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SMALL SETS OF k-TH POWERS 

PING DING AND A. R. FREEDMAN 

ABSTRACT. Let k > 2 and q — g{k) — G(k), where g(k) is the smallest possible 
value of r such that every natural number is the sum of at most r &-th powers and G(k) 
is the minimal value of r such that every sufficiently large integer is the sum of r &-th 
powers. For each positive integer r > q, let u'r = g(k) + r — q. Then for every e > 0 and 
N > N(r, e), we construct a set A ofk-th powers such that \A\ < (r(2 + e)r + l)Nl/{k+r) 

and every nonnegative integer n < N is the sum of u'r k-\h powers in A. Some related 
results are also obtained. 

The famous Waring's problem states that for every k > 2 there exists a number r > 1 
such that every natural number is the sum of at most r fc-th powers. Let g(k) be the smallest 
possible value for r. Analogous to g(k), let G(k) denote the minimal value of r such that 
every sufficiently large integer is the sum of r fc-th powers. Clearly G(k) < g(k). In 1770, 
Lagrange proved that g(2) = 4. Since every positive integer of the form 8̂  + 7 cannot 
be written as the sum of three squares, G(2) cannot be 3, and so G(2) = g(2) = 4. In 
1909, Wieferich [8] proved g(3) = 9. Landau [2] and Linnik [3] obtained G(3) < 8 and 
G(3) < 7 in 1909 and 1943 respectively. Though forty-nine years have passed without 
an improvement to G(3), it is never-the-less conjectured that G(3) = 4 (cf. [5], p. 240). 

Choi, Erdôs and Nathanson [ 1 ] showed that for every N > I, there is a set A of squares 
such that \A\ < (4/ log2)/V1/3 logyV and every n < N is a sum of four squares in A; here 
and below we denote by \A\ the cardinality of set A. Nathanson [4] proved the following 
more general result. 

THEOREM A. Let k > 2 and s = g(k) + 1. For any e > 0 and all N > N(e) there 
exists a finite set A ofk-th powers such that 

\A\ <(2 + e)Nll{k+X) 

and each nonnegative integer n < N is the sum of s elements belonging to A. 

Our Theorem 1 is a generalization of Theorem A (Theorem A is the special case 
r = l ) . 

THEOREM 1. Let k > 2 and for any positive integer r let ur = g(k) + r. Then for 
every e > 0 and all N > N(r, e), there exists a finite set A of k-th powers such that 

\A\ <C(r,s)N{/(k+r) 
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and every nonnegative integer n < N is the sum ofur k-th powers in A, where C(r, e) = 
r(\ + s)r+\. 

Since in most cases G(k) < g(k), one could naturally think of sharpening Theorem 1 
in terms of G{k). Our Theorem 2 achieves this goal. 

THEOREM 2. Let k > 2 and q = g(k) — G(k). For each positive integer r > q let 
u'r = g(k) + r — q. Then for every e > 0 and all N > N(r, e), there exists a finite set A of 
k-th powers such that 

\A\<C'(r,e)Nl/(k+r) 

and every nonnegative integer n < N is the sum of u'r elements of A, where Cf(r, s) = 
r(2 + £) r +l . 

We list known values and estimations for some g(k) and G(k) in order to facilitate the 
comparing of Theorem 1 and 2 (cfi [5], Chapter 4, [6], and [7]): 

g(4) = 19, G(4) = 16; g(5) = 37, 6 < G(5) < 18; g(6) = 73, 9 < G(6) < 28; 

143 < g(l) < 3806, 8 < G(7) < 41; 279 < g(S) < 36119, 32 < G(8) < 57; 

g(9) > 548, 13 < G(9) < 75; g(10) > 1079, 12 < G(10) < 93. 

To compare Theorems 1 and 2 let the r of Theorem 1 equal the r — q of Theorem 2. 
For example, if k = 6 let r = q+1 > 46. Theorem 2 gives |A| < (6(2 + e)6 +1)^1 /5 2 and 
Theorem 1 gives |A| < (6(1 + ef + l ) ^ 1 / 7 and in both cases all n < N (for sufficiently 
large AO are the sum of 74 elements of A. It appears that q is large for all k > 3 (even 
small k). 

We give a corollary which is an application of Theorem 2 to cubes. 

COROLLARY. For every e > 0 and all N > A (̂e), there exists a finite set A of cubes 
such that 

\A\ Ktf1'5^ 

and every nonnegative integer n < N is the sum of nine cubes in A. 

Next, Theorem 3 is for squares. 

THEOREM 3. For every N > 2, there is a set A of squares such that 

\A\ < IN1'4 

and every nonnegative integer n < N is the sum of at most five squares in A. 

Since g(2) = 4, g(2) + 1 = 5 . Taking k = 2 in Theorem A, the conclusion is that 
there exists a finite set of squares such that \A\ < (2 + E)N1/3 and every nonnegative 
integer n < N is the sum of 5 squares. Hence our Theorem 3 is better, for large TV, 
than the case k = 2 in Theorem A. For example, if N = 1012, then Theorem A gives 
|A| < (2 + E)N1/3 « 20,000 while Theorem 3 gives \A\ < IN1/4 = 7,000. 
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Unfortunately our methods do not readily lead to infinité basic sets A of k-th powers 
with |AH {1,2,. . . ,W}| <cAf a fora l lNwherea< 1/ifc. 

PROOF OF THEOREM 1. Let e > 0 and r and N be positive integers. Define 

A0 = {ak : 0 < a < (1 + e)rNl^k+r)}9 

Ax = {[s
l/kNk'm+r))]k : 1 < Ji < (1 + e)r-lNl/(k+r)}, 

A2 = {[sy
ktfk+»lM+r»? : 1 < s2 < (1 + er2Nl'<k+% 

Ar = {sl'^+^Vm+r^k :i<Sr< #!/<*")}. 

Let A = A0 U Ax U A2 U • • • U Ar. Then 

|A| < (l + (1 + e) + (1 + ef + • • • + (1 + e)r)Nl'{k+r) < C(r, e)Nxl{k+r\ 

It follows from the definition of g(k) that each integer n E [0, (1 + s)rkNk^k+r)] is a 
sum of g(k), hence of ur = g(fc) + r, elements of Ao Ç A. 

We need two lemmas. 

LEMMA 1. ifNkl{k+r) < n < (1 + ^ r - i ^ + D / ^ rté?n f ^ ^ ^ a n /^g^ /* G Ax 

such that n — t\ is a sum of g(k) elements ofAo. 

PROOF. Suppose Nk/(k+r) < n < n{\ + ey-i#<*+i )/(*+'). Define 5! = [j^] and 

fi - [s\/kNl^k+r)]. Then $i < (1 + e y ^ W 1 / ^ , 

« - A > sxNkl{k+r) - SlN
kl{k+r) = 0, 

and 

n - t \ < (sx + l)Nk/(k+r) - ( ^ V / ^ - 1)* 

= (sx + l)#*/(*+r) - SlN
k^k+r) - J2 (k) (-l)^V/kNJ/(k+r) 

< ^*/(*+r) +2*(iSl)(*-i)A^-1)/(*+'-) 

< (l + 2*(1 + £)**-0/*^l/(W+l)W/(*+r) 

< ( l + e)M/(*+r), 

provided TV is sufficiently large. So w — v\ is a sum of g(k) elements of A0 Ç A and 
consequently n is a sum of g(/:) + 1 elements of A. This completes the proof of Lemma 1. 

LEMMA 2. Let A^+o/tf+r) < n < (i + ^ r - i - i ^ + i + i ) / ^ w /^ ré? 1 < i < r - 1. 
Then there exists an integer *J+1 G A,-+i SWC/Î r t o n — tf+l E [0,(1 + e)^+0/(*+'-)] ç 
[0,(l+e)r-/N(*+,")A*+r)]. 

PROOF. SupposeA^A^) < n < (i + ^r-i-i^+z+n/tf+r^ w h e r e j < ; < r _ i. 
Defines = [^^]andr/+1 - [^V^/W^))]. T h e n ^ 6 A i + M f + 1 M ^ / M < 
« < (Si+l + l ) A K ^ ) / ( ^ ) 5 a n d ^rfk+O/m+r)) _ j < ^.+1 < s^N(k+l)/(k(k+r))^ S ( ) 

« - &i > *«+i^(*+i)/(*+r) - sMN^k^'ik+r) = 0 
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and 

n - &i < (**i + l)A^') /(*+r) - ( , J / V w > / « ^ > - 1)* 
= (sM + l ) ^ + / ) / ( ^ ) _, .+ l 7 V(^)/(^) 

< flik+Q/ik+r) + 2k^i+l^-l)/kN(k-\)/(k+r) 

< flik+0/(k+r) + 2*(1 + ^(r-Oik-D/kj^ik-D/ikik+dMk-D/ik+r) 

= (l + 2*(1 + W ^ - 1 ) / ^ 1 / * ) / ^ ) ) ^ ) / ^ ) 

^ ( l + e ^ ^ / C ^ 

for sufficiently large M This completes the proof of Lemma 2. 
If #*/<*+>•) < n < (i + ̂ r-i^ytf+n/tf+r^ t h e n i t f 0 n o w s from L e m m a 1 that there exists 

an integer ^ G Ai such that w — fj is a sum of g(&), hence of g(k) + r, elements of Ao Ç A. 
Suppose N^k+lV(k+r) < n < (i + ^r-i-i^+i+D/^+r)^ i < ; < r _ i. By Lemma 2, 

there exists an integer /J+1 G A/+i such that « - *f+1 G [0,(1 + gy-'A^+O/tf+r)]. write 
m = n — ff+1. If m G [0, (1 + e)rN*/(A:+r)], then m is sum of g(k) elements of Ao, and so n 
is a sum of g(ifc) + 1 elements of A. If m G (#*/<*+r>, (1 + £ ) ' - i ^+ i ) / ( ^ ) ] , then Lemma 1 
yields that there is an integer t\ G Ai such that m — t\ is a sum of g(&) elements of Ao, 
and so n is a sum of g(k) + 2 elements of A (note that in this case r — 2). If 

m G (#<*+;V<*+r>,(l + £ ) ' - ; - i^+/+i) / (^) l 

for some j , 1 <j < U then again by Lemma 2, there exists an integer tj+l G Aj+\ such 
that m- tj+l G [0, (1 + e)

r-^*+;V(*+r)]. Repeatedly using this method, finally we get a 
sequence {«1,0:2, • • • > <*v} of positive integers, where ct\ > 0C2 > • • • > av, 1 < v < 1, 
such that 4W £ Aavv for all 1 < w < v and 

n ~ 4 " 4 4 e [0, (1 + eyW*/<*+'>]. 
Therefore n — ftax — lk

a2~ ^ is a sum of g(k) elements of Ao, and so n is a sum of 
g(k) + v, hence of g(k) + r for v < r, elements of A, as required. 

PROOF OF THEOREM 2. Let e > 0. Define 

A0 = {ak:0<a<(2 + e)rA^1/(*+r)}, 
At = {[s^^-D/m^k . j < 5. < ( 2 + e)"^i/(*+r) j 9 • = h ? r 

Let A =A 0 UAi U-- UAr, then 

|A| < (l + (2 + e) + (2 + £)2 + • • • + (2 + e)r)Nl/ik+r) 

<(r(2 + £)r+l)Nl/(k+r) 

= C'(r,6)N{/{k+r\ 

for sufficiently large N. Now each integer n G [0, (2 + £)rkNk/(k+r)] is a sum of g(fc) (of 
course of u'r (> g(&))) elements of Ao. Again we need two lemmas. We omit the proofs 
which are analogous to those of Lemmas 1 and 2. (Just let s;+i here be one less than the 
Sj+i in Lemmas 1 and 2 (0 < i < r — 1).) 
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LEMMA 3. IfNkl{k+r) < n < (2 + £ )^ i^ + 1 ) / ( / : + r ) , then there is an integer r\ G A{ 

such that n — t\ is a sum ofG(k) elements ofAo. 

LEMMA4. Letiï^l^ <n< (2 + e)r-i-lN(k+i+l)/(k+r\ where 1 < i < r- 1. Then 
there exists an integer ti+{ G Ai+{ such that n - /*+1 G [#<*+'">A*+'>, (2 + £)AK*+<)/(*+')] ç 

If #*/<*+') < n < (2 + £)^-i^+0/(^r)5 t h e n i t f o l l o w s f r o m Lemma 3 that there exists 
an integer t\ e A\ such that n — t\ is a sum of G(£) elements of A0 and so n is a sum of 
G(k) + 1 elements of A. 

Suppose rfk+'V(k+r) < n < (2 + e ) ' - ' - i ^+«+ i ) / ( ^ 1 < / < r - 1. By Lemma 4, 
there exists an integer /*+1 G A/+i such that n - t)+l G [M*+I'>A*+'), (2 + £)'-w<*+''>A*+'-)]. 
Writem = n-/?+1 .If m G [MA^),(2 + e)

riV*/(*+r)], thenm isasumof G(£) elements of 
A0, and so n is a sum of G(k) + 1 elements of A. If m G (Nk/{k+r\(2 + ^ " W ^ A * " ) ] , 
then Lemma 3 yields that there is an integer t\ G A\ such that m — fj is a sum of G(&) 
elements of Ao, and so rc is a sum of G(&)+2 elements of A (note that in this case r — 2). If 
m G (A^A*+'), (2 + £)r->-JN(k+j+\)/(k+r) J f o r s o m e ^ i < y < /, then again by Lemma 4, 

there exists an integer f*+1 G AM such that m - **+1 G [rfk+JV(k+r\ (2 + e ) ' - ^ * ^ * " ) ] . 
Repeatedly using this method, finally we get a sequence {ai, a 2 , . . . , av} of positive 
integers, where oc\ > a2 > • • • > av, 1 < v < /, such that t^w G Aavv for all 1 < w < v 
and 

* ~ 4 ~ 4 4 e [tf*/(*+r), (2 + £)rM/ (*+r)]. 

Therefore w — 4 — 4 4 *s a s u m °^ ̂ ^ ) elements of A0, and so n is a sum of 
G(£) + v, hence of G(k) + r as v < r, elements of A. Since G(£) = g(k) — q, we complete 
the proof of Theorem 2. 

PROOF OF COROLLARY. Since g(3) = 9 and G(3) < 7 by Linnik's theorem, we can 
take r = q > 2in Theorem 2. Then u'r = 9 and the result follows for sufficiently large 
N. If G(3) = 4, then this corollary is immediately improved to 

\A\ <N 1 / 8 + £. 

PROOF OF THEOREM 3. We start with a lemma the simple proof of which may be 
found in [1]. 

LEMMA 5. Let a > 1. Let m > a2 and m ^ 0 (mod 4). Then either m — a2 or 
m — (a — I)2 is a sum of three squares. 

Now define Ax = {b2 : 0 < b < 3N1/4 and b2 < N}. Let A2 consist of the squares of 
all numbers of the form [k\/2N1/4] - i, where 9 < k{ <NXI4 and * G {0,1}, and let A3 

consist of the squares of all numbers of the form [k\' Af3/8] —j, where 2 < &2 < Nxl4 

and y G {0,1}. Then \AX\ < 37V1/4 + 1, |A2| < 27V1/4 - 16, and |A3| < 2N1/4 _ 2. Let 
A = Ai UA2 UA3; then |A| < IN1/4. 

The set Ai contains all squares not exceeding min(Af, 9NXI2). This implies that if 0 < 
n < min (N, 9NXI2) then n is a sum of four squares in A\ Ç A. 
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Now suppose 9Nll2 <n< N3'4. Put kx = [ ^ ] , b = [k\,2N1/4]. 

Clearly 9 < k\ < N1/4 and b2 < n. If either c — boxc — b— 1 then Lagrange's 
theorem yields that n — c2 is the sum of four squares. Note also c2 G A2. Since k\Nxl2 < 
n<(kx + \)Nll2 and ft < fc}7 V / 4 < ft + 1, it follows that 

0 < n - c2 < {kx + \)Nll2 -{b- l)2 

<{kl + \)Nxl2-{k\l2Nll4-2)2 

<Nl'2 + 4k\/2N1'4 

< 9Nll2. 

Thus n — c2 is the sum of four squares in Ai. Hence if 0 < n < N3/4 and n ^ 0 (mod 4), 
then « is a sum of five squares in A. 

We now consider the case N3I4 < n < N. Put k2 = [^], 0 = [*2/2tf3/8]. If c is 
either a or a — 1, then 

0 < n - c2 < (k2 + 1)A^3/4 - (a - l)2 < A^3/4 + 47V1/2. 

If 0 < n — c2 < 9Nll2, then n — c2 is a sum of four squares in A\. Suppose now 
9Nll2 <n~- c2 < N3!4 + AN1!2. Write m = n — c2 where may choose c so that m ^ 0 
(mod 4). Put^3 = [^71 ] andZ? = [k\l2Nll4].Thus9 < Jk3 < 7V1/4+4,Z?2 < k3N

1/2 < m. 
If J is either borb— 1, then J is in A2 and 

0 < m - d2 < (k3 + l )^ 1 / 2 - (b - l)2 < 9W1/2. 

Thus, by Lemma 5, we may choose d such that m — d2 is a sum of three squares in A\. 
Hence n is the sum of five squares from A. This completes the proof. 
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