SMALL SETS OF k-TH POWERS

PING DING AND A. R. FREEDMAN

Abstract

Let $k \geq 2$ and $q=g(k)-G(k)$, where $g(k)$ is the smallest possible value of r such that every natural number is the sum of at most $r k$-th powers and $G(k)$ is the minimal value of r such that every sufficiently large integer is the sum of $r k$-th powers. For each positive integer $r \geq q$, let $u_{r}^{\prime}=g(k)+r-q$. Then for every $\varepsilon>0$ and $N \geq N(r, \varepsilon)$, we construct a set A of k-th powers such that $|A| \leq\left(r(2+\varepsilon)^{r}+1\right) N^{1 /(k+r)}$ and every nonnegative integer $n \leq N$ is the sum of $u_{r}^{\prime} k$-th powers in A. Some related results are also obtained.

The famous Waring's problem states that for every $k \geq 2$ there exists a number $r \geq 1$ such that every natural number is the sum of at most $r k$-th powers. Let $g(k)$ be the smallest possible value for r. Analogous to $g(k)$, let $G(k)$ denote the minimal value of r such that every sufficiently large integer is the sum of $r k$-th powers. Clearly $G(k) \leq g(k)$. In 1770, Lagrange proved that $g(2)=4$. Since every positive integer of the form $8 t+7$ cannot be written as the sum of three squares, $G(2)$ cannot be 3 , and so $G(2)=g(2)=4$. In 1909, Wieferich [8] proved $g(3)=9$. Landau [2] and Linnik [3] obtained $G(3) \leq 8$ and $G(3) \leq 7$ in 1909 and 1943 respectively. Though forty-nine years have passed without an improvement to $G(3)$, it is never-the-less conjectured that $G(3)=4$ (cf. [5], p. 240).

Choi, Erdős and Nathanson [1] showed that for every $N>1$, there is a set A of squares such that $|A|<(4 / \log 2) N^{1 / 3} \log N$ and every $n \leq N$ is a sum of four squares in A; here and below we denote by $|A|$ the cardinality of set A. Nathanson [4] proved the following more general result.

ThEOREM A. Let $k \geq 2$ and $s=g(k)+1$. For any $\varepsilon>0$ and all $N \geq N(\varepsilon)$ there exists a finite set A of k-th powers such that

$$
|A| \leq(2+\varepsilon) N^{1 /(k+1)}
$$

and each nonnegative integer $n \leq N$ is the sum of s elements belonging to A.
Our Theorem 1 is a generalization of Theorem A (Theorem A is the special case $r=1$).

THEOREM 1. Let $k \geq 2$ and for any positive integer r let $u_{r}=g(k)+r$. Then for every $\varepsilon>0$ and all $N \geq N(r, \varepsilon)$, there exists a finite set A of k-th powers such that

$$
|A| \leq C(r, \varepsilon) N^{1 /(k+r)}
$$

[^0]and every nonnegative integer $n \leq N$ is the sum of $u_{r} k$-th powers in A, where $C(r, \varepsilon)=$ $r(1+\varepsilon)^{r}+1$.

Since in most cases $G(k)<g(k)$, one could naturally think of sharpening Theorem 1 in terms of $G(k)$. Our Theorem 2 achieves this goal.

THEOREM 2. Let $k \geq 2$ and $q=g(k)-G(k)$. For each positive integer $r \geq q$ let $u_{r}^{\prime}=g(k)+r-q$. Then for every $\varepsilon>0$ and all $N \geq N(r, \varepsilon)$, there exists a finite set A of k-th powers such that

$$
|A| \leq C^{\prime}(r, \varepsilon) N^{1 /(k+r)}
$$

and every nonnegative integer $n \leq N$ is the sum of u_{r}^{\prime} elements of A, where $C^{\prime}(r, \varepsilon)=$ $r(2+\varepsilon)^{r}+1$.

We list known values and estimations for some $g(k)$ and $G(k)$ in order to facilitate the comparing of Theorem 1 and 2 ($c f$. [5], Chapter 4, [6], and [7]):

$$
\begin{gathered}
g(4)=19, G(4)=16 ; g(5)=37,6 \leq G(5) \leq 18 ; g(6)=73,9 \leq G(6) \leq 28 ; \\
143 \leq g(7) \leq 3806,8 \leq G(7) \leq 41 ; 279 \leq g(8) \leq 36119,32 \leq G(8) \leq 57 \\
g(9) \geq 548,13 \leq G(9) \leq 75 ; g(10) \geq 1079,12 \leq G(10) \leq 93
\end{gathered}
$$

To compare Theorems 1 and 2 let the r of Theorem 1 equal the $r-q$ of Theorem 2. For example, if $k=6$ let $r=q+1 \geq 46$. Theorem 2 gives $|A| \leq\left(6(2+\varepsilon)^{6}+1\right) N^{1 / 52}$ and Theorem 1 gives $|A| \leq\left(6(1+\varepsilon)^{6}+1\right) N^{1 / 7}$ and in both cases all $n \leq N$ (for sufficiently large N) are the sum of 74 elements of A. It appears that q is large for all $k \geq 3$ (even small k).

We give a corollary which is an application of Theorem 2 to cubes.
Corollary. For every $\varepsilon>0$ and all $N \geq N(\varepsilon)$, there exists a finite set A of cubes such that

$$
|A| \leq N^{(1 / 5)+\varepsilon}
$$

and every nonnegative integer $n \leq N$ is the sum of nine cubes in A.
Next, Theorem 3 is for squares.
Theorem 3. For every $N>2$, there is a set A of squares such that

$$
|A|<7 N^{1 / 4}
$$

and every nonnegative integer $n \leq N$ is the sum of at most five squares in A.
Since $g(2)=4, g(2)+1=5$. Taking $k=2$ in Theorem A, the conclusion is that there exists a finite set of squares such that $|A| \leq(2+\varepsilon) N^{1 / 3}$ and every nonnegative integer $n \leq N$ is the sum of 5 squares. Hence our Theorem 3 is better, for large N, than the case $k=2$ in Theorem A. For example, if $N=10^{12}$, then Theorem A gives $|A|<(2+\varepsilon) N^{1 / 3} \approx 20,000$ while Theorem 3 gives $|A|<7 N^{1 / 4}=7,000$.

Unfortunately our methods do not readily lead to infinite basic sets A of k-th powers with $|A \cap\{1,2, \ldots, N\}| \leq c N^{\alpha}$ for all N where $\alpha<1 / k$.

PROOF OF Theorem 1. Let $\varepsilon>0$ and r and N be positive integers. Define

$$
\begin{gathered}
A_{0}=\left\{a^{k}: 0 \leq a \leq(1+\varepsilon)^{r} N^{1 /(k+r)}\right\} \\
A_{1}=\left\{\left[s_{1}^{1 / k} N^{k /(k(k+r))}\right]^{k}: 1 \leq s_{1} \leq(1+\varepsilon)^{r-1} N^{1 /(k+r)}\right\}, \\
A_{2}=\left\{\left[s_{2}^{1 / k} N^{(k+1) /(k(k+r))}\right]^{k}: 1 \leq s_{2} \leq(1+\varepsilon)^{r-2} N^{1 /(k+r)}\right\}, \\
\vdots \\
\left.A_{r}=\left\{s_{r}^{1 / k} N^{(k+r-1) /(k(k+r))}\right]^{k}: 1 \leq s_{r} \leq N^{1 /(k+r)}\right\}
\end{gathered}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2} \cup \cdots \cup A_{r}$. Then

$$
|A| \leq\left(1+(1+\varepsilon)+(1+\varepsilon)^{2}+\cdots+(1+\varepsilon)^{r}\right) N^{1 /(k+r)} \leq C(r, \varepsilon) N^{1 /(k+r)} .
$$

It follows from the definition of $g(k)$ that each integer $n \in\left[0,(1+\varepsilon)^{r k} N^{k /(k+r)}\right]$ is a sum of $g(k)$, hence of $u_{r}=g(k)+r$, elements of $A_{0} \subseteq A$.

We need two lemmas.
LEmMA 1. If $N^{k /(k+r)}<n \leq(1+\varepsilon)^{r-1} N^{(k+1) /(k+r)}$, then there is an integer $t_{1}^{k} \in A_{1}$ such that $n-t_{1}^{k}$ is a sum of $g(k)$ elements of A_{0}.

Proof. Suppose $N^{k /(k+r)}<n \leq n(1+\varepsilon)^{r-1} N^{(k+1) /(k+r)}$. Define $s_{1}=\left[\frac{n}{N^{k} /(k+r)}\right]$ and $t_{1}=\left[s_{1}^{1 / k} N^{1 /(k+r)}\right]$. Then $s_{1} \leq(1+\varepsilon)^{r-1} N^{1 /(k+r)}$,

$$
n-t_{1}^{k} \geq s_{1} N^{k /(k+r)}-s_{1} N^{k /(k+r)}=0
$$

and

$$
\begin{aligned}
n-t_{1}^{k}<\left(s_{1}+1\right) & N^{k /(k+r)}-\left(s_{1}^{1 / k} N^{1 /(k+r)}-1\right)^{k} \\
& =\left(s_{1}+1\right) N^{k /(k+r)}-s_{1} N^{k /(k+r)}-\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{k-j} s_{1}^{j / k} N^{j /(k+r)} \\
& \leq N^{k /(k+r)}+2^{k}\left(s_{1}\right)^{(k-1) / k} N^{(k-1) /(k+r)} \\
& \leq\left(1+2^{k}(1+\varepsilon)^{r(k-1) / k} N^{-1 /(k(k+1))}\right) N^{k /(k+r)} \\
& \leq(1+\varepsilon) N^{k /(k+r)},
\end{aligned}
$$

provided N is sufficiently large. So $n-t_{1}^{k}$ is a sum of $g(k)$ elements of $A_{0} \subseteq A$ and consequently n is a sum of $g(k)+1$ elements of A. This completes the proof of Lemma 1 .

Lemma 2. Let $N^{(k+i) /(k+r)}<n \leq(1+\varepsilon)^{r-i-1} N^{(k+i+1) /(k+r)}$, where $1 \leq i \leq r-1$. Then there exists an integer $t_{i+1}^{k} \in A_{i+1}$ such that $n-t_{i+1}^{k} \in\left[0,(1+\varepsilon) N^{(k+i) /(k+r)}\right] \subseteq$ $\left[0,(1+\varepsilon)^{r-i} N^{(k+i) /(k+r)}\right]$.

Proof. Suppose $N^{(k+i) /(k+r)}<n \leq(1+\varepsilon)^{r-i-1} N^{(k+i+1) /(k+r)}$, where $1 \leq i \leq r-1$. Define $s_{i+1}=\left[\frac{n}{N^{(k+i) /(k+r)}}\right]$ and $t_{i+1}=\left[s_{i+1}^{1 / k} N^{(k+i) /(k(k+r))}\right]$. Then $t_{i+1}^{k} \in A_{i+1}, s_{i+1} N^{(k+i) /(k+r)} \leq$ $n<\left(s_{i+1}+1\right) N^{(k+i) /(k+r)}$, and $s_{i+1}^{1 / k} N^{(k+i) /(k(k+r))}-1<t_{i+1} \leq s_{i+1}^{1 / k} N^{(k+1) /(k(k+r))}$. So

$$
n-t_{i+1}^{k} \geq s_{i+1} N^{(k+i) /(k+r)}-s_{i+1} N^{(k+i) /(k+r)}=0
$$

and

$$
\begin{aligned}
n-t_{i+1}^{k}<\left(s_{i+1}+1\right) & N^{(k+i) /(k+r)}-\left(s_{i+1}^{1 / k} N^{(k+1) /(k(k+r))}-1\right)^{k} \\
= & \left(s_{i+1}+1\right) N^{(k+i) /(k+r)}-s_{i+1} N^{(k+i) /(k+r)} \\
& \quad-\sum_{j=0}^{k-1}\binom{k}{j}(-1)^{k-j} S_{i+1}^{j / k} N^{j(k+i) /(k(k+r))} \\
\leq & N^{(k+i) /(k+r)}+2^{k}\left(s_{i+1}\right)^{(k-1) / k} N^{(k-1) /(k+r)} \\
\leq & N^{(k+i) /(k+r)}+2^{k}(1+\varepsilon)^{(r-i)(k-1) / k} N^{(k-1) /(k(k+r))+(k-1) /(k+r)} \\
= & \left(1+2^{k}(1+\varepsilon)^{(r-i)(k-1) / k} N^{-(i+1 / k) /(k+r)}\right) N^{(k+i) /(k+r)} \\
\leq & (1+\varepsilon) N^{(k+i) /(k+r)},
\end{aligned}
$$

for sufficiently large N. This completes the proof of Lemma 2.
If $N^{k /(k+r)}<n \leq(1+\varepsilon)^{r-1} N^{(k+1) /(k+r)}$, then it follows from Lemma 1 that there exists an integer $t_{1}^{k} \in A_{1}$ such that $n-t_{1}^{k}$ is a sum of $g(k)$, hence of $g(k)+r$, elements of $A_{0} \subseteq A$.

Suppose $N^{(k+i) /(k+r)}<n \leq(1+\varepsilon)^{r-i-1} N^{(k+i+1) /(k+r)}, 1 \leq i \leq r-1$. By Lemma 2, there exists an integer $t_{i+1}^{k} \in A_{i+1}$ such that $\left.n-t_{i+1}^{k} \in\left[0,(1+\varepsilon)^{r-i} N^{(k+i)}\right)(k+r)\right]$. Write $m=n-t_{i+1}^{k}$. If $m \in\left[0,(1+\varepsilon)^{r} N^{k /(k+r)}\right]$, then m is sum of $g(k)$ elements of A_{0}, and so n is a sum of $g(k)+1$ elements of A. If $m \in\left(N^{k /(k+r)},(1+\varepsilon)^{r-1} N^{(k+1) /(k+r)}\right]$, then Lemma 1 yields that there is an integer $t_{1}^{k} \in A_{1}$ such that $m-t_{1}^{k}$ is a sum of $g(k)$ elements of A_{0}, and so n is a sum of $g(k)+2$ elements of A (note that in this case $r=2$). If

$$
m \in\left(N^{(k+j) /(k+r)},(1+\varepsilon)^{r-j-1} N^{(k+j+1) /(k+r)}\right]
$$

for some $j, 1 \leq j<i$, then again by Lemma 2 , there exists an integer $t_{j+1}^{k} \in A_{j+1}$ such that $m-t_{j+1}^{k} \in\left[0,(1+\varepsilon)^{r-j} N^{(k+j) /(k+r)}\right]$. Repeatedly using this method, finally we get a sequence $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{v}\right\}$ of positive integers, where $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{v}, 1 \leq v \leq i$, such that $t_{\alpha_{w}}^{k} \in A_{\alpha_{w}}$ for all $1 \leq w \leq v$ and

$$
n-t_{\alpha_{1}}^{k}-t_{\alpha_{2}}^{k}-\cdots-t_{\alpha_{v}}^{k} \in\left[0,(1+\varepsilon)^{r} N^{k /(k+r)}\right] .
$$

Therefore $n-t_{\alpha_{1}}^{k}-t_{\alpha_{2}}^{k}-\cdots-t_{\alpha_{v}}^{k}$ is a sum of $g(k)$ elements of A_{0}, and so n is a sum of $g(k)+v$, hence of $g(k)+r$ for $v \leq r$, elements of A, as required.

Proof of Theorem 2. Let $\varepsilon>0$. Define

$$
\begin{gathered}
A_{0}=\left\{a^{k}: 0 \leq a \leq(2+\varepsilon)^{r} N^{1 /(k+r)}\right\}, \\
A_{i}=\left\{\left[s_{i}^{1 / k} N^{(k+i-1) /(k(k+r))}\right]^{k}: 1 \leq s_{i} \leq(2+\varepsilon)^{r-i} N^{1 /(k+r)}\right\}, \quad i=1, \ldots, r .
\end{gathered}
$$

Let $A=A_{0} \cup A_{1} \cup \cdots \cup A_{r}$, then

$$
\begin{aligned}
|A| & \leq\left(1+(2+\varepsilon)+(2+\varepsilon)^{2}+\cdots+(2+\varepsilon)^{r}\right) N^{1 /(k+r)} \\
& \leq\left(r(2+\varepsilon)^{r}+1\right) N^{1 /(k+r)} \\
& =C^{\prime}(r, \varepsilon) N^{1 /(k+r)},
\end{aligned}
$$

for sufficiently large N. Now each integer $n \in\left[0,(2+\varepsilon)^{r k} N^{k /(k+r)}\right]$ is a sum of $g(k)$ (of course of $\left.u_{r}^{\prime}(\geq g(k))\right)$ elements of A_{0}. Again we need two lemmas. We omit the proofs which are analogous to those of Lemmas 1 and 2. (Just let s_{i+1} here be one less than the s_{i+1} in Lemmas 1 and $2(0 \leq i \leq r-1)$.)

LEMMA 3. If $N^{k /(k+r)}<n \leq(2+\varepsilon)^{r-1} N^{(k+1) /(k+r)}$, then there is an integer $t_{1}^{k} \in A_{1}$ such that $n-t_{1}^{k}$ is a sum of $G(k)$ elements of A_{0}.

Lemma 4. Let $N^{(k+i) /(k+r)}<n \leq(2+\varepsilon)^{r-i-1} N^{(k+i+1) /(k+r)}$, where $1 \leq i \leq r-1$. Then there exists an integer $t_{i+1} \in A_{i+1}$ such that $n-t_{i+1}^{k} \in\left[N^{(k+i) /(k+r)},(2+\varepsilon) N^{(k+i) /(k+r)}\right] \subseteq$ $\left[N^{(k+i) /(k+r)},(2+\varepsilon)^{r-i} N^{(k+i) /(k+r)}\right]$.

If $N^{k /(k+r)}<n \leq(2+\varepsilon)^{r-1} N^{(k+1) /(k+r)}$, then it follows from Lemma 3 that there exists an integer $t_{1}^{k} \in A_{1}$ such that $n-t_{1}^{k}$ is a sum of $G(k)$ elements of A_{0} and so n is a sum of $G(k)+1$ elements of A.

Suppose $N^{(k+i) /(k+r)}<n \leq(2+\varepsilon)^{r-i-1} N^{(k+i+1) /(k+r)}, 1 \leq i \leq r-1$. By Lemma 4, there exists an integer $t_{i+1}^{k} \in A_{i+1}$ such that $n-t_{i+1}^{k} \in\left[N^{(k+i) /(k+r)},(2+\varepsilon)^{r-i} N^{(k+i) /(k+r)}\right]$. Write $m=n-t_{i+1}^{k}$. If $m \in\left[N^{k /(k+r)},(2+\varepsilon)^{r} N^{k /(k+r)}\right]$, then m is a sum of $G(k)$ elements of A_{0}, and so n is a sum of $G(k)+1$ elements of A. If $m \in\left(N^{k /(k+r)},(2+\varepsilon)^{r-1} N^{(k+1) /(k+r)}\right]$, then Lemma 3 yields that there is an integer $t_{1}^{k} \in A_{1}$ such that $m-t_{1}^{k}$ is a sum of $G(k)$ elements of A_{0}, and so n is a sum of $G(k)+2$ elements of A (note that in this case $r=2$). If $m \in\left(N^{(k+j) /(k+r)},(2+\varepsilon)^{r-j-1} N^{(k+j+1) /(k+r)}\right]$ for some $j, 1 \leq j<i$, then again by Lemma 4 , there exists an integer $t_{j+1}^{k} \in A_{j+1}$ such that $m-t_{j+1}^{k} \in\left[N^{(k+j) /(k+r)},(2+\varepsilon)^{r-j} N^{(k+j) /(k+r)}\right]$. Repeatedly using this method, finally we get a sequence $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{v}\right\}$ of positive integers, where $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{v}, 1 \leq v \leq i$, such that $t_{\alpha_{w}}^{k} \in A_{\alpha_{w}}$ for all $1 \leq w \leq v$ and

$$
n-t_{\alpha_{1}}^{k}-t_{\alpha_{2}}^{k}-\cdots-t_{\alpha_{v}}^{k} \in\left[N^{k /(k+r)},(2+\varepsilon)^{r} N^{k /(k+r)}\right] .
$$

Therefore $n-t_{\alpha_{1}}^{k}-t_{\alpha_{2}}^{k}-\cdots-t_{\alpha_{v}}^{k}$ is a sum of $G(k)$ elements of A_{0}, and so n is a sum of $G(k)+v$, hence of $G(k)+r$ as $v \leq r$, elements of A. Since $G(k)=g(k)-q$, we complete the proof of Theorem 2.

Proof of Corollary. Since $g(3)=9$ and $G(3) \leq 7$ by Linnik's theorem, we can take $r=q \geq 2$ in Theorem 2. Then $u_{r}^{\prime}=9$ and the result follows for sufficiently large N. If $G(3)=4$, then this corollary is immediately improved to

$$
|A|<N^{1 / 8}+\varepsilon .
$$

Proof of Theorem 3. We start with a lemma the simple proof of which may be found in [1].

LEMMA 5. Let $a \geq 1$. Let $m \geq a^{2}$ and $m \not \equiv 0(\bmod 4)$. Then either $m-a^{2}$ or $m-(a-1)^{2}$ is a sum of three squares.

Now define $A_{1}=\left\{b^{2}: 0 \leq b \leq 3 N^{1 / 4}\right.$ and $\left.b^{2} \leq N\right\}$. Let A_{2} consist of the squares of all numbers of the form $\left[k_{1}^{1 / 2} N^{1 / 4}\right]-i$, where $9 \leq k_{1} \leq N^{1 / 4}$ and $i \in\{0,1\}$, and let A_{3} consist of the squares of all numbers of the form $\left[k_{2}^{1 / 2} N^{3 / 8}\right]-j$, where $2 \leq k_{2} \leq N^{1 / 4}$ and $j \in\{0,1\}$. Then $\left|A_{1}\right| \leq 3 N^{1 / 4}+1,\left|A_{2}\right| \leq 2 N^{1 / 4}-16$, and $\left|A_{3}\right| \leq 2 N^{1 / 4}-2$. Let $A=A_{1} \cup A_{2} \cup A_{3}$; then $|A|<7 N^{1 / 4}$.

The set A_{1} contains all squares not exceeding $\min \left(N, 9 N^{1 / 2}\right)$. This implies that if $0 \leq$ $n \leq \min \left(N, 9 N^{1 / 2}\right)$ then n is a sum of four squares in $A_{1} \subseteq A$.

Now suppose $9 N^{1 / 2}<n \leq N^{3 / 4}$. Put $k_{1}=\left[\frac{n}{N^{1 / 2}}\right], b=\left[k_{1}^{1 / 2} N^{1 / 4}\right]$.
Clearly $9 \leq k_{1} \leq N^{1 / 4}$ and $b^{2} \leq n$. If either $c=b$ or $c=b-1$ then Lagrange's theorem yields that $n-c^{2}$ is the sum of four squares. Note also $c^{2} \in A_{2}$. Since $k_{1} N^{1 / 2} \leq$ $n<\left(k_{1}+1\right) N^{1 / 2}$ and $b \leq k_{1}^{1 / 2} N^{1 / 4}<b+1$, it follows that

$$
\begin{aligned}
0 & \leq n-c^{2}<\left(k_{1}+1\right) N^{1 / 2}-(b-1)^{2} \\
& \leq\left(k_{1}+1\right) N^{1 / 2}-\left(k_{1}^{1 / 2} N^{1 / 4}-2\right)^{2} \\
& <N^{1 / 2}+4 k_{1}^{1 / 2} N^{1 / 4} \\
& <9 N^{1 / 2} .
\end{aligned}
$$

Thus $n-c^{2}$ is the sum of four squares in A_{1}. Hence if $0 \leq n \leq N^{3 / 4}$ and $n \not \equiv 0(\bmod 4)$, then n is a sum of five squares in A.

We now consider the case $N^{3 / 4}<n \leq N$. Put $k_{2}=\left[\frac{n}{N^{3 / 4}}\right], a=\left[k_{2}^{1 / 2} N^{3 / 8}\right]$. If c is either a or $a-1$, then

$$
0 \leq n-c^{2}<\left(k_{2}+1\right) N^{3 / 4}-(a-1)^{2}<N^{3 / 4}+4 N^{1 / 2}
$$

If $0 \leq n-c^{2} \leq 9 N^{1 / 2}$, then $n-c^{2}$ is a sum of four squares in A_{1}. Suppose now $9 N^{1 / 2}<n-c^{2} \leq N^{3 / 4}+4 N^{1 / 2}$. Write $m=n-c^{2}$ where may choose c so that $m \neq 0$ $(\bmod 4)$. Put $k_{3}=\left[\frac{m}{N^{1 / 2}}\right]$ and $b=\left[k_{3}^{1 / 2} N^{1 / 4}\right]$. Thus $9 \leq k_{3} \leq N^{1 / 4}+4, b^{2} \leq k_{3} N^{1 / 2} \leq m$. If d is either b or $b-1$, then d is in A_{2} and

$$
0 \leq m-d^{2}<\left(k_{3}+1\right) N^{1 / 2}-(b-1)^{2}<9 N^{1 / 2}
$$

Thus, by Lemma 5, we may choose d such that $m-d^{2}$ is a sum of three squares in A_{1}. Hence n is the sum of five squares from A. This completes the proof.

References

1. S. L. G. Choi, P. Erdôs and M. B. Nathanson, Lagrange's theorem with $N^{1 / 3}$ squares, Proc. Amer. Math. Soc. (2) 79(1980), 203-205.
2. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909.
3. Yu. V. Linnik, An elementary solution of a problem of Waring by Schnirelmann's method, Mat. Sb. (54) 12(1943), 225-230.
4. M. B. Nathanson, Waring's problem for sets of density zero, Analytic Number Theory, Lecture Notes in Math., Springer-Verlag, Berlin 899, 301-310.
5. P. Ribenboim, The book of prime number records, Second edition, Springer-Verlag, New York, 1989.
6. R. C. Vaughan, A new iterative method in Waring's problem, Acta Math. 162(1989), 1-71.
7. R. C. Vaughan and T. D. Wooley, On Waring's problem: some refinements, Proc. London Math. Soc. (3) 63(1991), 35-68.
8. A. Wieferich, Beweis des Statzes, dass sich eine jede ganze Zahl als Summe von hochsten neun positiven Kuben darstellen lasst, Math. Ann. 66(1909), 95-101.

Department of Mathematics and Statistics

Simon Fraser University
Burnaby, British Columbia
V5A IS6

[^0]: The second author was supported by the Natural Sciences and Engineering Research Council of Canada, Grant OPG0005360.

 Received by the editors February 12, 1992; revised June 11, 1992.
 AMS subject classification: 11P05.
 (C) Canadian Mathematical Society 1994.

