker f is a subloop of L of index 2, hence normal, and L = A ∪ Ab for
any b /∈ A. If B is any commutative subloop of an RA loop L and x ∈ L is any element,
the subloop 〈B, x〉 generated by B and x is a group [15, Corollary IV.2.4]. In the present
context, it follows that A cannot be commutative. This implies, in particular, that the
unique non-identity commutator s of L is in A, so f(s) = 1.

Next, if b is not central, then b cannot commute element-wise with A. To see why,
remember that L = A ∪ Ab, so ab = ba for all a ∈ A would imply that b commutes with
all elements of L (by diassociativity). As noted in § 1, this implies that b associates with
all pairs of elements of L; in other words, b would be central.

Also, since f(a) = 1 for all a ∈ A, Lemma 4.2 says that U(ZA) = ±A, so, by Theo-
rem 2.3, every subloop of the torsion subloop T (A) of A is normal in A, and T (A) is an
abelian group of exponent dividing 4 or 6, or a Hamiltonian Moufang 2-loop.

The next lemma allows us to assume that L \ A contains a torsion element.
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Lemma 4.3. Let L be an RA loop with torsion subloop T . Assume that Uf (ZL) =
U(ZL) for some f : L → {±1}. Then x−1tx ∈ 〈t〉 for any t ∈ T and any x /∈ T .

Proof. Let t̂ = 1 + t + t2 + · · · + tn−1, n the order of t. Since α = (1−t)xt̂ is nilpotent,
µ = 1 + α is a unit with inverse µ−1 = 1 − α. By assumption, µf = ±µ−1.

If µf = µ−1, then 1 + αf = 1 − α, so α + αf = 0. This implies that

(1 − t)xt̂ ± t̂fx−1(1 ± t−1) = 0,

so tx = tix−1 for some i, or tx = tix−1t−1 for some i. In the first case, x2 ∈ 〈t〉 has finite
order, which is not true. The second case implies that for some j, x−1 = tjxt = tj+1x

or stj+1x, either possibility again contradicting the fact that x2 has infinite order.
If µf = −µ−1, then 1+αf = −1+α, so α−αf = 2. Since tα = 0, we obtain 2t = −tαf ,

hence 2 = −αf , which is not true (αf is a zero divisor). So µf = −µ−1 cannot occur and
the proof is complete. �

Corollary 4.4. Let L be an RA loop with torsion subloop T . If every element of L\A

has infinite order and all units of ZL are f -unitary for some f , then L has the property
described in Theorem 4.1 (1).

Proof. The hypothesis says that the torsion subloop T of L is the torsion subloop
of A. Thus, as observed in remarks just preceding Lemma 4.3, T is an abelian group of
exponent dividing 4 or 6 of a Hamiltonian Moufang 2-loop and every subloop of T is
normal in A. Because of the lemma, every subloop of T is actually normal in L. The
result follows. �

In view of Corollary 4.4, we may assume in the sequel that L \ A contains an element
b of finite order. Since the torsion subloop of A has exponent dividing 4 or 6, if b ∈ L \A

has finite order, b2 ∈ A has order 2, 3, 4 or 6. If b2 has order 3, b3 has order 2. Note
that b3 /∈ A since b2 ∈ A and b /∈ A. If b2 has order 6, then b3 has order 4 and, again,
b3 /∈ A. Thus it suffices in the sequel to assume that L \A contains an element b of order
dividing 8.

Throughout this section, we use the notation T (A) and T (L) to denote the torsion
subloops of A and L, respectively. It is easy to see that T (L) = T (A) ∪ T (A)b.

Case 1: L \ A contains an element b of order 2. If b is central, then L = A × 〈b〉
and, since all units of ZA are trivial, the same holds for ZL by [15, Theorem VIII.3.1,
Step 1]. Theorem 2.3 then says that L meets the criteria of Theorem 4.1 (1).

Suppose b is not central. As noted in the remarks after Lemma 4.2, this implies ab �=
ba for some a ∈ A. Since (1 − b)a(1 + b) has square 0, µ = 1 + (1 − b)a(1 + b) is a
unit with µ−1 = 1 − (1 − b)a(1 + b) and µf = 1 + (1 − b−1)a−1(1 + b−1) (recall that
α → αf is an antiautomorphism). By hypothesis, µf = ±µ−1 and since µ−1 and µf

each have augmentation 1, necessarily, µf = +µ−1. This implies (1− b−1)a−1(1+ b−1) =
−(1 − b)a(1 + b), hence a−1 + a−1b−1 − b−1a−1 − b−1a−1b−1 = −a − ab + ba + bab, so

a−1 + a−1b + a + ab = ba + bab + b−1a−1 + b−1a−1b−1.
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Since a−1 is in the support of the left-hand side, it is in the support of the right-hand
side as well, that is,

a−1 ∈ {ba, bab, b−1a−1, b−1a−1b−1}.

If a−1 = ba, then b = a−2 is central [15, Theorem IV.1.8], which is not true. If a−1 =
b−1a−1, then b = 1, which is not true, and if a−1 = b−1a−1b−1 = ba−1b = sa−1b2 =
sa−1, then s = 1, which is not true. The only possibility is a−1 = bab, which implies
a−1b−1 = ba = sab, so a−1 = sa and a2 = s.

Now fix an a0 ∈ A which does not commute with b (hence a2
0 = s) and let a ∈ A. If

ab �= ba, then a2 = s. Suppose ab = ba. Then aa0 does not commute with b, so

(aa0)2 = s =

{
a2a2

0 = sa2 if aa0 = a0a,

sa2a2
0 = a2 if aa0 = sa0a.

We claim that the second case cannot occur. To see why, suppose the contrary (and
remember that ab = ba and b2 = 1). Let a1 = aa0. Then a2

1 = s, so (a1b)2 = sa2
1b

2 = 1.
Consider

(a1 + a1b)2 = a2
1 + a2

1b + a1ba1 + (a1b)2

= s + sb + sa2
1b + 1 = s + sb + b + 1 = (1 + s)(1 + b).

Thus (a1 + a1b)(1 − s) has square 0, so µ = 1 + (a1 + a1b)(1 − s) is a unit with µ−1 =
1 − (a1 + a1b)(1 − s). Remembering that s ∈ A (so f(s) = 1), we have

µf = 1 + (af
1 + (a1b)f )(1 − s)

= 1 + (a−1
1 − (a1b)−1)(1 − s)

= 1 + (sa1 − b−1a−1
1 )(1 − s)

= 1 + (sa1 − sba1)(1 − s)

= 1 + (sa1 + a1b)(1 − s).

Because ε(µ−1) = ε(µf ) = +1, we must have µf = µ−1, so 1 + (sa1 + a1b)(1 − s) =
1 − [(a1 + a1b)(1 − s)], implying

(sa1 + a1b + a1 + a1b)(1 − s) = 0,

(2a1b + a1 + sa1)(1 − s) = 0,

2a1b + a1 + sa1 − 2sa1b − sa1 − a1 = 0,

the last equation giving 2a1b(1 − s) = 0, which is not true. This verifies the claim and
allows us to conclude that

a2 =

{
s if ab �= ba,

1 if ab = ba.

This implies that A has exponent four (so L is a torsion loop) and also that b−1ab = a−1

for all a ∈ A, because

b−1ab =

{
a = a−1 if ab = ba,

sa = a−1 if ab �= ba.
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Now let b1 ∈ L be any element not in A. Then b1 = a1b for some a1 ∈ A. If a1b �= ba1,
then b2

1 = sa2
1b

2 = sa2
1 = 1, so if b1 is central (for any such b1), then L is as described in

Theorem 4.1 (1), from what we have already seen. On the other hand, if b1 is never central,
then, again using what we have already shown, b−1

1 ab1 = a−1 and L is as described by
Theorem 4.1 (3).

Suppose a1b = ba1 (and hence (a1, b, x) = 1 for any x ∈ L). By the known structure
of A, every subloop of A is normal in A. Since also b−1

1 ab1 = a or a−1, every subloop of
A is normal in L. If x /∈ A, write x = a2b1 for some a2 ∈ A. Then

b−1
1 xb1 = b−1

1 (a2b1)b1 = b−1
1 a2 = b1a2 =

{
a2b1 if a2b1 = b1a2,

sa2b1 if a2b1 �= b1a2.

In the latter case, b−1xb1 = a3
2b1 = (a2b1)3 because a2

2 = s. It follows that every subloop
of the torsion loop L is normal in L and L is as described in Theorem 4.1 (1). (See remarks
preceding Lemma 4.3.) This concludes Case 1 and permits us to assume, henceforth, that
L \ A does not contain an element of order 2.

Case 2: L \ A contains an element b of order 4. We analyse two subcases.

Case 2(a): 〈b〉 is normal in L. First suppose that ab = ba for all a ∈ T (A). If T (A)
is an Abelian group of exponent dividing 4, then so is T (L) = T (A)∪T (A)b. It is easy to
see that x−1tx = t for every t ∈ T (L). Together with Lemma 4.3, this implies that every
subloop of T (L) is normal in L, so the structure of L is given by (1) of Theorem 4.1. If
T (A) has exponent dividing 6 but not 4, then, applying Theorem 1 of [1] to G = T (L)
with Bovdi’s A our T (A) there appear to be two possibilities (which we label as in [1]):

1. bab−1 = a−1 for all a ∈ T (A); or

5.2. T (L) is the direct product 〈b〉 × C with b of order 4 and C an Abelian group of
exponent dividing 6.

Since we are assuming that b commutes with all elements of T (A) and since T (A) contains
an element of order 3, statement 1 cannot occur, so it is 5.2 that holds and the structure
of L is described by (3) of Theorem 4.1.

Suppose, on the other hand, that T (A) is a Hamiltonian 2-loop. Thus T (A) = K × E,
where E is an elementary abelian 2-group and K = Q8, the quaternion group of order 8,
or K = C, the Cayley loop [15, § II.4]. If b2 ∈ K, then as a central element of order 2,
b2 = s. Take an a ∈ K with a2 = s. Then (ab)2 = a2b2 = 1. This contradicts the explicit
assumption made after Case 1 that L \ A contains no elements of order 2. Thus b2 /∈ K,
so b2 = ke, k ∈ K, 1 �= e ∈ E. Write E = E1 × 〈e〉. Then [K × E1] ∩ 〈b〉 = {1} since
b2 = k1e1, k1 ∈ K, e1 ∈ E1, implies k1e1 = ke ∈ K × E, so e = e1 ∈ E1, a contradiction.
Also K ×E1 � T (L) because every subloop of T (A) is normal in A and b commutes with
every element of T (A). Thus T (L) = T (A)〈b〉 = K × E1 × 〈b〉.

Choose a, c ∈ K such that 〈a, c〉 ∼= Q8. Note that bc = cb because c ∈ T (A). Suppose
x ∈ L has infinite order. Then x2 ∈ A has infinite order, so x2c has infinite order.
By Lemma 4.3, (x2c)−1(ab)(x2c) ∈ 〈ab〉, contradicting (x2c)−1(ab)(x2c) = c−1(ab)c (by
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centrality of x2) = c−1acb = a−1b. Thus no such x exists, so L = T (L). In particular, K

cannot be associative, so L is as described by Theorem 4.1 (5).
We may now assume that there exists a ∈ T (A) with ab �= ba. Thus a−1ba = sb = b3,

so b2 = s. Also (ab)2 = sa2b2 = a2. Since we are assuming that L\A contains no elements
of order 2, we have a2 �= 1. Elements of odd order in an RA loop are central, so the order
of a is not 3, nor is it 6 since, if this were the case, b−1ab = a5 = sa would imply a4 = s

and a8 = 1. The only possibility is that a has order 4. Form the unit µ = 1 + (1 − a)bâ,
â = 1 + a + a2 + a3, and note that µ−1 = 1 − (1 − a)bâ and µf = 1 − âfb−1(1 − a3).
We have µf = ±µ−1 and, since ε(µf ) = 1 = ε(µ−1), it must be that µf = +µ−1. Since
âf = â, this implies

(1 + a + a2 + a3)b−1(1 − a3) = (1 − a)b(1 + a + a2 + a3),

b−1 + ab−1 + a2b−1 + a3b−1 + ab + aba + aba2 + aba3

= b + ba + ba2 + ba3 + b−1a3 + ab−1a3 + a2b−1a3 + a3b−1a3,

and so
b ∈ {b−1, ab−1, a2b−1, a3b−1, ab, aba, aba2, aba3}.

If b = b−1, then b2 = 1; if b = ab−1, then a = b2 commutes with b; if b = a3b−1, then
b2 = a3 and a is central; if b = ab, then a = 1; if b = aba2 = sba3, then a3 = s and a

is central; if b = aba3 = sba4 = sb, then s = 1. None of these conclusions is correct, so
b = a2b−1 or b = aba = sba2, both of which give a2 = b2 = s. Now fix an a0 ∈ T (A) with
a0b �= ba0 (so a2

0 = s). Let a ∈ T (A) and suppose ab = ba. Then aa0 does not commute
with b, so

s = (a0a)2 =

{
a2
0a

2 = sa2 if a0a = aa0,

sa2
0a

2 = a2 if a0a �= aa0,

and it follows that a2 = 1 or a2 = s. If a2 = s, however, then (ab)2 = 1, contradicting
our assumption that L \ A contains no elements of order 2. So we have

ab �= ba ⇐⇒ a2 = s and ab = ba ⇐⇒ a2 = 1.

In particular, this implies that (a1b)2 = b2 = s for any a1 ∈ T (A) since (a1b)2 = a2
1b

2

or sa2
1b

2 according to whether a1b = ba1 or ab �= ba, respectively. So a1b has order 4 and
〈a1b〉 � L because the subloop in question contains s [15, Corollary IV.1.11].

Let a, a1 ∈ T (A). If x = a1, we have x−1ax ∈ 〈a〉 because every subloop of T (A) is
normal in A. If x = a1b, a1 ∈ T (A), applying to x what we have learned about b, then

x−1ax =

{
a = a−1 if ax = xa,

sa = a3 if ax �= xa.

Also, for any x ∈ L and any a1 ∈ T (A), x−1(a1b)x = a1b or x−1(a1b)x = s(a1b) = (a1b)3.
We have shown that every subloop of T (L) is normal in L. Since T (L) = T (A)∪T (A)b is
not an abelian group, T (L) is Hamiltonian. It is a 2-loop because T (A) is and (ab)2 = s

for all a ∈ T (A). So L is described by Theorem 4.1 (1).
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Case 2(b): 〈b〉 is not normal in L. In particular, this means that b is not central
and s /∈ 〈b〉 [15, Corollary IV.1.11]. As noted in the remarks after Lemma 4.2, there
exists a ∈ A with ab �= ba. The element µ = 1 + (1 − b)ab̂, b̂ = 1 + b + b2 + b3, is a unit
with µ−1 = 1 − (1 − b)ab̂. Since b̂f = 1 − b−1 + b−2 − b−3 = 1 − b + b2 − b3, we have
µf = 1 + (1 − b + b2 − b3)a−1(1 + b−1). Since µ−1 and µf have augmentation 1, we have
µf = +µ−1, so

(1 − b + b2 − b3)a−1(1 + b−1) = −[(1 − b)a(1 + b + b2 + b3)],

which implies

a−1 + a−1b−1 + b2a−1 + b2a−1b−1 + a + ab + ab2 + ab3

= ba + bab + bab2 + bab3 + ba−1 + ba−1b−1 + b3a−1 + b3a−1b−1,

hence
a ∈ {ba, bab, bab2, bab3, ba−1, ba−1b−1, b3a−1, b3a−1b−1}.

If a = ba, then b = 1; if a = bab = sab2, then b2 = s; if a = bab2 = b3a, then b3 = 1;
if a = bab3 = sab4 = sa, then s = 1; if a = ba−1, then b = a2 is central; and if
a = b3a−1, then b3 = a2 is central. None of the conclusions here is correct, so either
a = ba−1b−1 = sa−1 and a2 = s, or a = b3a−1b−1 = sb3b−1a−1 = sb2a−1 and a2 = sb2.
We claim that the latter cannot occur, that is a2 �= sb2.

To see why, suppose a2 = sb2 and note then that (a + b)2 = a2 + b2 + ab + ba =
(1+s)(ab+b2). This would mean that 1+(a+b)(1−s) is a unit with µ−1 = 1−(a+b)(1−s)
and µf = 1 + (1 − s)(a−1 − b−1). Since µf = µ−1 (in view of augmentations), we would
have

(1 − s)(a−1 − b−1) = −[(a + b)(1 − s)],

and so
a−1 − b−1 − sa−1 + sb−1 = −a − b + sa + sb,

implying a ∈ {sa, sb, b−1, sa−1}. Now a �= sa because s �= 1; a �= sb because a and b do
not commute; a �= b−1 because b /∈ A. If a = sa−1, then a2 = s and b2 = sa2 = 1, which
is not true. This justifies our claim and establishes that if ab �= ba, then a2 = s.

Now fix a0 ∈ A with a0b �= ba0 (thus a2
0 = s) and let a ∈ A be arbitrary. If ab �= ba,

then a2 = s. If ab = ba, then aa0 does not commute with b, so

(aa0)2 = s =

{
a2a2

0 = sa2 if aa0 = a0a,

sa2a2
0 = a2 if aa0 = sa0a.

(4.1)

Thus a2 = 1 or a2 = s according to whether aa0 = a0a or aa0 �= a0a, respectively. In
particular, we learn that A = T (A) is a torsion loop of exponent four. Since A is never
commutative, A must be a Hamiltonian Moufang 2-loop.

Let e ∈ A and e2 = 1. Then e is central in L because it is central in A and commutes
with b. (We know that if eb �= be, then e2 = s.) Moreover, eb is not central. If a ∈ A has
order 4, then a2 = s. If ab were central, then ab would have order 4—(ab)2 = a2b2 �= 1
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(since b2 �= s)—and we would be finished by Case 2(a). So we may assume that ab is not
central for any a ∈ A. Finally, if a ∈ A and a has order 4, then a2 = s and aa0 �= a0a, so
a is not central. It follows that Z(L), the centre of L, is {e ∈ A | e2 = 1}. Furthermore,
if a has order 4, none of a, b, ab is central, so the LC property implies ab �= ba. This
establishes that

ab �= ba ⇐⇒ a has order 4. (4.2)

We claim that x−1ax = a−1 for any a ∈ A and any x ∈ L. This is true if a has order 2,
since then a is central and x−1ax = a = a−1. If a has order 4, then ab �= ba, a2 = s

and b−1ab = sa = a3 = a−1. Finally, consider (a1b)−1a(a1b) for a1 ∈ A. If a1b = ba1,
then a1 has order 2 because of (4.2), so a1 is central and (a1b)−1a(a1b) = b−1ab = a−1.
If a1b �= ba1, then (4.2) implies (a1b)2 = sa2

1b
2 = b2. Having established Case 2(a), we

may assume that a1b is not central. Also, since b2 �= s, (a1b)2 �= s, so s /∈ 〈a1b〉. This
implies that 〈a1b〉 is not normal in L and, replacing b by a1b in this case, we obtain
(a1b)−1a(a1b) = a−1.

Suppose there exists w ∈ Z(L) \ A. Let a ∈ A have order 4. Then w−1aw = a−1 = a,
a contradiction. Thus Z(L) ⊆ A. If there exist x, y, u ∈ A which do not associate,
then L = 〈x, y, u,Z(L)〉 ⊆ A, which is false. It follows that A is a group, so A =
Q8 × E, where E is an elementary abelian 2-group. Since A is a group, the identity
(xy, z, w) = (x, z, w)(y, z, w), which holds in any RA loop [15, Theorem IV.1.14], and
the fact that L = A ∪ Ab show that there exist x, y ∈ A with (x, y, b) �= 1. Thus
L = M(Q8 × E, ∗, b2). Since 〈b〉 is not normal, b2 /∈ {1, s}, so b2 /∈ Q8 and we may write
b2 = qe, q ∈ Q8, 1 �= e ∈ E. Since E = E0 × 〈e〉 for some subgroup E0 of E, we have
L = M(Q8 ×〈e〉×E0, ∗, b2) = M(Q8 ×〈e〉, ∗, b2)×E0 by [15, Proposition V.1.6]. As the
only RA loop of order 32 with exactly three squares, the RA loop M(Q8 × 〈e〉, ∗, b2) has
to be the loop denoted 32/65 in [16]. Thus L is described by Theorem 4.1 (3).

Case 3: b has order 8. In this case, T (A) has to be an abelian group since b2 ∈ A is
a central element of order 4 (and there are no such elements in a Hamiltonian Moufang
2-loop).

Case 3(a): 〈b〉 is normal in L. Suppose ab = ba for all a ∈ T (A). It is easy to prove
that x−1tx = t for all x, t ∈ T (L) = T (A) ∪ T (A)b so, together with Lemma 4.3, we
see that every subloop of T (L) is normal in L. Also, T (L) = T (A) ∪ T (A)b is a torsion
abelian group and all units in its integral group ring are f -unitary. Applying Theorem 1
of [1] to the group G = T (L) with Bovdi’s A our T (A), there are two possibilities (which
we label as in Bovdi’s Theorem):

(4) the torsion subgroup of A/〈b4〉 has exponent two and bāb−1 = ā for all ā ∈ A/〈b4〉;
or

(5.3) the torsion subgroup of T (L) (which is T (L) itself) is the direct product of 〈b〉 and
an abelian group whose order divides 4.

Since we are assuming that b commutes with all elements of a, Case 4 implies that A is
torsion, so L = A ∪ Ab is torsion. But L = T (L) contradicts the fact that L is a not an
abelian group. Thus we are in Case 5.3, which is described by Theorem 4.1 (2).
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Now assume that there exists a ∈ T (A) with ab �= ba. Now a−1ba ∈ {b3, b5, b7} and,
easily, a−1ba = b5 = sb, so b4 = s. Form the unit µ = 1 + (1 − a)bâ, â = 1 + a + a2 +
· · · + an−1, n the order of a. Then µ−1 = 1 − (1 − a)bâ, µf = 1 − âb−1(1 − a−1) (since
âf = â), so µ−1 = µf implies

(1 − a)bâ = âb−1(1 − a−1). (4.3)

Since elements of odd order are central and T (A) has exponent dividing 4 or 6, we must
have n = 2, n = 4 or n = 6. If n = 2, Equation (4.3) is (1−a)b(1+a) = (1+a)b−1(1−a),
so

b ∈ {ab, aba, b−1, ab−1}.

The only possibility is b = aba = sa2b, giving a2 = s.
If n = 4, we obtain

b ∈ {b−1, ab−1, a2b−1, a3b−1, ab, aba, aba2, aba3}

and hence a2 = b2 or a2 = s (see Case 2(a)). Since a2 = b2 implies that a has order 8,
which is not true, we again have a2 = s.

If n = 6, Equation (4.3) implies that

b ∈ {ab, aba, aba2, aba3, aba4, aba5, b−1, ab−1, a2b−1, a3b−1, a4b−1, a5b−1}.

We claim that b = aba, in which case b = sba2 and a2 = s. Indeed, there is no other
possibility: b = ab implies a = 1; b = aba2 = a3b implies a3 = 1, so a is central;
b = aba3 = sba4 implies a4 = s, so a has order 8; b = aba4 = a5b implies a5 = 1;
b = aba5 = sba6 implies a6 = s, so a has order 12; b = b−1 implies b2 = 1; b = ab−1

implies a = b2 is central; b = a2b−1 implies a2 = b2, so a has order 8; b = a3b−1 implies
a3 = b2 is central, so a is central; b = a4b−1 implies a4 = b2, so a has order 16; and
b = a5b−1 implies a5 = b2 is central, so a is central.

These arguments show that if a ∈ T (A) and ab �= ba, then a2 = s, so a has order n = 4.
Fix such an a0 ∈ T (A) (thus a2

0 = s), let a ∈ T (A) and suppose that ab = ba. Then
b and aa0 do not commute, so (aa0)2 = s. Since T (A) is abelian, s = a2a2

0 = sa2, so
a2 = 1. This shows that T (A) in fact has exponent dividing 4 and, more precisely, that
if a ∈ T (A),

a2 = 1 ⇐⇒ ab = ba and a2 = s ⇐⇒ ab �= ba. (4.4)

We claim that every subloop of T (L) = T (A) ∪ T (A)b is normal in L, so that L is
described by Theorem 4.1 (1).

For this, let a, x ∈ T (A) and observe that x−1ax = a because T (A) is abelian while
(xb)−1a(xb) = b−1x−1axb = b−1ab = a or sa and, in the latter case, ab �= ba, so sa =
a2a = a3 ∈ 〈a〉. Also, since (ab)2 = a2b2 or sa2b2 according to whether ab = ba or ab �= ba,
respectively, observation (4.4) implies that (ab)2 = b2 in any case, so (ab)4 = b4 = s,
implying s ∈ 〈ab〉 and hence 〈ab〉 � L.
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Case 3(b): 〈b〉 is not normal in L. Recall that this condition implies that s /∈ 〈b〉.
Moreover, b cannot be central so, as noted earlier, there exists a ∈ A with ab �= ba.
Form the unit µ = 1 + (1 − b)ab̂. Then µ is a unit with inverse µ−1 = 1 − (1 − b)ab̂ and
µf = 1 + b̂fa−1(1 + b−1). Since b̂f = 1 − b + b2 − b3 + b4 − b5 + b6 − b7, ε(µf ) = 1, so we
must have µf = µ−1. This implies that

b̂fa−1(1 + b−1) = −(1 − b)ab̂.

A calculation which, by now, should be familiar, shows that

b ∈ {ba, bab, bab2, bab3, bab4, bab5, bab6, bab7, ba−1, ba−1b−1,

b3a−1, b3a−1b−1, b5a−1, b5a−1b−1, b7a−1, b7a−1b−1}.

We show that a = ba−1b−1 or a = b3a−1b−1 or a = b5a−1b−1 or a = b7a−1b−1 by
eliminating all other possibilities.

If a = ba, then b = 1; if a = bab = sab2, then b2 = s and, similarly, each of the
conditions a = bab2, a = bab3, a = bab4, a = bab5, a = bab6 and a = bab7 implies that
s ∈ 〈b〉, which is not correct. If a = ba−1, then b = a2 is central and hence commutes
with b; similarly, each of a = b3a−1, a = b5a−1 and a = b7a−1 implies that b is central,
which is not correct. Thus it is indeed the case that

a = ba−1b−1 = sa−1 so that a2 = s,

or

a = b3a−1b−1 = sb2a−1 so that a2 = sb2,

or

a = b5a−1b−1 = sb4a−1 so that a2 = sb4,

or

a = b7a−1b−1 = sb6a−1 so that a2 = sb6.

In every case, a8 = 1. Now fix a0 ∈ A with a0b �= ba0 (so that a8
0 = 1) and take a ∈ A.

If ab �= ba, then a8 = 1 as above. If ab = ba, then aa0 does not commute with b, so
(aa0)8 = 1. Now

(aa0)2 =

{
a2a2

0 if aa0 = a0a,

sa2a2
0 if aa0 �= a0a,

so, in any event, (aa0)8 = a8a8
0 = a8 = 1. It follows that A has exponent dividing 8, so

A = T (A) is abelian, which is not the case (see remarks after Lemma 4.2).
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