
Glasgow Math. J. 59 (2017) 673–683. C© Glasgow Mathematical Journal Trust 2017.
doi:10.1017/S0017089516000471.

THE IDEMPOTENT-GENERATED SUBSEMIGROUP OF THE
KAUFFMAN MONOID

IGOR DOLINKA
Department of Mathematics and Informatics, University of Novi Sad,
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1. Introduction. Let n ≥ 2 and c ∈ � (more generally, instead of complex
numbers � one can take an arbitrary commutative ring R). The Temperley–Lieb algebra
TLn(c), introduced in [19], is the unitary associative algebra given by the presentation
consisting of generators h1, . . . , hn−1 and defining relations

hihj = hjhi whenever |i − j| ≥ 2,

hihjhi = hi whenever |i − j| = 1,

h2
i = chi = hic for all 1 ≤ i < n.

When c = 1, we obtain a special case, the so-called Jones algebra [15], and its basis
forms a monoid called the Jones monoid Jn [8,17]. Elements of the Jones monoid form
the basis of general Temperley–Lieb algebras as well, with the exception that within
TLn(c) they need not form a monoid anymore, as witnessed by the third relation above.
(Indeed, the Temperley–Lieb algebra is the twisted semigroup algebra of the Jones
monoid; see [20].) However, it is possible to ‘extract’ a monoid from the Temperley–
Lieb algebra by considering the above presentation as a monoid presentation – which
is indeed possible, as it contains no mention of the addition operation – including c as
a separate monoid generator. (Henceforth, generation is always within the variety of
monoids unless otherwise specified.) In this way, we obtain the Kauffman monoid Kn,
which (upon interpretation of the symbol c as a scalar multiple of 1) spans TLn(c) but
is not a basis (e.g., due to c and 1 not being independent).

The name was coined in the paper [3] in honour of Louis H. Kauffman who was the
first to realise the connection between planar Brauer diagrams and the Temperley–Lieb
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algebra [16], although the first full, self-contained proof of isomorphism between Kn

and the monoid consisting of pairs (ck, α) where k ≥ 0 is an integer and α is a planar
Brauer diagram is given in [3]. The operation in the latter monoid – naturally, also
called the Kauffman monoid – is defined by (ck, α)(c�, β) = (ck+�+τ (α,β), αβ), where
τ (α, β) is the number of inner circles formed in the course of computing the product
αβ in the Brauer monoid by stacking α on top of β. For c = 1, we get that the Jones
monoid is isomorphic just to the planar submonoid of the Brauer monoid. In such a
diagrammatic representation, c is just the pair (c, 1), whereas hi is interpreted as (c0, δi),
where δi is the hook (or diapsis): Its connected components are {i, i + 1}, {i′, (i + 1)′}
and {j, j′} for all j �∈ {i, i + 1}. Any equation in the current paper may be verified using
these diagrams, but we find the approach via words and presentations to be more
convenient. At only one point (in the proof of Lemma 11) we will rely on a (very
simple) diagrammatic calculation. For more on diagrams, see for example [3, 4, 17].

Beyond the above-mentioned article [3], a number of previous studies of the
Kauffman monoid have been carried out. Gröbner–Shirshov bases are discussed in [2].
Green’s relations and the ideal structure of Kn (and associated quotients) are described
in [17]. In [1], it is shown that Kn, with n ≥ 3, has no finite basis for its identities
(considered either as a semigroup or as an involution semigroup). The idempotents of
Kn (and other planar diagram monoids) are classified and enumerated in [5]. In the
current work, we describe the idempotent-generated subsemigroup of Kn (Theorem 10).
We also calculate the rank (smallest size of a generating set) and idempotent rank
(smallest size of an idempotent generating set) of this subsemigroup (Theorem 12).
We note that these tasks have been carried out for a number of related diagram
monoids, such as the (twisted) Brauer, Jones, Motzkin and partition monoids; see
for example [4, 6–8, 18]. The original studies of idempotent-generated subsemigroups
in full transformation semigroups may be found in [11, 12]; see also [9]. However,
in contrast to many of these examples, the rank and idempotent rank are not equal
(apart from small cases) when it comes to the idempotent-generated subsemigroup
of Kn.

If n ≤ 2, then Kn has a unique idempotent (the identity element), so we assume
n ≥ 3 throughout.

2. Preliminaries. We now describe the Jones normal forms given in [3]. These are
given in terms of blocks, which are defined to be words of the form

h[j, i] = hjhj−1 . . . hi+1hi,

for any 1 ≤ i ≤ j < n. Also, with the same assumptions on i, j we define an inverse block
to be a word of the form h[i, j] = hihi+1 . . . hj. Note that h[i, i] = hi, which exhausts all
blocks that are also inverse blocks. A block h[j, i] will be called white if i and j are
of different parity. If both i, j are odd, then the block h[j, i] is called blue; otherwise,
(if both i, j are even) it is called red. Analogous naming conventions hold for inverse
blocks, too.

An element w ∈ Kn (represented as a word over {c, h1, . . . , hn−1}) is said to be in
the Jones normal form [3] (J.n.f. for short) if it has the form

c�h[b1, a1] . . . h[bk, ak],
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for some k, � ≥ 0 and increasing sequences a1 < · · · < ak and b1 < · · · < bk. The first
principal result of Borisavljević, et al. [3, Lemma 1] is that every element of Kn is
equivalent to a unique word in J.n.f.

Here, we give a digest of their argument, in fact a part of it that is relevant to this
note. The first step is to change the generating set and provide a different presentation
for Kn. This new generating set will consist of c and all the blocks h[j, i] (this set trivially
generates Kn as it contains all singleton blocks h[i, i] = hi). Then, a standard argument
is provided to show that this new, enlarged set of generators, along with relations

h[j, i]h[l, k] = h[l, k]h[j, i] whenever i ≥ l + 2, (1)

h[j, i]h[l, k] = h[j, k] whenever j ≥ k and |i − l| = 1, (2)

h[j, i]h[i, k] = ch[j, k] for all 1 ≤ k ≤ i ≤ j ≤ n, (3)

h[j, i]c = ch[j, i] for all 1 ≤ i ≤ j < n, (4)

also define Kn. Furthermore, three additional groups of relations were deduced as
consequences for i + 2 ≤ l:

h[j, i]h[l, k] = h[l − 2, k]h[j, i + 2] if j ≥ l and i ≥ k, (5)

h[j, i]h[l, k] = h[j, k]h[l, i + 2] if j < l and i ≥ k, (6)

h[j, i]h[l, k] = h[l − 2, i]h[j, k] if j ≥ l and i < k. (7)

Here is the gist of the argument from [3] (clearly contained in the proof of their
Lemma 1), which directly shows the statement about J.n.f.’s.

LEMMA 1. Let � be the rewriting system on words over the alphabet consisting of c
and all blocks, obtained by orienting all the defining relations (1)–(7) from left to right.
Then, � is confluent and Noetherian (and thus every word has a unique normal form).
The normal forms of � are precisely the J.n.f.’s. �

If u, v are words in the blocks, we write u → v if u = u1xu2 and v = u1yu2 for
words u1, u2, x, y, and where x and y occur on the left- and right-hand sides of one
of equations (1)–(7), respectively. We write →∗ for the transitive closure of →. The
previous lemma says not only that for any word u, u →∗ v for some J.n.f. v. It says
that any sequence u → u1 → u2 → · · · will eventually terminate in a J.n.f. and that this
J.n.f. will be unique.

While working within �, we will freely use inverse blocks h[i, j], i ≤ j where the
latter is now simply a short hand for the word h[i, i] . . . h[j, j]. Also, where appropriate,
we will freely use the connection between new and old generators, because the old
generators are (up to renaming) a subset of the new ones, and the connection can be
deduced within �.

3. The idempotent-generated subsemigroup. The set of all idempotent elements
of Kn (written via blocks or otherwise) we write as En. The goal of this section is
to describe the elements of 〈En〉, the idempotent-generated subsemigroup of Kn; see
Theorem 10. We do this in three main steps; see Propositions 4 and 8 and Lemma 9.

By E′
n we denote the subset of En consisting of all blocks and inverse blocks of

length 2, namely h[i + 1, i] and h[i, i + 1] = h[i, i]h[i + 1, i + 1] (by the length of a(n
inverse) block h[j, i], we mean |i − j| + 1). Of course, these are trivially checked to be
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idempotents, as, for example, h[i + 1, i]2 = hi+1hihi+1hi = hi+1hi. This easily generalises
to the following statement, which we record for completeness.

LEMMA 2. A(n inverse) white block is a product of elements of E′
n.

Proof. If j ≥ i are of different parity, then

h[j, i] = hjhj−1 . . . hi+1hi = h[j, j − 1] . . . h[i + 1, i].

The argument for inverse blocks is analogous. �
LEMMA 3. If k, l are of different parity, then hkhl is a product of elements of E′

n.

Proof. Assume that k > l. If k = l + 1, then the result is trivial, whereas if k ≥ l + 2,
then

hkhl = (hkhk−1 . . . hl+2hl+1hl+2 . . . hk)hl = (hk . . . hl+1hl)(hl+2 . . . hk) = h[k, l]h[l + 2, k],

a product of a white block and a white inverse block; hence, the lemma follows from
Lemma 2. The argument is analogous if k < l. �

We are now in position to show the first of the three main steps leading to the
characterisation of 〈En〉. To this end, for a word w over the alphabet consisting of c
and the blocks, let b(w) be the number of blue blocks occurring in w; similarly, let
r(w) count the number red blocks in w, whereas c(w) is simply |w|c the number of
occurrences of c in w. We define the characteristic number of w as

χ (w) = c(w) − |b(w) − r(w)|.

PROPOSITION 4. Let w be a J.n.f. that is equal (in Kn) to a product of idempotents
from E′

n. Then, χ (w) is non-negative and even.

Proof. If w is a J.n.f. equal to a product of elements from E′
n, then there exists a

word w′ consisting of factors of the form h[i + 1, i] and h[i, i + 1] = h[i, i]h[i + 1, i + 1]
such that w = w′ holds in Kn. Note that these factors are either white, blue–red, or red–
blue; in any case, their characteristic numbers are 0. Therefore, χ (w′) = 0. By Lemma 1,
w′ →∗ w holds in �, so there is a finite sequence of rewriting rules stemming from
(1)–(7) that transform w′ into w. So, our proposition will be proved once we show
that an application of any of these rules in the course of a single step u → v neither
decreases nor changes the parity of the characteristic number.

In fact, we claim that χ (v) − χ (u) ∈ {0, 2}, which can be verified by direct
inspection of the rules. It is easy to see that by applying any of the rules (1), (2)
and (4)–(7) we have c(u) = c(v) and one of the following happens:

(i) one or more white blocks are created from a pair of blue and red blocks, or
(ii) a pair of blue and red blocks is created from a pair of white blocks, or

(iii) the number of blue and red blocks involved is unchanged.
Hence, in all these cases, we have |b(u) − r(u)| = |b(v) − r(v)| and so χ (u) = χ (v). So,
the only ‘interesting’ rule is (3). Here, one of the following three things can happen:

(i) the rule takes two white blocks and turns them into one c and one block that is
either blue or red, or

(ii) the rule takes either two blue or two red blocks and turns them into one c and
one block of the same colour as the initial two, or
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(iii) the rule takes a white block and a non-white block and turns them into a c and
a white block.

Any of the above three operations either leaves the characteristic number of a word
unchanged, or increases it by 2. This completes the proof of the proposition. �

Our next aim is to prove the converse of Proposition 4: If w is a J.n.f. such that
χ (w) ≥ 0 is even, then w is equivalent to a product of elements of E′

n. For this, we need
three additional lemmas, the third one being a folklore exercise in combinatorics on
words.

LEMMA 5. Let h[j, i] be a block that is not white (so that i, j are of the same parity).
Then, ch[j, i] is a product of elements of E′

n.

Proof. If i = j > 1, we have h[i, i − 1]h[i − 1, i] = hih2
i−1hi = chihi−1hi = chi (if

i = 1, we may use hi+1 instead of hi−1). Otherwise, we have

h[j, j − 1]h[j − 1, j]h[j − 1, i] = chjh[j − 1, i] = ch[j, i],

so the lemma follows from Lemma 2, bearing in mind that h[j − 1, i] is white. �
LEMMA 6. If the word w is equivalent to a product of elements from E′

n so is c2w.

Proof. Without loss of generality, assume that w = h[i + 1, i]w′ holds in Kn for
some word w′ over E′

n. Then,

c2w = c2h[i + 1, i]w′ = h[i + 1, i]h[i, i + 1]h[i + 1, i]w′,

and we are done. �
For the next lemma, if v is a word over {0, 1}, we write |v|, |v|0 and |v|1 for the

length of v, the number of 0’s in v and the number of 1’s in v, respectively.

LEMMA 7. A word v over {0, 1} is called balanced if |v|0 = |v|1. Let u ∈ {0, 1}∗ such
that |u|0 − |u|1 = k ≥ 0. Then, u can be factorised into a product of balanced words and
words containing only 0’s such that the total length of the latter is equal to k.

Proof. For a word v over {0, 1}, write k(v) = |v|0 − |v|1. We prove the lemma by
induction on |u| + k(u). If k(u) = 0, then the result is trivial; this includes the base case
of the induction, in which |u| + k(u) = 0. Now assume that k(u) ≥ 1 (so also |u| ≥ 1).
Write u = x1 . . . xm, where each xi ∈ {0, 1}. If x1 = 0, then k(x2 . . . xm) = k(u) − 1,
and an induction hypothesis completes the proof in this case. If x1 = 1, then, since
k(u) ≥ 0, there exists 2 ≤ r ≤ m such that k(x1 . . . xr) = 0 (i.e., x1 . . . xr is balanced).
But then u = (x1 . . . xr)(xr+1 . . . xm), with k(xr+1 . . . xm) = k(u), and we are again done
after applying an induction hypothesis. �

PROPOSITION 8. Let w be a J.n.f. such that χ (w) ≥ 0 is even. Then, w is equal to a
product of elements from E′

n.

Proof. We begin by several reductions of the statement to its special cases. First
of all, we can assume without the loss of generality that χ (w) = 0. Indeed, write
w = cc(w)w′, where w′ is the part of w containing no occurrences of c. Then,

w = cχ(w)c|b(w)−r(w)|w′,
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so if were able to prove that c|b(w)−r(w)|w′ is a product of elements of E′
n, the same would

be true for w by repeated applications of Lemma 6 (since χ (w) is even).
Furthermore, call a J.n.f. tightly balanced if it contains no occurrences of c, has

the same number of blue and red blocks, and cannot be factorised into shorter J.n.f.’s
with the previous two properties (if the J.n.f. is not simply a single white block, this
necessarily implies that neither its first nor its last blocks can be white, in fact, exactly
one of them is blue and the other is red). We claim that it suffices to prove the statement
of the proposition for tightly balanced J.n.f.’s only. Indeed, let w be an arbitrary J.n.f.
such that χ (w) = 0. Without loss of generality, assume that b(w) ≥ r(w) (otherwise just
switch the roles of blue and red). Form a binary sequence by inspecting w from left to
right, ignore every c and every white block, writing down a 0 for each blue block and 1
for each red block. We end up with a word u where |u|0 − |u|1 = b(w) − r(w) = c(w).
By Lemma 7, there is a factorisation of u such that each factor is either a balanced word
or a sequence of 0’s. Furthermore, we may assume that this factorisation is maximal
in the sense that none of the balanced words involved can be factorised further into
balanced factors (such factors must have different first and last letters). Then, to each
factor u′ of u that is a balanced word, there naturally corresponds a factor of w that is
a tightly balanced J.n.f. (by starting with the non-white block inducing the first letter
of u′ and concluding with the also non-white block inducing the last letter of u′; note
that this may involve a number of white blocks in between). What is left outside these
tightly balanced factors of w is cc(w), c(w) stand-alone blue blocks (corresponding to
stand-alone 0’s in u) and an unspecified number of white blocks. By commuting the c’s
next to these stand-alone blue blocks, we conclude that w can be written as a product
of two types of factors:

� tightly balanced J.n.f.’s (including white blocks),
� blue blocks multiplied by c.

Thus, if we were able to prove the proposition for tightly balanced blocks, the general
case would follow immediately by Lemma 5.

So, assume that w = h[b1, a1] . . . h[br, ar] is a tightly balanced J.n.f.; here, r is called
the weight of w. We proceed by induction on r. If r = 1, then w is just a white block,
whence we are done by Lemma 2. Hence, assume that r ≥ 2 and that all tightly balanced
J.n.f.’s of weight < r are indeed products of elements of E′

n. There will be no loss of
generality in assuming that h[b1, a1] is blue so that a1, b1 are odd. By the tightly balanced
condition, h[br, ar] is then red.

We call a J.n.f. h[d1, c1]h[d2, c2] . . . h[ds, cs] a stairway if ci+1 − ci = 1 for all
1 ≤ i < s. Let q be the length of the maximal prefix of w that is a stairway; so,
ai = a1 + i − 1 for 1 ≤ i ≤ q, but aq+1 ≥ aq + 2 (or, alternatively, there’s no such aq+1

at all if r = q). Then, the principal idea is to ‘shave off’ the bottoms of the blocks
belonging to this maximal initial stairway of w and ‘float’ them to the right; more
precisely, we have

w = h[b1, a1]h[b2, a2] . . . h[bq, aq]h[bq+1, aq+1] . . . h[br, ar]

= (H[b1, a1 + 1]ha1 )(H[b2, a2 + 1]ha2 ) . . . (H[bq, aq + 1]haq )h[bq+1, aq+1] . . . h[br, ar]

=
(

H[b1, a1 + 1]H[b2, a2 + 1] . . . H[bq, aq + 1]h[bq+1, aq+1] . . . h[br, ar]
)

ha1 . . . haq

=
(

H[b1, a1 + 1]H[b2, a2 + 1] . . . H[bq, aq + 1]h[bq+1, aq+1] . . . h[br, ar]
)

h[a1, aq],
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where H[bs, as + 1] is h[bs, as + 1] if bs > as and an empty word otherwise. Notice here
that h[a1, aq] is an inverse block of length q, and the expression in the parenthesis in
the last displayed line is a J.n.f. of weight ≤ r.

Now we consider two cases depending on the parity of q, noting that this is the
same as the parity of aq. First, let q be odd. In that case, we cannot have q = r (because
ar is even), so we can transform w further into

w = H[b1, a1 + 1]
(

H[b2, a2 + 1] . . . H[bq, aq + 1]h[bq+1, aq+1] . . . h[br−1, ar−1]
)
×

× H[br, ar + 1](har ha1 )H[a1 + 1, aq],

with a similar convention about the use of H in inverse blocks. Here, all three capital
H’s outside the parentheses are white blocks or inverse blocks or empty, so they are
products of elements from E′

n, as is har ha1 by Lemma 3. Hence, it suffices to show that
the word within the parentheses is a product of elements of E′

n. To do this, we will
focus on how the colours of the blocks within the parenthesis changed. By replacing
h[bs, as] (2 ≤ s ≤ q) by H[bs, as + 1], any blue or red block either turns white or vanishes
altogether. In turn, a white block is turned blue if s is even and red if s is odd. Also,
notice that h[bs, as] can be blue only if s is odd, whereas it can be red only if s is even.
In other words, for even values of s, white blocks turn blue and red blocks turn white
(or they disappear), whereas for odd values of s white blocks turn red and blue blocks
turn white (or they vanish). So, if there were m blue and p red blocks among h[bs, as],
2 ≤ s ≤ q, then after the ‘shaving off’ procedure we have (q − 1)/2 − p blue blocks and
(q − 1)/2 − m red blocks among H[bs, as], 2 ≤ s ≤ q. However, note that the difference
between the number of blue and red blocks has not changed at all by transforming
h[b2, a2] . . . h[bq, aq] into H[b2, a2 + 1] . . . H[bq, aq + 1]; in both cases it is |m − p|. This
suffices to conclude that the J.n.f.

H[b2, a2 + 1] . . . H[bq, aq + 1]h[bq+1, aq+1] . . . h[br−1, ar−1]

has an equal number of blue and red blocks (because such was

h[b2, a2] . . . h[br−1, ar−1],

which is just the original J.n.f. w stripped of its outermost blocks), and hence, by
Lemma 7 and the previously presented reduction to the case of tightly balanced J.n.f.’s,
it is a product of tightly balanced J.n.f.’s of weight < r (since its total weight is ≤ r − 2).
By induction hypothesis, it is a product of elements of E′

n.
Finally, suppose q is even. Recall that w = H[b1, a1 + 1]w′h[a1, aq], where

w′ = H[b2, a2 + 1] . . . H[bq, aq + 1]h[bq+1, aq+1] . . . h[br, ar]

is a J.n.f. of weight < r. This time, h[a1, aq] is a white inverse block, and so a product
of elements of E′

n, by Lemma 2. A counting argument analogous to the previous
case shows that H[b1, a1 + 1]w′ has the same number of blue and red blocks. But
H[b1, a1 + 1] is still either empty or a white block, so it follows that w′ has the same
number of blue and red blocks, and the proof concludes as in the previous case. �

Everything is in place to lay out the third ingredient, showing that 〈En〉 = 〈E′
n〉.

For this, it suffices to show that every idempotent of Kn is a product of elements from
E′

n, by arguing that it falls under the scope of the previous proposition.
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LEMMA 9. Let w be a J.n.f. representing an element of En. Then, c(w) = 0 and
b(w) = r(w).

Proof. The conclusion c(w) = 0 is immediate. A direct consequence of this is that
χ (ww) = 2χ (w). However, in �, we have ww →∗ w, and thus, by the argument from
the proof of Proposition 4, we get

2χ (w) = χ (ww) ≤ χ (w).

This is possible only if χ (w) = |b(w) − r(w)| = 0, so the lemma follows. �

Summing up, we have proved the following result.

THEOREM 10. Assume w ∈ Kn is represented in its Jones normal form. Then, w ∈ 〈En〉
(the idempotent-generated subsemigroup of Kn) if and only if χ (w) is non-negative and
even. �

4. Rank and idempotent rank. Recall that the rank, rank(M), of a monoid M is
the least cardinality of a (monoid) generating set for M. If M is idempotent generated,
the idempotent rank, idrank(M), is defined analogously in terms of generating sets
consisting of idempotents. In this final section, we calculate the rank and idempotent
rank of 〈En〉. Before we do this, we first need to recall some ideas from semigroup
theory. For more details, the reader may consult Howie’s monograph [14].

With this in mind, let S be a semigroup, and let S1 be the result of adjoining
an identity element to S if S was not already a monoid. Recall that Green’s relations
R,L ,J ,H ,D are defined on S by

x R y ⇔ xS1 = yS1, x L y ⇔ S1x = S1y, x J y ⇔ S1xS1 = S1yS1,

H = R ∩ L , D = R ◦ L = L ◦ R.

If x ∈ S, we write Jx for the J -class of S containing x. The J -classes of S are partially
ordered by Jx ≤ Jy ⇔ x ∈ S1yS1. If J is a J -class of S, then the principal factor of J
is the semigroup J	 defined on the set J ∪ {0}, where 0 is a new symbol not belonging
to J, and with product 	 defined by

x 	 y =
{

xy if x, y, xy ∈ J
0 otherwise.

As noted in [10], if S is generated as a semigroup by a subset X ⊆ S, then clearly X
contains a generating set for the principal factor of any maximal J -class.

Green’s relations on Kn are characterised (in terms of the diagrammatic
representation) in [17]. We will not need to recall these characterisations in their
entirety. But of importance is that the D and J relations coincide, that the H
relation is the equality relation, that {1} is the unique maximal J -class, that the set
D = {h[i, j] : 1 ≤ i, j < n} consisting of all blocks and inverse blocks is a D-class, and
that

h[i, j] R h[k, l] ⇔ i = k and h[i, j] L h[k, l] ⇔ j = l.
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Figure 1. Eggbox diagrams of the J -classes D1 and D2 in 〈E10〉.

Note that, by Theorem 10,

D ∩ 〈En〉 = {h[i, j] : 1 ≤ i, j < n, i, j are of opposite parity}

is the set of all white blocks and inverse blocks. Now put

D1 = {h[i, j] ∈ D ∩ 〈En〉 : i is odd} and D2 = {h[i, j] ∈ D ∩ 〈En〉 : i is even}.

LEMMA 11. The sets D1 and D2 are distinct J -classes of 〈En〉. Furthermore, D1 and
D2 are incomparable in the order on J -classes.

Proof. It follows from the defining relation (2) that all elements of D1 are D-
related (and hence J -related) to each other, and similarly for D2. To complete the
proof of the first statement, by symmetry, it remains to show that any element x ∈ 〈En〉
that is J -related to h[1, 2] must belong to D1. So suppose x is such an element. In
particular, x is J -related to h[1, 2] in Kn, so it follows from above-mentioned facts
from [17] that x = h[i, j] for some i, j. But, since x ∈ 〈En〉, it follows from Theorem 10
that i, j are of opposite parity. If i is odd, then x ∈ D1 and we are done, so suppose
instead that i is even. Since then h[i, j] J h[2, 1], we deduce that h[1, 2] J h[2, 1], and
so h[1, 2] = yh[2, 1]z for some y, z ∈ 〈En〉. It is easy to see, diagrammatically, that z
must contain both components {2, 3} and {2′, 3′}. But then, in fact, z = h[2, 2] is a red
block and hence not an element of 〈En〉, by Theorem 10, a contradiction. As noted
above, this completes the proof of the first statement.

We have already seen that h[1, 2] �= yh[2, 1]z for all y, z ∈ 〈En〉, from which it follows
that D1 �≤ D2. By a symmetrical argument, we also obtain D2 �≤ D1. �

Note that if n = 2m + 1 is odd, then both D1 and D2 have m R-classes and m
L -classes. On the other hand, if n = 2m is even, then D1 has m R-classes and m − 1
L -classes, with D2 having m − 1 R-classes and m L -classes. The J -classes D1 and
D2 are pictured in Figure 1 (for n = 10); in the diagram, R-related elements are in the
same row, L -related elements in the same column, and idempotents are shaded grey
(such diagrams are commonly called eggbox diagrams).

Note that E′
n ⊆ D1 ∪ D2. Since 〈En〉 = 〈E′

n〉, it follows that D1 and D2 are precisely
the maximal J -classes of 〈En〉 \ {1}. Note also that E(Di) generates the principal
factor D	

i (as a semigroup) for each i. (Indeed, if for example x ∈ D1, then x = e1 . . . ek
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for some ei ∈ E′
n; but if any of the ei belonged to D2, then we would have D1 ≤ D2,

contradicting Lemma 11.)
Since the identity element 1 cannot be obtained as a (non-vacuous) product of

elements of E′
n, it follows that the (idempotent) rank of 〈En〉 is equal to the sum of the

(idempotent) ranks of the principal factors D	
1 and D	

2, where we consider generation
of D	

i as semigroups.
Since each D	

i is idempotent generated, [10, Corollary 8] says that rank(D	
i ) is equal

to the maximum of the number of R- and L -classes contained in Di. As noted above,
this is m = � n

2�, regardless of whether n = 2m is even or n = 2m + 1 is odd.
On the other hand, each Di contains n − 2 idempotents, and it turns out that E(Di)

constitutes a unique minimal idempotent generating set for the principal factor D	
i .

Indeed, by removing an arbitrary element e from E(Di), one of two things happens
(see Figure 1):

(i) E(Di) \ {e} has empty intersection with an R- or L -class of Di (for example, if
e = h[1, 2]), or

(ii) E(Di) \ {e} splits into two subsets Xi, Yi such that no idempotent from Xi is L -
or R-related to any idempotent from Yi.

In either case, it follows that 〈E(Di) \ {e}〉 does not contain e. Indeed, this follows from
[14, Exercise 12, p98] in case (i), or from the proof of [13, Theorem 1] in case (ii).
Putting all this together, we have proved the following result.

THEOREM 12. Let n ≥ 3. Then, rank(〈En〉) = 2� n
2� and idrank(〈En〉) = 2n − 4. �

REMARK 13. The previous result concerns monoid generating sets; for the
(idempotent) rank in the context of semigroup generating sets, 1 must be added
to the above expressions. Note also that rank(〈En〉) = idrank(〈En〉) = 0 if n ≤ 2. By
consulting Theorem 12, the only other values of n for which rank(〈En〉) = idrank(〈En〉)
holds are n = 3, 4.
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