UNIQUENESS THEOREMS FOR DIRICHLET SERIES

AI-DI WU and PEI-CHU HU ${ }^{\boxtimes}$

(Received 28 October 2014; accepted 30 November 2014; first published online 12 February 2015)

Abstract

We obtain uniqueness theorems for L-functions in the extended Selberg class when the functions share values in a finite set and share values weighted by multiplicities.

2010 Mathematics subject classification: primary 11M36; secondary 30D35.
Keywords and phrases: L-function, sharing set, weighted sharing, uniqueness.

1. Introduction

Let $\mathcal{M}(\mathbb{C})$ be the field of meromorphic functions over the field \mathbb{C} of complex numbers. In this paper, we will study the uniqueness problem for meromorphic functions in the extended Selberg class \mathcal{S}^{\sharp} of $\mathcal{M}(\mathbb{C})$. The extended Selberg class \mathcal{S}^{\sharp} is the set of L-functions

$$
\begin{equation*}
\mathcal{L}(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} \tag{1.1}
\end{equation*}
$$

in a complex variable $s \in \mathbb{C}$ which satisfy the following axioms (see [9]).
(i) Ramanujan hypothesis. $a(n) \ll n^{\varepsilon}$ for any $\varepsilon>0$, where the implicit constant may depend on ε.
(ii) Analytic continuation. There is a nonnegative integer k such that $(s-1)^{k} \mathcal{L}(s)$ is an entire function of finite order.
(iii) Functional equation. \mathcal{L} satisfies a functional equation of type

$$
\Lambda_{\mathcal{L}}(s)=\omega \overline{\Lambda_{\mathcal{L}}(1-\bar{s})}
$$

where

$$
\Lambda_{\mathcal{L}}(s)=\mathcal{L}(s) Q^{s} \prod_{j=1}^{K} \Gamma\left(\lambda_{j} s+\mu_{j}\right)
$$

with positive real numbers Q, λ_{j} and complex numbers μ_{j}, ω with $\operatorname{Re} \mu_{j} \geq 0$ and $|\omega|=1$.

[^0]Further, an L-function \mathcal{L} in \mathcal{S}^{\sharp} is in the Selberg class \mathcal{S} if \mathcal{L} also satisfies the following additional axiom (see [9]).
(iv) Euler product. $\mathcal{L}(s)$ satisfies

$$
\mathcal{L}(s)=\prod_{p} \mathcal{L}_{p}(s),
$$

where

$$
\mathcal{L}_{p}(s)=\exp \left(\sum_{k=1}^{\infty} \frac{b\left(p^{k}\right)}{p^{k s}}\right)
$$

with suitable coefficients $b\left(p^{k}\right)$ satisfying $b\left(p^{k}\right) \ll p^{k \theta}$ for some $\theta<\frac{1}{2}$.
In the sequel, we mainly consider a subset $\mathcal{S}^{\sharp}(1)$ of \mathcal{S}^{\sharp} defined by
$\mathcal{S}^{\sharp}(1)=\left\{\mathcal{L} \in \mathcal{S}^{\sharp} \mid \mathcal{L}\right.$ is expressed by a series of the form (1.1) with $\left.a(1)=1\right\}$.
The classical question in the uniqueness theory of meromorphic functions is as follows.
Question 1.1. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S of $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ of minimal cardinal such that any two elements f and g of \mathcal{F} are algebraically dependent if $f^{-1}(a)=g^{-1}(a)$ counting multiplicity for each $a \in S$, that is, if f and g share each element of $S \mathrm{CM}$ (counting multiplicity).

For the case $\mathcal{F}=\mathcal{M}(\mathbb{C})$, a famous theorem of Nevanlinna claims that any subset $S \subset \overline{\mathbb{C}}$ of four distinct elements is a solution of Question 1.1 and the number 'four' is sharp (see, for example, [4] or [10]). Furthermore, two such elements in $\mathcal{M}(\mathbb{C})$ are related by a fractional linear transformation.

If $\mathcal{F}=\mathcal{S}^{\sharp}(1)$, a result due to Steuding (see [8] or [9]) shows that any subset S of \mathbb{C} of one element is a solution of Question 1.1. Further, two such L-functions in $\mathcal{S}^{\sharp}(1)$ must be equal.

In 1976, Gross (see [3]) extended Question 1.1 as follows.
Question 1.2. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S_{1}, \ldots, S_{q} of $\overline{\mathbb{C}}$ in which the cardinal of each S_{j} is as small as possible and minimise the number q such that any two elements f and g of \mathcal{F} are algebraically dependent if $f^{-1}\left(S_{j}\right)=g^{-1}\left(S_{j}\right)$ counting multiplicity for each j, that is, if f and g share each $S_{j} \mathrm{CM}$ (counting multiplicity).

Denote the pre-image of a subset $S \subset \overline{\mathbb{C}}$ under f by

$$
E(S, f)=\bigcup_{c \in S}\{s \in \mathbb{C} \mid f(s)-c=0\}
$$

where a zero of $f-c$ with multiplicity m counts m times in $E(S, f)$. If $E(S, f)=$ $E(S, g)$, then f and g share the set S CM.

If $q \geq 4$, Question 1.2 is completely answered by the theorem due to Nevanlinna. But it is still interesting in the cases $q<4$. For the family $\mathcal{F}=\mathcal{A}(\mathbb{C}) \subset \mathcal{M}(\mathbb{C})$ of entire functions over \mathbb{C}, Gross partially solved Question 1.2 by finding three finite
sets $S_{j}(j=1,2,3)$. Since then, there have been many studies of the uniqueness of meromorphic functions sharing sets (see, for example, [1, 2, 6, 7, 10-13]).

For the family $\mathcal{F}=\mathcal{S}^{\sharp}(1)$, we answer Question 1.2 completely as follows.
Theorem 1.3. Fix a positive integer n and take a subset $S=\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbb{C}-\{1\}$ of distinct complex numbers satisfying

$$
n+(n-1) \sigma_{1}\left(c_{1}, \ldots, c_{n}\right)+\cdots+2 \sigma_{n-2}\left(c_{1}, \ldots, c_{n}\right)+\sigma_{n-1}\left(c_{1}, \ldots, c_{n}\right) \neq 0
$$

where σ_{j} are the elementary symmetric polynomials defined by

$$
\sigma_{j}\left(c_{1}, \ldots, c_{n}\right)=(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n} c_{i_{1}} c_{i_{2}} \cdots c_{i_{j}}, \quad j=1,2, \ldots, n-1 .
$$

If two L-functions $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ in $\mathcal{S}^{\sharp}(1)$ share S CM, then $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$.
In particular, the result due to Steuding is a special case of Theorem 1.3 corresponding to the case $n=1$.

Let k denote a nonnegative integer or $+\infty$. For any $c \in \overline{\mathbb{C}}$, we denote by $E_{k}(c, f)$ the set of all c-points of f, where a c-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. For $S \subseteq \overline{\mathbb{C}}$, we define

$$
E_{k}(S, f)=\bigcup_{c \in S} E_{k}(c, f)
$$

If $E_{k}(S, f)=E_{k}(S, g)$, then f and g share the set S weighted by (or with weight k, or truncated multiplicity $k+1$). For the notation and basic results from Nevanlinna theory and further details related to $\mathcal{F}=\mathcal{M}(\mathbb{C})$ or $\mathcal{A}(\mathbb{C})$, see $[4,10]$.

Questions 1.1 and 1.2 are special cases of the following general question.
Question 1.4. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S_{1}, \ldots, S_{q} of $\overline{\mathbb{C}}$ in which the cardinal of each S_{j} is as small as possible and minimise the number q such that any two elements f and g of \mathcal{F} are algebraically dependent if f and g share each S_{j} weighted by k (or with truncated multiplicity $k+1$).

For the case $\mathcal{F}=\mathcal{M}(\mathbb{C}), q \geq 5, k=0$, Nevanlinna completely settled Question 1.4 by choosing $S_{j}=\left\{c_{j}\right\}$ for distinct elements c_{j} of $\overline{\mathbb{C}}$, and proved that two such functions must be equal. However, Question 1.4 is still interesting for the cases $q \leq 4$.

If \mathcal{F} is the subfamily $\mathcal{S}_{\mathrm{e}}^{\sharp}(1)$ of the family $\mathcal{S}^{\sharp}(1)$ satisfying the same functional equation and with an additional condition, Steuding (see [9] or [8]) partially answered Question 1.4 for the case $k=0, q=2$, where the $S_{j}=\left\{c_{j}\right\}$ consist of two distinct elements c_{j} of \mathbb{C}. For the case $\mathcal{F}=\mathcal{S}_{\mathrm{e}}^{\sharp}(1), \mathrm{Li}$ (see [5]) completely solved this case by removing the additional condition in Steuding's result. Moreover, in order to extend Steuding-Li's result from the subfamily $\mathcal{S}_{\mathrm{e}}^{\sharp}(1)$ to the global family $\mathcal{S}^{\sharp}(1)$, it would be desirable to remove the assumption that both L-functions satisfy the same functional equation (see [8]). By including weights, we can reach this goal as follows.

Theorem 1.5. Let c_{1}, c_{2} be two distinct complex numbers and take two positive integers k_{1}, k_{2} with $k_{1} k_{2}>1$. If two L-functions $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ in $\mathcal{S}^{\sharp}(1)$ share c_{1}, c_{2} weighted k_{1}, k_{2}, respectively, then $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$.

Theorem 1.6. Let k_{1}, k_{2} be two positive integers with $k_{1} k_{2}>1$ and take a complex number c and a nonempty subset $S=\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbb{C}-\{1, c\}$ of distinct complex numbers satisfying

$$
n+(n-1) \sigma_{1}\left(c_{1}, \ldots, c_{n}\right)+\cdots+2 \sigma_{n-2}\left(c_{1}, \ldots, c_{n}\right)+\sigma_{n-1}\left(c_{1}, \ldots, c_{n}\right) \neq 0
$$

where

$$
\sigma_{j}\left(c_{1}, \ldots, c_{n}\right)=(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n} c_{i_{1}} c_{i_{2}} \cdots c_{i_{j}}, \quad j=1,2, \ldots, n-1 .
$$

If two L-functions $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ in $\mathcal{S}^{\sharp}(1)$ share c, S weighted k_{1}, k_{2}, respectively, then $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$.

2. Proofs of the theorems

2.1. Proof of Theorem 1.3. First of all, assume that $\mathcal{L}_{1}(s), \mathcal{L}_{2}(s)$ are both entire functions and share the set $S=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ CM. We obtain an entire function

$$
l(s)=\frac{\left(\mathcal{L}_{1}(s)-c_{1}\right)\left(\mathcal{L}_{1}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{1}(s)-c_{n}\right)}{\left(\mathcal{L}_{2}(s)-c_{1}\right)\left(\mathcal{L}_{2}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{2}(s)-c_{n}\right)}
$$

with $l(s) \neq 0, \infty$. By the first fundamental theorem,

$$
T\left(r, \frac{1}{\mathcal{L}_{2}(s)-c_{i}}\right)=T\left(r, \mathcal{L}_{2}\right)+O(1)
$$

for $i=1,2, \ldots, n$. If we denote the order of a meromorphic function f by $\rho(f)$, then it follows that

$$
\rho\left(\frac{1}{\mathcal{L}_{2}-c_{i}}\right)=\rho\left(\mathcal{L}_{2}\right)=1 .
$$

Moreover,

$$
\rho\left(\mathcal{L}_{1}-c_{i}\right)=\rho\left(\mathcal{L}_{1}\right)=1, \quad i=1,2, \ldots, n
$$

Since the order of a finite product of functions of finite order is less than or equal to the maximum of the order of these factors (see [10]), we have $\rho(l) \leq 1$. This implies that $l(s)$ is of the form

$$
l(s)=e^{P(s)}
$$

where $P(s)$ is a polynomial of degree at most $\rho(l) \leq 1$. Since $\mathcal{L}_{j}(s) \rightarrow 1$ as $s \rightarrow+\infty$ for $j=1,2$,

$$
\lim _{s \rightarrow+\infty} l(s)=\frac{\left(1-c_{1}\right)\left(1-c_{2}\right) \cdots\left(1-c_{n}\right)}{\left(1-c_{1}\right)\left(1-c_{2}\right) \cdots\left(1-c_{n}\right)}=1
$$

This implies that the polynomial $P(s) \equiv 0$, that is, $l(s) \equiv 1$.

If $\mathcal{L}_{1}(s)$ or $\mathcal{L}_{2}(s)$ has a pole at $s=1$ with multiplicity $k_{1}(\geq 0)$ or $k_{2}(\geq 0)$, respectively, we may set

$$
l(s)=\frac{(s-1)^{k}\left(\mathcal{L}_{1}(s)-c_{1}\right)\left(\mathcal{L}_{1}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{1}(s)-c_{n}\right)}{\left(\mathcal{L}_{2}(s)-c_{1}\right)\left(\mathcal{L}_{2}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{2}(s)-c_{n}\right)}
$$

where $k=n\left(k_{2}-k_{1}\right)$ is an integer. Repeating the argument above, we see that $l(s)$ is of the form

$$
l(s)=e^{P(s)}
$$

where $P(s)$ is a polynomial of degree at most $\lambda(l) \leq 1$. If $P(s)$ is a polynomial of degree one, denote it as $A s+B$, where $A(\neq 0), B$ are constants. This leads to a contradiction because

$$
\begin{equation*}
\lim _{s \rightarrow+\infty}(s-1)^{-k} e^{A s+B}=\lim _{s \rightarrow+\infty}(s-1)^{-k} l(s)=\lim _{s \rightarrow+\infty} \frac{\left(1-c_{1}\right)\left(1-c_{2}\right) \cdots\left(1-c_{n}\right)}{\left(1-c_{1}\right)\left(1-c_{2}\right) \cdots\left(1-c_{n}\right)}=1 . \tag{2.1}
\end{equation*}
$$

Therefore, $P(s)$ is a constant. In view of (2.1), we get $k=0$. Then it follows that $l(s) \equiv 1$.

If $\mathcal{L}_{1}(s) \not \equiv \mathcal{L}_{2}(s)$, on account of

$$
l(s)=\frac{\left(\mathcal{L}_{1}(s)-c_{1}\right)\left(\mathcal{L}_{1}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{1}(s)-c_{n}\right)}{\left(\mathcal{L}_{2}(s)-c_{1}\right)\left(\mathcal{L}_{2}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{2}(s)-c_{n}\right)} \equiv 1,
$$

we have the following equations:

$$
\begin{aligned}
& \quad\left(\mathcal{L}_{1}-c_{1}\right)\left(\mathcal{L}_{1}-c_{2}\right) \cdots\left(\mathcal{L}_{1}-c_{n}\right) \equiv\left(\mathcal{L}_{2}-c_{1}\right)\left(\mathcal{L}_{2}-c_{2}\right) \cdots\left(\mathcal{L}_{2}-c_{n}\right), \\
& \mathcal{L}_{1}^{n}+\sigma_{1} \mathcal{L}_{1}^{n-1}+\cdots+\sigma_{n-2} \mathcal{L}_{1}^{2}+\sigma_{n-1} \mathcal{L}_{1} \equiv \mathcal{L}_{2}^{n}+\sigma_{1} \mathcal{L}_{2}^{n-1}+\cdots+\sigma_{n-2} \mathcal{L}_{2}^{2}+\sigma_{n-1} \mathcal{L}_{2}, \\
&\left(\mathcal{L}_{1}^{n}-\mathcal{L}_{2}^{n}\right)+\sigma_{1}\left(\mathcal{L}_{1}^{n-1}-\mathcal{L}_{2}^{n-1}\right)+\cdots+\sigma_{n-2}\left(\mathcal{L}_{1}^{2}-\mathcal{L}_{2}^{2}\right)+\sigma_{n-1}\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right) \equiv 0
\end{aligned}
$$

and

$$
\begin{gathered}
\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right)\left(\left(\mathcal{L}_{1}^{n-1}+\mathcal{L}_{1}^{n-2} \mathcal{L}_{2}+\cdots+\mathcal{L}_{2}^{n-1}\right)+\sigma_{1}\left(\mathcal{L}_{1}^{n-2}+\mathcal{L}_{1}^{n-3} \mathcal{L}_{2}+\cdots+\mathcal{L}_{2}^{n-2}\right)\right. \\
\left.+\cdots+\sigma_{n-2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)+\sigma_{n-1}\right) \equiv 0
\end{gathered}
$$

where

$$
\sigma_{j}=(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n} c_{i_{1}} c_{i_{2}} \cdots c_{i_{j}}, \quad j=1,2, \ldots, n-1 .
$$

Set

$$
\begin{aligned}
h(s)= & \left(\mathcal{L}_{1}^{n-1}+\mathcal{L}_{1}^{n-2} \mathcal{L}_{2}+\cdots+\mathcal{L}_{2}^{n-1}\right)+\sigma_{1}\left(\mathcal{L}_{1}^{n-2}+\mathcal{L}_{1}^{n-3} \mathcal{L}_{2}+\cdots+\mathcal{L}_{2}^{n-2}\right) \\
& +\cdots+\sigma_{n-2}\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)+\sigma_{n-1} .
\end{aligned}
$$

Since $\mathcal{L}_{j}(s)$ tends to 1 as $s \rightarrow+\infty$ for $j=1,2$, it is easy to deduce that

$$
\lim _{s \rightarrow+\infty} h(s)=n+(n-1) \sigma_{1}+\cdots+2 \sigma_{n-2}+\sigma_{n-1} \neq 0
$$

Thus, we have $\mathcal{L}_{1} \equiv \mathcal{L}_{2}$. This completes the proof of Theorem 1.3.
2.2. Proof of Theorem 1.5. We first look at the simple case when one of $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$, say $\mathcal{L}_{1}(s)$, is constant. Then $\mathcal{L}_{1}(s) \equiv 1$ by the assumption that $a(1)=1$. Since $\mathcal{L}_{2}(s)-c_{j}$ and $\mathcal{L}_{1}(s)-c_{j}(j=1,2)$ have the same zeros by the assumption, it is easy to see that $\mathcal{L}_{2}(s) \equiv 1$ when c_{1} or c_{2} is 1 , or $\mathcal{L}_{2}(s) \neq c_{1}, c_{2}$ in \mathbb{C} when $c_{1}, c_{2} \neq 1$. In the latter case, noting that an L-function has at most one pole, $\mathcal{L}_{2}(s)$ must be constant and thus $\mathcal{L}_{2}(s) \equiv 1$ since $a(1)=1$, by the class Picard theorem (see for example [10]) that a nonconstant meromorphic function in \mathbb{C} assumes each value in $\mathbb{C} \cup\{\infty\}$ infinitely many times with at most two exceptions. Therefore, $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$.

We thus assume, in the following, that $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ are nonconstant. We consider the following two auxiliary functions:

$$
\begin{align*}
& F_{1}(s)=\frac{\mathcal{L}_{1}^{\prime}(s)}{\mathcal{L}_{1}(s)-c_{1}}-\frac{\mathcal{L}_{2}^{\prime}(s)}{\mathcal{L}_{2}(s)-c_{1}}, \tag{2.2}\\
& F_{2}(s)=\frac{\mathcal{L}_{1}^{\prime}(s)}{\mathcal{L}_{1}(s)-c_{2}}-\frac{\mathcal{L}_{2}^{\prime}(s)}{\mathcal{L}_{2}(s)-c_{2}} . \tag{2.3}
\end{align*}
$$

If $F_{1}(s) \equiv 0$, by integration, we have from (2.2) that

$$
\mathcal{L}_{1}(s)-c_{1} \equiv A\left(\mathcal{L}_{2}(s)-c_{1}\right),
$$

where $A \neq 0$ is a constant. This implies that $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ share $c_{1} \mathrm{CM}$; thus, $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$. If $F_{2}(s) \equiv 0$, by repeating the argument above, we also get $\mathcal{L}_{1}(s) \equiv$ $\mathcal{L}_{2}(s)$. Next, we assume that $F_{1}(s) \not \equiv 0$ and $F_{2}(s) \not \equiv 0$. Since $\mathcal{L}_{1}(s), \mathcal{L}_{2}(s)$ share $\left(c_{1}, k_{1}\right),\left(c_{2}, k_{2}\right)$, from (2.2),

$$
\begin{align*}
k_{2} \bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right) & \leq \bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+\left(k_{2}-1\right) \bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right) \\
& \leq N\left(r, \frac{1}{F_{1}}\right) \leq T\left(r, F_{1}\right)+O(1) \leq N\left(r, F_{1}\right)+m\left(r, F_{1}\right)+O(1) \\
& \leq \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+\bar{N}\left(r, \mathcal{L}_{1}\right)+\bar{N}\left(r, \mathcal{L}_{2}\right)+S\left(r, \mathcal{L}_{1}\right)+S\left(r, \mathcal{L}_{2}\right) \\
& \leq \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+O(\log r) \tag{2.4}
\end{align*}
$$

Similarly, from (2.3),

$$
\begin{align*}
k_{1} \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right) & \leq \bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+\left(k_{1}-1\right) \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right) \\
& \leq N\left(r, \frac{1}{F_{2}}\right) \leq T\left(r, F_{2}\right)+O(1) \leq N\left(r, F_{2}\right)+m\left(r, F_{2}\right)+O(1) \\
& \leq \bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+\bar{N}\left(r, \mathcal{L}_{1}\right)+\bar{N}\left(r, \mathcal{L}_{2}\right)+S\left(r, \mathcal{L}_{1}\right)+S\left(r, \mathcal{L}_{2}\right) \\
& \leq \bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+O(\log r) \tag{2.5}
\end{align*}
$$

Combining (2.4) and (2.5),

$$
\begin{aligned}
\bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right) & \leq \frac{1}{k_{1}} \bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+O(\log r) \\
& \leq \frac{1}{k_{1} k_{2}} \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+O(\log r) .
\end{aligned}
$$

Since $k_{1} k_{2}>1$,

$$
\begin{equation*}
\bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)=O(\log r) . \tag{2.6}
\end{equation*}
$$

Substituting (2.6) into (2.4),

$$
\begin{equation*}
\bar{N}_{\left(k_{2}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)=O(\log r) . \tag{2.7}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)=O(\log r) . \tag{2.8}
\end{equation*}
$$

Substituting (2.7) into (2.5),

$$
\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)=O(\log r) .
$$

In addition, from (2.2) and (2.6),

$$
\begin{aligned}
T\left(r, F_{1}\right) & =N\left(r, F_{1}\right)+m\left(r, F_{1}\right) \\
& \leq \bar{N}_{\left(k_{1}+1\right.}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+\bar{N}\left(r, \mathcal{L}_{1}\right)+\bar{N}\left(r, \mathcal{L}_{2}\right)+S\left(r, \mathcal{L}_{1}\right)+S\left(r, \mathcal{L}_{2}\right) \\
& =O(\log r)
\end{aligned}
$$

this implies that $F_{1}(s)$ is a rational function. Set $F_{1}(s)=(P(s) / Q(s))$, that is,

$$
\begin{equation*}
\frac{\mathcal{L}_{1}^{\prime}(s)}{\mathcal{L}_{1}(s)-c_{1}}-\frac{\mathcal{L}_{2}^{\prime}(s)}{\mathcal{L}_{2}(s)-c_{1}}=\frac{P(s)}{Q(s)} ; \tag{2.9}
\end{equation*}
$$

integrating both sides of the equality (2.9),

$$
\begin{equation*}
\frac{\mathcal{L}_{1}(s)-c_{1}}{\mathcal{L}_{2}(s)-c_{1}}=e^{\int(P(s) / Q(s)) d s} . \tag{2.10}
\end{equation*}
$$

Since $\mathcal{L}_{j}(s) \rightarrow 1$ as $s \rightarrow+\infty$ for $j=1,2$,

$$
\lim _{s \rightarrow+\infty} \frac{\mathcal{L}_{1}(s)-c_{1}}{\mathcal{L}_{2}(s)-c_{1}}=1
$$

for $c_{1} \neq 1$. If $c_{1}=1$, then we can replace c_{1} by c_{2}. Thus,

$$
\lim _{s \rightarrow+\infty} \int \frac{P(s)}{Q(s)} d s=0
$$

It follows that $\operatorname{deg}(P(s))<\operatorname{deg}(Q(s))$. In addition, by a simple calculation, we see that all poles of $F_{1}(s)$ are simple. Therefore, we can rewrite $F_{1}(s)$ as

$$
F_{1}(s)=\frac{P(s)}{Q(s)}=\frac{c \prod_{i=1}^{m}\left(s-a_{i}\right)}{\prod_{j=1}^{n}\left(s-b_{j}\right)}=\sum_{j=1}^{n} \frac{\lambda_{j}}{s-b_{j}}
$$

where $c \neq 0$ is a constant, m, n are two positive integers satisfying $m<n$ and a_{i} $(i=1,2, \ldots, m), b_{j}(j=1,2, \ldots, n)$ with $b_{i} \neq b_{j}(i \neq j)$ being the zeros and poles of $F_{1}(s)$, respectively. Then

$$
\int \frac{P(s)}{Q(s)} d s=\sum_{j=1}^{n} \int \frac{\lambda_{j}}{s-b_{j}} d s=\sum_{j=1}^{n} \lambda_{j} \ln \left(s-b_{j}\right)+C_{1}
$$

where C_{1} is a constant. Note that the $\lambda_{j}(j=1,2, \ldots, n)$ are integers because $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ are both meromorphic functions. Using this in (2.10),

$$
\begin{equation*}
\mathcal{L}_{1}(s)-c_{1}=A\left(\mathcal{L}_{2}(s)-c_{1}\right) \prod_{j=1}^{n}\left(s-b_{j}\right)^{\lambda_{j}}=A\left(\mathcal{L}_{2}(s)-c_{1}\right) \frac{\prod_{j=1}^{t_{1}}\left(s-b_{j}\right)^{\lambda_{j}}}{\prod_{j=t_{1}+1}^{n}\left(s-b_{j}\right)^{-\lambda_{j}}}, \tag{2.11}
\end{equation*}
$$

where $A \neq 0$ is a constant, $\lambda_{j}>0\left(j=1, \ldots, t_{1}\right)$ and $\lambda_{j}<0\left(j=t_{1}+1, \ldots, n\right)$.
If $N_{1)}\left(r, 1 / \mathcal{L}_{1}-c_{2}\right) \neq S\left(r, \mathcal{L}_{1}\right)$, then, for any s_{0} such that $\mathcal{L}_{1}\left(s_{0}\right)=c_{2}$, we have $\mathcal{L}_{2}\left(s_{0}\right)=c_{2}$. Thus, from (2.11),

$$
A \prod_{j=1}^{t_{1}}\left(s_{0}-b_{j}\right)^{\lambda_{j}}=\prod_{j=t_{1}+1}^{n}\left(s_{0}-b_{j}\right)^{-\lambda_{j}} .
$$

Set

$$
M(s)=A \prod_{j=1}^{t_{1}}\left(s-b_{j}\right)^{\lambda_{j}}-\prod_{j=t_{1}+1}^{n}\left(s-b_{j}\right)^{-\lambda_{j}} .
$$

Then $M(s)$ has at most n zeros, which contradicts $N_{1)}\left(r, 1 / \mathcal{L}_{1}-c_{2}\right) \neq S\left(r, \mathcal{L}_{1}\right)$. Therefore, we have $N_{1)}\left(r, 1 / \mathcal{L}_{1}-c_{2}\right)=S\left(r, \mathcal{L}_{1}\right)$. Combining this with (2.8),

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)=N_{1)}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)=S\left(r, \mathcal{L}_{1}\right)=O(\log r) \tag{2.12}
\end{equation*}
$$

Since $\mathcal{L}_{1}, \mathcal{L}_{2}$ share c_{2} weighted k_{2},

$$
\bar{N}\left(r, \frac{1}{\mathcal{L}_{2}-c_{2}}\right)=O(\log r)
$$

In the following, we consider the function

$$
H=\frac{\mathcal{L}_{1}^{\prime \prime}}{\mathcal{L}_{1}^{\prime}}-\frac{2 \mathcal{L}_{1}^{\prime}}{\mathcal{L}_{1}^{\prime}-c_{1}}-\left(\frac{\mathcal{L}_{2}^{\prime \prime}}{\mathcal{L}_{2}^{\prime}}-\frac{2 \mathcal{L}_{2}^{\prime}}{\mathcal{L}_{2}^{\prime}-c_{1}}\right)
$$

If $H \not \equiv 0$, then it follows that

$$
m(r, H)=S\left(r, \mathcal{L}_{1}\right)+S\left(r, \mathcal{L}_{2}\right)=O(\log r)
$$

and

$$
\begin{aligned}
N(r, H) \leq & \bar{N}_{(2}\left(r, \mathcal{L}_{1}\right)+\bar{N}_{(2}\left(r, \mathcal{L}_{2}\right)+\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{2}-c_{1}}\right) \\
& +\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+\bar{N}_{(2}\left(r, \frac{1}{\mathcal{L}_{2}-c_{2}}\right)+\bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right)+\bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{2}^{\prime}}\right) \\
\leq & \bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right)+\bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{2}^{\prime}}\right)+O(\log r),
\end{aligned}
$$

where $\bar{N}_{\otimes}\left(r, 1 / \mathcal{L}_{1}^{\prime}\right)$ denotes the reduced counting function of the zeros of \mathcal{L}_{1}^{\prime} which are not the zeros of $\left(\mathcal{L}_{1}-c_{1}\right)\left(\mathcal{L}_{1}-c_{2}\right)$. Since $\mathcal{L}_{1}, \mathcal{L}_{2}$ share c_{1} weighted $k_{1}(\geq 1)$, by a simple calculation, we can deduce that the simple zeros of $\mathcal{L}_{1}-c_{1}$ are the zeros of H. Thus, by the first fundamental theorem,

$$
N_{1)}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right) \leq N\left(r, \frac{1}{H}\right) \leq N(r, H)+m(r, H) \leq \bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right)+\bar{N}_{\otimes}\left(r, \frac{1}{\mathcal{L}_{2}^{\prime}}\right)+O(\log r) .
$$

Noting that the zeros of $\mathcal{L}_{1}-c_{1}$ with multiplicity $k \geq 2$ are the zeros of \mathcal{L}_{1}^{\prime} with multiplicity $k-1$,
$N\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)=N_{1)}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+N_{(2}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right) \leq N_{0}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right)+N_{0}\left(r, \frac{1}{\mathcal{L}_{2}^{\prime}}\right)+O(\log r)$, where $N_{0}\left(r, 1 / \mathcal{L}_{1}^{\prime}\right)$ denotes the counting function of the zeros of \mathcal{L}_{1}^{\prime} which are not the zeros of $\mathcal{L}_{1}-c_{2}$. Suppose that

$$
\psi=\frac{\mathcal{L}_{1}^{\prime}}{\mathcal{L}_{1}-c_{2}} ;
$$

then it is easy to see that

$$
m(r, \psi)=S\left(r, \mathcal{L}_{1}\right), \quad N(r, \psi) \leq \bar{N}\left(r, \mathcal{L}_{1}\right)+\bar{N}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)
$$

and

$$
N_{0}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right) \leq N\left(r, \frac{1}{\psi}\right) .
$$

By the first fundamental theorem and (2.12),

$$
N_{0}\left(r, \frac{1}{\mathcal{L}_{1}^{\prime}}\right)=S\left(r, \mathcal{L}_{1}\right)=O(\log r) .
$$

The same argument shows that

$$
N_{0}\left(r, \frac{1}{\mathcal{L}_{2}^{\prime}}\right)=S\left(r, \mathcal{L}_{2}\right)=O(\log r)
$$

Therefore, we have $N\left(r, 1 / \mathcal{L}_{1}-c_{1}\right)=O(\log r)$. By the second fundamental second theorem,

$$
T\left(r, \mathcal{L}_{1}\right) \leq \bar{N}\left(r, \mathcal{L}_{1}\right)+\bar{N}\left(r, \frac{1}{\mathcal{L}_{1}-c_{1}}\right)+\bar{N}\left(r, \frac{1}{\mathcal{L}_{1}-c_{2}}\right)+S\left(r, \mathcal{L}_{1}\right)=O(\log r)
$$

which is a contradiction. Thus, $H \equiv 0$. By integration,

$$
\frac{1}{\mathcal{L}_{1}-c_{1}} \equiv \frac{A}{\mathcal{L}_{2}-c_{1}}+B
$$

where $A \neq 0, B$ are two constants. It shows that $\mathcal{L}_{1}, \mathcal{L}_{2}$ share $c_{1} C M$. Thus, we have $\mathcal{L}_{1} \equiv \mathcal{L}_{2}$. This completes the proof of Theorem 1.5.
2.3. Proof of Theorem 1.6. By the same argument as in the proof of Theorem 1.5, we see that if one of \mathcal{L}_{1} and \mathcal{L}_{2} is constant, then $\mathcal{L}_{1} \equiv \mathcal{L}_{2}$. In the following, we consider the case that $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ are nonconstant. Define two functions

$$
\begin{aligned}
l_{1}(s) & =\left(\mathcal{L}_{1}(s)-c_{1}\right)\left(\mathcal{L}_{1}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{1}(s)-c_{n}\right), \\
l_{2}(s) & =\left(\mathcal{L}_{2}(s)-c_{1}\right)\left(\mathcal{L}_{2}(s)-c_{2}\right) \cdots\left(\mathcal{L}_{2}(s)-c_{n}\right) .
\end{aligned}
$$

Then $l_{1}(s), l_{2}(s)$ share the values $a=\left(c-c_{1}\right)\left(c-c_{2}\right) \cdots\left(c-c_{n}\right) \neq 0$ and 0 with the weights k_{1} and k_{2}, respectively. Next, we consider the following two auxiliary functions:

$$
\begin{gather*}
F_{1}(s)=\frac{l_{1}^{\prime}(s)}{l_{1}(s)}-\frac{l_{2}^{\prime}(s)}{l_{2}(s)}, \tag{2.13}\\
F_{2}(s)=\frac{l_{1}^{\prime}(s)}{l_{1}(s)-a}-\frac{l_{2}^{\prime}(s)}{l_{2}(s)-a} . \tag{2.14}
\end{gather*}
$$

If $F_{1}(s) \equiv 0$, by integration, then we have $l_{1}(s) \equiv A l_{2}(s)$ from (2.13), where $A \neq 0$ is a constant. This implies that $l_{1}(s), l_{2}(s)$ share the value 0 CM . From the definition of $l_{i}(s)(i=1,2)$, we deduce that $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ share the set $S=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ CM. By Theorem 1.3, $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$. If $F_{2}(s) \equiv 0$, from (2.14), we have $l_{1}(s)-a \equiv$ $A\left(l_{2}(s)-a\right)$. Since $l_{1}(s), l_{2}(s)$ share the value 0 with weight k_{2}, we have $A=1$. Thus, $l_{1}(s) \equiv l_{2}(s)$. From the definition of $l_{i}(s)(i=1,2)$, we deduce that $\mathcal{L}_{1}(s)$ and $\mathcal{L}_{2}(s)$ share the set $S=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ CM and, by Theorem 1.3, we get $\mathcal{L}_{1}(s) \equiv \mathcal{L}_{2}(s)$. If $F_{1}(s) \not \equiv 0$ and $F_{2}(s) \not \equiv 0$, then we repeat the argument from the proof of Theorem 1.5 to reach the same conclusion. This completes the proof of Theorem 1.6.

References

[1] G. Frank and M. Reinders, 'A unique range set for meromorphic functions with 11 elements', Complex Variables, Theory and Application 37 (1998), 185-193.
[2] H. Fujimoto, 'On uniqueness of meromorphic functions sharing finite sets', Amer. J. Math. 122 (2000), 1175-1203.
[3] F. Gross, 'Factorization of meromorphic functions and some problems', in: Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, KY, 1976), Lecture Notes in Mathematics, 599 (Springer, Berlin, 1977), 51-76.
[4] W. K. Hayman, Meromorphic Functions (Oxford University Press, Oxford, 1964).
[5] B. Q. Li, 'A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation', Adv. Math. 226 (2011), 4198-4211.
[6] P. Li and C. C. Yang, 'On the unique range set of meromorphic functions', Proc. Amer. Math. Soc. 124 (1996), 177-185.
[7] E. Mues and M. Reinders, 'Meromorphic functions sharing one value and unique range sets', Kodai Math. J. 18 (1995), 515-522.
[8] J. Steuding, 'How many values can L-functions share?’, Fiz. Mat. Fak. Moksl. Semin. Darb. 7 (2004), 70-81.
[9] J. Steuding, Value Distribution of L-Functions, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).
[10] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions (Science Press, Beijing, 2003).
[11] H. X. Yi, 'Uniqueness of meromorphic functions and a question of Gross', Sci. China Ser. A 24 (1994), 457-466.
[12] H. X. Yi, 'Unicity theorems for meromorphic or entire functions II', Bull. Aust. Math. Soc. 52 (1995), 215-224.
[13] H. X. Yi, 'On a question of Gross concerning uniqueness of entire functions', Bull. Aust. Math. Soc. 57 (1998), 343-349.

AI-DI WU, Department of Mathematics, Shandong University, Jinan 250100, Shandong Province, PR China
e-mail: wadlrr@163.com

PEI-CHU HU, Department of Mathematics, Shandong University, Jinan 250100, Shandong Province, PR China
e-mail: pchu @ sdu.edu.cn

[^0]: The work of the authors was partially supported by NSFC (no. 11271227) and PCSIRT (IRT1264)
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

