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Abstract

Consider a map of class C3 with nonflat critical points and with all periodic points hyperbolic repelling.
We show that the ‘backward contracting condition’ implies the summability condition. This result is the
converse of Theorem 3 of Bruin et al. [‘Large derivatives, backward contraction and invariant densities
for interval maps’, Invent. Math. 172 (2008), 509–533].
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1. Introduction

Let I be a compact interval of R. For a differentiable map f : I→ I, a point of I is
critical if the derivative of f vanishes at it. Denote by Crit( f ) the set of critical points
of f , and put CV( f ) := f (Crit( f )). As usual, we say that a differentiable interval
map f : I→ I is of class C3 with nonflat critical points, if it has a finite number of
critical points and if:
• the map f is of class C3 outside Crit( f );
• for each critical point c of f there exist a number `c > 1 and diffeomorphisms φ

and ψ of R of class C3, such that φ(c) = ψ( f (c)) = 0, and such that in a
neighbourhood of c on I, we have |ψ ◦ f | = |φ|`c .

Let f : I→ I be a map of class C3 with nonflat critical points. For an integer n ≥ 1, a
periodic point p of f of period n is hyperbolic repelling if |D f n(p)| > 1. Throughout
the rest of this paper, we denote by A the collection of interval maps of class C3 with
nonflat critical points and with all periodic points hyperbolic repelling.

D 1.1. Given β > 0, we say that a map f ∈A satisfies the summability
condition with exponent β, if for every c ∈ Crit( f ) we have

+∞∑
n=0

|D f n( f (c))|−β < +∞.
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This type of condition was first posed by Nowicki and van Strien in their work [5]
on dynamics of unimodal interval maps. It plays an important role in the study
of one-dimensional dynamics. For example, it is weaker than the Collet–Eckmann
condition [2], but still guarantees the existence of an absolutely continuous invariant
measure.

In [6], Rivera-Letelier first introduced a new notion called the backward contracting
condition for rational maps, which serves as a different type of nonuniform
hyperbolicity condition, and then it was adapted to interval maps in [1]. This condition
is more convenient to use as it follows immediately that the first return maps to suitably
chosen small neighbourhoods of critical points have good combinatorial and geometric
properties. For instance, this notion plays an important role in [1, 3].

Given a map f ∈A , denote by dom( f ) the interval on which f is defined, and
denote by dist the distance on dom( f ) induced by the norm distance on R. We shall
use `c to denote the order of c ∈ Crit( f ), and use `max( f ) to denote the maximal order
of critical points.

For every c ∈ Crit( f ) and δ > 0, let B̃(c, δ) := B(c, δ1/`c ) and put

B̃(δ) :=
⋃

c∈Crit( f )

B̃(c, δ).

D 1.2. Given δ0 > 0 and a function r : (0, δ0)→ (1, +∞), we say that f is
backward contracting with function r, if for every δ ∈ (0, δ0), every c ∈ Crit( f ), every
integer n ≥ 0 and every component W of f −n(B̃(c, r(δ)δ)),

dist(W, CV( f )) ≤ δ implies |W | < δ.

Moreover, if the function r also satisfies r(δ) ≥ r for some r > 1 and all sufficiently
small δ > 0, then we say that f is backward contracting with constant r ( f ∈ BC(r) in
short). If f ∈ BC(r) for all r > 1, we write f ∈ BC(∞).

In [1], the authors proved the following result.

P 1.3 [1, Theorem 3]. Take f ∈A and β > 0. If f satisfies the summability
condition with exponent β, then there exist δ0 > 0 and a function r : (0, δ0)→ (1, +∞)
such that, for every θ ∈ (0, 1), ∑

n�1

r(θn)−β < +∞,

and such that f is backward contracting with function r.

The main goal of this note is to prove the following theorem.

T 1.4. Let f be a map in A , and let β > 0. Assume that there exist δ0 > 0 and
a function r : (0, δ0)→ (1, +∞) such that, for some θ0 ∈ (0, 1),∑

n�1

r(θn
0)−β < +∞,
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and such that f is backward contracting with function r. Then f ∈ BC(∞) and f
satisfies the summability condition with exponent β.

Combining Proposition 1.3 and Theorem 1.4, we obtain the following corollary.

C 1.5. Let f be a map in A , and let β > 0. Then f satisfies the summability
condition with exponent β if and only if there exist δ0 > 0 and a function r : (0, δ0)→
(1, +∞) such that, for some θ0 ∈ (0, 1),∑

n�1

r(θn
0)−β < +∞,

and such that f is backward contracting with function r.

Let us say that an interval map f ∈A is of Misiurewicz type, if for each c ∈ Crit( f )
we have ω(c) ∩ Crit( f ) = ∅, where ω(c) is the omega-limit set of the orbit of c. This
includes the case where Crit( f ) = ∅. For maps of Misiurewicz type, our theorem is
well known or trivial. So, throughout the rest of this paper, fix an interval map f ∈A ,
and assume that f is not of Misiurewicz type.

2. Preliminaries

We shall use the following version of the Koebe distortion theorem which was
proved in [1].

L 2.1 [1, Proposition 1(3)]. For any f ∈A , there exists η( f ) > 0 such that the
following result holds. Let s ≥ 1 be an integer and let T = (a, b) be a subinterval of
dom( f ). Assume that | f s(T )| < η( f ) and that f s

|T
is a diffeomorphism onto its image. If

J is a subinterval of T such that both components of f s(T ) \ f s(J) have length at least
τ| f s(J)| for some τ > 0, then for any x, y ∈ J,

0.9
(

τ

1 + τ

)2
≤
|D f s(x)|
|D f s(y)|

≤
1

0.9

(
1 + τ

τ

)2

.

Given a set V, we say that W is a pull-back of V , if there exists an integer s ≥ 0 such
that W is a connected component of f −s(V). For every δ > 0, let P(δ) be the collection
of all pull-backs of B̃(δ) that contain a critical value, and define

Γ(δ) := inf
{
δ

|V |
: V ∈P(δ)

}
. (2.1)

Note that our standard assumption that f is not of Misiurewicz type implies, for every
δ > 0, that Γ(δ) is well defined. For this function we have the following properties.

L 2.2. For any δ1 ≥ δ2 > 0, we have δ1/Γ(δ1) ≥ δ2/Γ(δ2).
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P. Observe that for every V ∈P(δ2) there is V̂ ∈P(δ1) such that V ⊂ V̂ . It
follows that

Γ(δ2) = inf
{
δ2

|V |
: V ∈P(δ2)

}
=
δ2

δ1
inf

{
δ1

|V |
: V ∈P(δ2)

}
≥
δ2

δ1
inf

{
δ1

|V̂ |
: V̂ ∈P(δ1)

}
=
δ2

δ1
Γ(δ1).

This implies that δ1/Γ(δ1) ≥ δ2/Γ(δ2). The lemma is proved. �

L 2.3 [4, Theorem A.1]. Take β > 0 and f ∈A . If there is δ0 > 0 such that∫ δ0

0
Γ(t)−β

dt
t
< +∞,

then f satisfies the summability condition with exponent β.

L 2.4. Take f ∈A and β > 0. If there exists θ ∈ (0, 1) such that

+∞∑
n=1

Γ(θn)−β < +∞,

then f satisfies the summability condition with exponent β.

P. By Lemma 2.2 for every integer n ≥ 1 and every δ ∈ [θn+1, θn],

θn+1

Γ(θn+1)
≤

δ

Γ(δ)
≤

θn

Γ(θn)
,

which implies that
θβΓ(θn+1)−β ≤ Γ(δ)−β ≤ θ−βΓ(θn)−β.

Thus

Γ(θn+1)−βθβ log θ−1 ≤

∫ θn

θn+1
Γ(t)−β

dt
t
≤ Γ(θn)−βθ−β log θ−1.

This implies that ∫ θ

0
Γ(t)−β

dt
t
< +∞.

The assertion of the lemma follows from Lemma 2.3. �

For every δ > 0, define

γ(δ) := sup
{
r > 1 : if V ∈P(rδ), then |V | < δ

}
. (2.2)

Observe that if f is backward contracting with some function r, then there is δ0 > 0
such that the function γ is well defined on (0, δ0]. Throughout the rest of this section,
we will let δ∗ > 0 be such that γ(δ) is well defined on (0, δ∗].
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L 2.5. For any δ1 ≥ δ2 in (0, δ∗], we have γ(δ1)δ1 ≥ γ(δ2)δ2.

P. By the definition of γ(δ), every pull-back V of B̃(γ(δ2)δ2) that contains a critical
value satisfies |V | ≤ δ2. In other words, every pull-back V of B̃((γ(δ2)δ2/δ1)δ1) that
contains a critical value satisfies |V | ≤ δ2 ≤ δ1. Using the definition of γ(δ) again,
we know that γ(δ1) ≥ γ(δ2)δ2/δ1. This implies that γ(δ1)δ1 ≥ γ(δ2)δ2. The lemma is
proved. �

L 2.6 [1, Lemma 2]. Take r > 1 and let f ∈A . If there is δ0 ∈ (0, δ∗] such that
for each δ ∈ (0, δ0] we have γ(δ) ≥ 8`max r, then f ∈ BC(r).

L 2.7. Let β > 0 and θ ∈ (0, δ∗). If
∑+∞

n=1 γ(θn)−β < +∞, then f ∈ BC(∞).

P. In view of Lemma 2.6, it suffices to show that for every r > 1 there is δ0 > 0
such that, for every δ ∈ (0, δ0], we have γ(δ) ≥ 8`max r. Fix r > 1. By assumption there
exists N such that, for every integer n ≥ N, we have γ(θn) ≥ 8`maxθ−1r. Let δ0 = θN . For
any δ ∈ (0, δ0] there is an integer s(δ) ≥ N such that

θs(δ)+1 < δ ≤ θs(δ).

It follows by Lemma 2.5 that

γ(δ) ≥
θs(δ)+1γ(θs(δ)+1)

δ
≥
θs(δ)+1γ(θs(δ)+1)

θs(δ)
≥ θ8`maxθ−1r = 8`max r.

The proof is complete. �

L 2.8. Suppose that f ∈ BC(r) for some r > 1. Then there exists τ0 > 0 such
that, for every τ ∈ (0, τ0), the following result holds. For each integer s ≥ 1 and any
connected component V of f −s(B̃(τ)) containing a critical value, there exist an integer
1 ≤ s′ ≤ s, c ∈ Crit( f ) and a connected component V ′ of f −s′(B̃(c, τ)) containing V
such that f s′ : V ′→ B̃(c, τ) can be extended diffeomorphically onto B̃(c, rτ).

P. By assumption f ∈ BC(r), there is τ0 > 0 such that, for each τ ∈ (0, τ0] and
each V ∈P(rτ), we have |V | < τ. Reducing τ0 if necessary, we assume in addition
that τ0 < dist(Crit( f ),CV( f )). Fix τ ∈ (0, τ0], and let V ∈P(τ). Therefore there
exist c∗ ∈ Crit( f ) and an integer s ≥ 1 such that V is the connected component of
f −s(B̃(c∗, τ)). If s = 1, by our choice of τ0 the assertion of the lemma is obvious.
Hence, in the following we will assume that s ≥ 2.

Let Ṽ be the connected component of f −s(B̃(c∗, rτ)) containing V. If f s : Ṽ →
B̃(c∗, rτ) is diffeomorphic, then we complete the proof with s′ = s, c = c∗ and V ′ = V.
Otherwise, there exists an integer s∗ ∈ [1, s) such that f s∗(Ṽ) contains a critical point
c′ ∈ Crit( f ). It follows that f s∗(V) ⊂ f s∗(Ṽ) ⊂ B̃(c′, τ). Let Ṽ∗, V∗ be the connected
components of f −s∗(B̃(c′, rτ) and f −s∗(B̃(c′, τ) containing V , respectively. If f s∗ : Ṽ∗→
B̃(c′, rτ) is diffeomorphic, the proof is completed with s′ = s∗, c = c′ and V ′ = V∗.
Otherwise, repeating the argument above, we must stop within finitely many steps. �
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3. Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. Throughout the rest of this
section, let δ0 > 0, θ0 ∈ (0, 1), β > 0 and let r : (0, δ0)→ (1, +∞) be a function such
that ∑

n�1

r(θn
0)−β < +∞,

and such that f is backward contracting with function r. Let Γ and γ be the functions
defined in (2.1) and (2.2) respectively. In particular, γ is well defined on (0, δ0].

Observe that, for every δ ∈ (0, δ0], we have γ(δ) ≥ r(δ). It follows that there is an
integer N ≥ 1 such that

+∞∑
n=N

γ(θn
0)−β < +∞.

By Lemma 2.7 we know that f ∈ BC(∞). In view of Lemma 2.4, the rest of
Theorem 1.4 is a direct consequence of the following proposition.

P 3.1. Take α > 0 and ϑ ∈ (0, 1). Assume that there exists an integer N ≥ 1
such that

∑+∞
n=N γ(ϑn)−α < +∞. Then

∑+∞
n=N Γ(ϑn)−α < +∞.

The proof of this proposition, which is given at the end of this section, depends on
several lemmas.

L 3.2. For every δ ∈ (0, δ0], we have Γ(δγ(δ)) ≥ γ(δ).

P. Fix δ ∈ (0, δ0]. If we let

s(δ) := sup
{
|V | : V ∈P(δγ(δ))

}
,

then by the definition of γ(δ) we have s(δ) ≤ δ. It follows by the definition of Γ(δ) that

Γ(δγ(δ)) = inf
{
δγ(δ)
|V |

: V ∈P(δγ(δ))
}

=
δγ(δ)
s(δ)

≥
δγ(δ)
δ

= γ(δ).

This completes the proof. �

L 3.3. If f ∈ BC(∞) then, for every θ ∈ (0, 1), there exist an integer N ≥ 1 and a
constant ε = ε(θ) > 0 such that, for every n ≥ N, we have γ(θn+1) ≥ εγ(θn).

P. Put τ := 21/`max − 1. Let N ≥ 1 be an integer such that θN ≤ δ0, let r1 ≥ 4 be
sufficiently large so that

1
0.9

(
1 + τ

τ

)2

(2/r1)1/`max < θ,

and let τ0 be given by Lemma 2.8 with r = r1. Moreover, let ε > 0 be a
sufficiently small constant so that εγ(θN)θN < τ0 and r1εθ < 2. By Lemma 2.5, for
every integer n ≥ N, we have εγ(θn)θn < τ0. To end the proof, by Lemma 2.8 it
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suffices to prove that, for every integer n ≥ N, if V is a connected component
of f −s(B̃(c, εγ(θn)θn+1)) for some integer s ≥ 1 and c ∈ Crit( f ) containing a critical
value and such that f s : V → B̃(c, εγ(θn)θn+1)) can be extended diffeomorphically
onto B̃(c, r1εγ(θn)θn+1)), then |V | < θn+1. Fix such V. Let V ′ be the connected
component of f −s(B̃(c, (r1εγ(θn)θn+1)/2)) containing V. Observe that both connected
components of B̃(c, r1εγ(θn)θn+1) \ B̃(c, (r1εγ(θn)θn+1)/2)) have length at least
τ|B̃(c, (r1εγ(θn)θn+1)/2)|. Therefore, by Lemma 2.1,

|B̃(c, (r1εγ(θn)θn+1)/2)|
|V ′|

≤
1

0.9

(
1 + τ

τ

)2
|B̃(c, εγ(θn)θn+1)|

|V |
.

Noticing that |V ′| ≤ θn by the backward contracting property and our choice of ε,

|V | ≤
1

0.9

(
1 + τ

τ

)2

(
2
r1

)1/`cθn < θn+1.

The proof of the lemma is thus completed. �

P  P 3.1. For each integer n ≥ 1, let l(n) be the positive integer such
that ϑl(n) ≤ ϑnγ(ϑn) < ϑl(n)−1. By the assumption,

+∞∑
n=N

ϑα(n−l(n)) <

+∞∑
n=N

(ϑγ(ϑn))−α < +∞. (3.1)

By Lemma 2.5, we have ϑnγ(ϑn) ≥ ϑn+1γ(ϑn+1). Together with the definition of
l(n), we have ϑl(n+1) < ϑl(n)−1. This gives us l(n) ≤ l(n + 1). It follows that l(n) is an
increasing function of n. Since by the assumption ω(Crit( f )) ∩ Crit( f ) , ∅, we have
l(n)→ +∞ as n→ +∞.

Claim. There exists a constant N0 ≥ 1 such that, for every n ≥ N, we have l(n + 1) ≤
l(n) + N0.

In fact, by Lemma 2.7, we have f ∈ BC(∞). Therefore, by Lemma 3.3 there exists K
such that, for every integer n ≥ N, we have γ(ϑn+1) ≥ ϑKγ(ϑn). It follows by the
definition of l(n) that l(n + 1) ≤ l(n) + K + 2. The claim is proved with N0 = K + 2.

On the other hand, by Lemmas 2.2 and 3.2 and the definition of l(n),

ϑl(n)Γ(ϑl(n))−1 ≤ ϑnγ(ϑn)Γ(ϑnγ(ϑn))−1 ≤ ϑnγ(ϑn)γ(ϑn)−1 = ϑn.

It follows that Γ(ϑl(n))−1 ≤ ϑn−l(n). Therefore, together with (3.1),

+∞∑
n=N

Γ(ϑl(n))−α ≤
+∞∑
n=N

ϑα(n−l(n)) < +∞. (3.2)

By Lemma 2.2 again, for every i ≥ 1,

ϑl(n)+iΓ(ϑl(n)+i)−1 ≤ ϑl(n)Γ(ϑl(n))−1.
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Hence, for every i ≥ 1,

+∞∑
n=N

Γ(ϑl(n)+i)−α ≤
+∞∑
n=N

ϑ−iαΓ(ϑl(n))−α < +∞.

Together with (3.2) and the claim above, this proves that
∑+∞

n=N Γ(ϑn)−α < +∞. �
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