Bull. Aust. Math. Soc. **91** (2015), 389–399 doi:10.1017/S0004972714001166

UNIQUENESS THEOREMS FOR DIRICHLET SERIES

AI-DI WU and PEI-CHU HU[⊠]

(Received 28 October 2014; accepted 30 November 2014; first published online 12 February 2015)

Abstract

We obtain uniqueness theorems for *L*-functions in the extended Selberg class when the functions share values in a finite set and share values weighted by multiplicities.

2010 *Mathematics subject classification*: primary 11M36; secondary 30D35. *Keywords and phrases*: *L*-function, sharing set, weighted sharing, uniqueness.

1. Introduction

Let $\mathcal{M}(\mathbb{C})$ be the field of meromorphic functions over the field \mathbb{C} of complex numbers. In this paper, we will study the uniqueness problem for meromorphic functions in the extended Selberg class S^{\sharp} of $\mathcal{M}(\mathbb{C})$. The extended Selberg class S^{\sharp} is the set of *L*-functions

$$\mathcal{L}(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$$
(1.1)

in a complex variable $s \in \mathbb{C}$ which satisfy the following axioms (see [9]).

- (i) Ramanujan hypothesis. $a(n) \ll n^{\varepsilon}$ for any $\varepsilon > 0$, where the implicit constant may depend on ε .
- (ii) Analytic continuation. There is a nonnegative integer k such that $(s-1)^k \mathcal{L}(s)$ is an entire function of finite order.
- (iii) Functional equation. \mathcal{L} satisfies a functional equation of type

$$\Lambda_{\mathcal{L}}(s) = \omega \overline{\Lambda_{\mathcal{L}}(1-\overline{s})},$$

where

$$\Lambda_{\mathcal{L}}(s) = \mathcal{L}(s)Q^s \prod_{j=1}^K \Gamma(\lambda_j s + \mu_j)$$

with positive real numbers Q, λ_j and complex numbers μ_j , ω with Re $\mu_j \ge 0$ and $|\omega| = 1$.

The work of the authors was partially supported by NSFC (no. 11271227) and PCSIRT (IRT1264). © 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

Further, an *L*-function \mathcal{L} in \mathcal{S}^{\sharp} is in the Selberg class \mathcal{S} if \mathcal{L} also satisfies the following additional axiom (see [9]).

(iv) Euler product. $\mathcal{L}(s)$ satisfies

$$\mathcal{L}(s) = \prod_p \mathcal{L}_p(s),$$

where

$$\mathcal{L}_p(s) = \exp\left(\sum_{k=1}^{\infty} \frac{b(p^k)}{p^{ks}}\right)$$

with suitable coefficients $b(p^k)$ satisfying $b(p^k) \ll p^{k\theta}$ for some $\theta < \frac{1}{2}$.

In the sequel, we mainly consider a subset $S^{\sharp}(1)$ of S^{\sharp} defined by

 $S^{\sharp}(1) = \{ \mathcal{L} \in S^{\sharp} \mid \mathcal{L} \text{ is expressed by a series of the form } (1.1) \text{ with } a(1) = 1 \}.$

The classical question in the uniqueness theory of meromorphic functions is as follows.

QUESTION 1.1. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S of $\mathbb{C} = \mathbb{C} \cup \{\infty\}$ of minimal cardinal such that any two elements f and g of \mathcal{F} are algebraically dependent if $f^{-1}(a) = g^{-1}(a)$ counting multiplicity for each $a \in S$, that is, if f and g share each element of S CM (counting multiplicity).

For the case $\mathcal{F} = \mathcal{M}(\mathbb{C})$, a famous theorem of Nevanlinna claims that any subset $S \subset \overline{\mathbb{C}}$ of four distinct elements is a solution of Question 1.1 and the number 'four' is sharp (see, for example, [4] or [10]). Furthermore, two such elements in $\mathcal{M}(\mathbb{C})$ are related by a fractional linear transformation.

If $\mathcal{F} = S^{\sharp}(1)$, a result due to Steuding (see [8] or [9]) shows that any subset *S* of \mathbb{C} of one element is a solution of Question 1.1. Further, two such *L*-functions in $S^{\sharp}(1)$ must be equal.

In 1976, Gross (see [3]) extended Question 1.1 as follows.

QUESTION 1.2. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S_1, \ldots, S_q of $\overline{\mathbb{C}}$ in which the cardinal of each S_j is as small as possible and minimise the number q such that any two elements f and g of \mathcal{F} are algebraically dependent if $f^{-1}(S_j) = g^{-1}(S_j)$ counting multiplicity for each j, that is, if f and g share each S_j CM (counting multiplicity).

Denote the pre-image of a subset $S \subset \overline{\mathbb{C}}$ under *f* by

$$E(S, f) = \bigcup_{c \in S} \{s \in \mathbb{C} \mid f(s) - c = 0\},\$$

where a zero of f - c with multiplicity *m* counts *m* times in E(S, f). If E(S, f) = E(S, g), then *f* and *g* share the set *S* CM.

If $q \ge 4$, Question 1.2 is completely answered by the theorem due to Nevanlinna. But it is still interesting in the cases q < 4. For the family $\mathcal{F} = \mathcal{A}(\mathbb{C}) \subset \mathcal{M}(\mathbb{C})$ of entire functions over \mathbb{C} , Gross partially solved Question 1.2 by finding three finite sets S_j (j = 1, 2, 3). Since then, there have been many studies of the uniqueness of meromorphic functions sharing sets (see, for example, [1, 2, 6, 7, 10–13]).

For the family $\mathcal{F} = S^{\sharp}(1)$, we answer Question 1.2 completely as follows.

THEOREM 1.3. Fix a positive integer n and take a subset $S = \{c_1, \ldots, c_n\} \subset \mathbb{C} - \{1\}$ of distinct complex numbers satisfying

$$n + (n-1)\sigma_1(c_1, \ldots, c_n) + \cdots + 2\sigma_{n-2}(c_1, \ldots, c_n) + \sigma_{n-1}(c_1, \ldots, c_n) \neq 0,$$

where σ_i are the elementary symmetric polynomials defined by

$$\sigma_j(c_1,\ldots,c_n) = (-1)^j \sum_{1 \le i_1 < i_2 < \cdots < i_j \le n} c_{i_1} c_{i_2} \cdots c_{i_j}, \quad j = 1, 2, \ldots, n-1.$$

If two L-functions $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ in $\mathcal{S}^{\sharp}(1)$ share $S \ CM$, then $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$.

In particular, the result due to Steuding is a special case of Theorem 1.3 corresponding to the case n = 1.

Let *k* denote a nonnegative integer or $+\infty$. For any $c \in \overline{\mathbb{C}}$, we denote by $E_k(c, f)$ the set of all *c*-points of *f*, where a *c*-point of multiplicity *m* is counted *m* times if $m \le k$ and k + 1 times if m > k. For $S \subseteq \overline{\mathbb{C}}$, we define

$$E_k(S, f) = \bigcup_{c \in S} E_k(c, f).$$

If $E_k(S, f) = E_k(S, g)$, then f and g share the set S weighted by k (or with weight k, or truncated multiplicity k + 1). For the notation and basic results from Nevanlinna theory and further details related to $\mathcal{F} = \mathcal{M}(\mathbb{C})$ or $\mathcal{A}(\mathbb{C})$, see [4, 10].

Questions 1.1 and 1.2 are special cases of the following general question.

QUESTION 1.4. For a family \mathcal{F} in $\mathcal{M}(\mathbb{C})$, determine subsets S_1, \ldots, S_q of $\overline{\mathbb{C}}$ in which the cardinal of each S_j is as small as possible and minimise the number q such that any two elements f and g of \mathcal{F} are algebraically dependent if f and g share each S_j weighted by k (or with truncated multiplicity k + 1).

For the case $\mathcal{F} = \mathcal{M}(\mathbb{C})$, $q \ge 5$, k = 0, Nevanlinna completely settled Question 1.4 by choosing $S_j = \{c_j\}$ for distinct elements c_j of $\overline{\mathbb{C}}$, and proved that two such functions must be equal. However, Question 1.4 is still interesting for the cases $q \le 4$.

If \mathcal{F} is the subfamily $S_{e}^{\sharp}(1)$ of the family $S^{\sharp}(1)$ satisfying the same functional equation and with an additional condition, Steuding (see [9] or [8]) partially answered Question 1.4 for the case k = 0, q = 2, where the $S_{j} = \{c_{j}\}$ consist of two distinct elements c_{j} of \mathbb{C} . For the case $\mathcal{F} = S_{e}^{\sharp}(1)$, Li (see [5]) completely solved this case by removing the additional condition in Steuding's result. Moreover, in order to extend Steuding–Li's result from the subfamily $S_{e}^{\sharp}(1)$ to the global family $S^{\sharp}(1)$, it would be desirable to remove the assumption that both *L*-functions satisfy the same functional equation (see [8]). By including weights, we can reach this goal as follows.

[3]

THEOREM 1.5. Let c_1, c_2 be two distinct complex numbers and take two positive integers k_1, k_2 with $k_1k_2 > 1$. If two L-functions $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ in $S^{\sharp}(1)$ share c_1, c_2 weighted k_1, k_2 , respectively, then $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$.

THEOREM 1.6. Let k_1, k_2 be two positive integers with $k_1k_2 > 1$ and take a complex number c and a nonempty subset $S = \{c_1, \ldots, c_n\} \subset \mathbb{C} - \{1, c\}$ of distinct complex numbers satisfying

$$n + (n-1)\sigma_1(c_1,...,c_n) + \cdots + 2\sigma_{n-2}(c_1,...,c_n) + \sigma_{n-1}(c_1,...,c_n) \neq 0,$$

where

$$\sigma_j(c_1,\ldots,c_n) = (-1)^j \sum_{1 \le i_1 < i_2 < \cdots < i_j \le n} c_{i_1} c_{i_2} \cdots c_{i_j}, \quad j = 1, 2, \ldots, n-1.$$

If two L-functions $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ in $S^{\sharp}(1)$ share c, S weighted k_1, k_2 , respectively, then $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$.

2. Proofs of the theorems

2.1. Proof of Theorem 1.3. First of all, assume that $\mathcal{L}_1(s)$, $\mathcal{L}_2(s)$ are both entire functions and share the set $S = \{c_1, c_2, \dots, c_n\}$ CM. We obtain an entire function

$$l(s) = \frac{(\mathcal{L}_1(s) - c_1)(\mathcal{L}_1(s) - c_2) \cdots (\mathcal{L}_1(s) - c_n)}{(\mathcal{L}_2(s) - c_1)(\mathcal{L}_2(s) - c_2) \cdots (\mathcal{L}_2(s) - c_n)}$$

with $l(s) \neq 0, \infty$. By the first fundamental theorem,

$$T\left(r,\frac{1}{\mathcal{L}_2(s)-c_i}\right) = T(r,\mathcal{L}_2) + O(1)$$

for i = 1, 2, ..., n. If we denote the order of a meromorphic function f by $\rho(f)$, then it follows that

$$\rho\left(\frac{1}{\mathcal{L}_2 - c_i}\right) = \rho(\mathcal{L}_2) = 1.$$

Moreover,

$$\rho(\mathcal{L}_1 - c_i) = \rho(\mathcal{L}_1) = 1, \quad i = 1, 2, \dots, n.$$

Since the order of a finite product of functions of finite order is less than or equal to the maximum of the order of these factors (see [10]), we have $\rho(l) \le 1$. This implies that l(s) is of the form

$$l(s) = e^{P(s)},$$

where P(s) is a polynomial of degree at most $\rho(l) \le 1$. Since $\mathcal{L}_j(s) \to 1$ as $s \to +\infty$ for j = 1, 2,

$$\lim_{s \to +\infty} l(s) = \frac{(1-c_1)(1-c_2)\cdots(1-c_n)}{(1-c_1)(1-c_2)\cdots(1-c_n)} = 1.$$

This implies that the polynomial $P(s) \equiv 0$, that is, $l(s) \equiv 1$.

If $\mathcal{L}_1(s)$ or $\mathcal{L}_2(s)$ has a pole at s = 1 with multiplicity $k_1 (\ge 0)$ or $k_2 (\ge 0)$, respectively, we may set

$$l(s) = \frac{(s-1)^k (\mathcal{L}_1(s) - c_1) (\mathcal{L}_1(s) - c_2) \cdots (\mathcal{L}_1(s) - c_n)}{(\mathcal{L}_2(s) - c_1) (\mathcal{L}_2(s) - c_2) \cdots (\mathcal{L}_2(s) - c_n)}$$

where $k = n(k_2 - k_1)$ is an integer. Repeating the argument above, we see that l(s) is of the form

$$l(s) = e^{P(s)},$$

where P(s) is a polynomial of degree at most $\lambda(l) \le 1$. If P(s) is a polynomial of degree one, denote it as As + B, where $A(\neq 0)$, B are constants. This leads to a contradiction because

$$\lim_{s \to +\infty} (s-1)^{-k} e^{As+B} = \lim_{s \to +\infty} (s-1)^{-k} l(s) = \lim_{s \to +\infty} \frac{(1-c_1)(1-c_2)\cdots(1-c_n)}{(1-c_1)(1-c_2)\cdots(1-c_n)} = 1.$$
(2.1)

Therefore, P(s) is a constant. In view of (2.1), we get k = 0. Then it follows that $l(s) \equiv 1$.

If $\mathcal{L}_1(s) \neq \mathcal{L}_2(s)$, on account of

$$l(s) = \frac{(\mathcal{L}_1(s) - c_1)(\mathcal{L}_1(s) - c_2) \cdots (\mathcal{L}_1(s) - c_n)}{(\mathcal{L}_2(s) - c_1)(\mathcal{L}_2(s) - c_2) \cdots (\mathcal{L}_2(s) - c_n)} \equiv 1,$$

we have the following equations:

$$(\mathcal{L}_{1} - c_{1})(\mathcal{L}_{1} - c_{2})\cdots(\mathcal{L}_{1} - c_{n}) \equiv (\mathcal{L}_{2} - c_{1})(\mathcal{L}_{2} - c_{2})\cdots(\mathcal{L}_{2} - c_{n}),$$

$$\mathcal{L}_{1}^{n} + \sigma_{1}\mathcal{L}_{1}^{n-1} + \cdots + \sigma_{n-2}\mathcal{L}_{1}^{2} + \sigma_{n-1}\mathcal{L}_{1} \equiv \mathcal{L}_{2}^{n} + \sigma_{1}\mathcal{L}_{2}^{n-1} + \cdots + \sigma_{n-2}\mathcal{L}_{2}^{2} + \sigma_{n-1}\mathcal{L}_{2},$$

$$(\mathcal{L}_{1}^{n} - \mathcal{L}_{2}^{n}) + \sigma_{1}(\mathcal{L}_{1}^{n-1} - \mathcal{L}_{2}^{n-1}) + \cdots + \sigma_{n-2}(\mathcal{L}_{1}^{2} - \mathcal{L}_{2}^{2}) + \sigma_{n-1}(\mathcal{L}_{1} - \mathcal{L}_{2}) \equiv 0$$

and

$$(\mathcal{L}_1 - \mathcal{L}_2)((\mathcal{L}_1^{n-1} + \mathcal{L}_1^{n-2}\mathcal{L}_2 + \dots + \mathcal{L}_2^{n-1}) + \sigma_1(\mathcal{L}_1^{n-2} + \mathcal{L}_1^{n-3}\mathcal{L}_2 + \dots + \mathcal{L}_2^{n-2}) + \dots + \sigma_{n-2}(\mathcal{L}_1 + \mathcal{L}_2) + \sigma_{n-1}) \equiv 0,$$

where

$$\sigma_j = (-1)^j \sum_{1 \le i_1 < i_2 < \dots < i_j \le n} c_{i_1} c_{i_2} \cdots c_{i_j}, \quad j = 1, 2, \dots, n-1.$$

Set

$$h(s) = (\mathcal{L}_1^{n-1} + \mathcal{L}_1^{n-2}\mathcal{L}_2 + \dots + \mathcal{L}_2^{n-1}) + \sigma_1(\mathcal{L}_1^{n-2} + \mathcal{L}_1^{n-3}\mathcal{L}_2 + \dots + \mathcal{L}_2^{n-2}) + \dots + \sigma_{n-2}(\mathcal{L}_1 + \mathcal{L}_2) + \sigma_{n-1}.$$

Since $\mathcal{L}_j(s)$ tends to 1 as $s \to +\infty$ for j = 1, 2, it is easy to deduce that

$$\lim_{s \to +\infty} h(s) = n + (n-1)\sigma_1 + \dots + 2\sigma_{n-2} + \sigma_{n-1} \neq 0.$$

Thus, we have $\mathcal{L}_1 \equiv \mathcal{L}_2$. This completes the proof of Theorem 1.3.

2.2. Proof of Theorem 1.5. We first look at the simple case when one of $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$, say $\mathcal{L}_1(s)$, is constant. Then $\mathcal{L}_1(s) \equiv 1$ by the assumption that a(1) = 1. Since $\mathcal{L}_2(s) - c_j$ and $\mathcal{L}_1(s) - c_j$ (j = 1, 2) have the same zeros by the assumption, it is easy to see that $\mathcal{L}_2(s) \equiv 1$ when c_1 or c_2 is 1, or $\mathcal{L}_2(s) \neq c_1, c_2$ in \mathbb{C} when $c_1, c_2 \neq 1$. In the latter case, noting that an *L*-function has at most one pole, $\mathcal{L}_2(s)$ must be constant and thus $\mathcal{L}_2(s) \equiv 1$ since a(1) = 1, by the class Picard theorem (see for example [10]) that a nonconstant meromorphic function in \mathbb{C} assumes each value in $\mathbb{C} \cup \{\infty\}$ infinitely many times with at most two exceptions. Therefore, $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$.

We thus assume, in the following, that $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ are nonconstant. We consider the following two auxiliary functions:

$$F_1(s) = \frac{\mathcal{L}'_1(s)}{\mathcal{L}_1(s) - c_1} - \frac{\mathcal{L}'_2(s)}{\mathcal{L}_2(s) - c_1},$$
(2.2)

$$F_2(s) = \frac{\mathcal{L}'_1(s)}{\mathcal{L}_1(s) - c_2} - \frac{\mathcal{L}'_2(s)}{\mathcal{L}_2(s) - c_2}.$$
(2.3)

If $F_1(s) \equiv 0$, by integration, we have from (2.2) that

$$\mathcal{L}_1(s) - c_1 \equiv A(\mathcal{L}_2(s) - c_1),$$

where $A \neq 0$ is a constant. This implies that $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ share c_1 CM; thus, $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$. If $F_2(s) \equiv 0$, by repeating the argument above, we also get $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$. Next, we assume that $F_1(s) \not\equiv 0$ and $F_2(s) \not\equiv 0$. Since $\mathcal{L}_1(s)$, $\mathcal{L}_2(s)$ share $(c_1, k_1), (c_2, k_2)$, from (2.2),

$$k_{2}\overline{N}_{(k_{2}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) \leq \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) + (k_{2}-1)\overline{N}_{(k_{2}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right)$$

$$\leq N\left(r,\frac{1}{F_{1}}\right) \leq T(r,F_{1}) + O(1) \leq N(r,F_{1}) + m(r,F_{1}) + O(1)$$

$$\leq \overline{N}_{(k_{1}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) + \overline{N}(r,\mathcal{L}_{1}) + \overline{N}(r,\mathcal{L}_{2}) + S(r,\mathcal{L}_{1}) + S(r,\mathcal{L}_{2})$$

$$\leq \overline{N}_{(k_{1}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) + O(\log r).$$
(2.4)

Similarly, from (2.3),

$$k_{1}\overline{N}_{(k_{1}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) \leq \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) + (k_{1}-1)\overline{N}_{(k_{1}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right)$$

$$\leq N\left(r,\frac{1}{F_{2}}\right) \leq T(r,F_{2}) + O(1) \leq N(r,F_{2}) + m(r,F_{2}) + O(1)$$

$$\leq \overline{N}_{(k_{2}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) + \overline{N}(r,\mathcal{L}_{1}) + \overline{N}(r,\mathcal{L}_{2}) + S(r,\mathcal{L}_{1}) + S(r,\mathcal{L}_{2})$$

$$\leq \overline{N}_{(k_{2}+1)}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) + O(\log r).$$
(2.5)

394

Combining (2.4) and (2.5),

$$\overline{N}_{(k_1+1)}\left(r, \frac{1}{\mathcal{L}_1 - c_1}\right) \leq \frac{1}{k_1} \overline{N}_{(k_2+1)}\left(r, \frac{1}{\mathcal{L}_1 - c_2}\right) + O(\log r)$$
$$\leq \frac{1}{k_1 k_2} \overline{N}_{(k_1+1)}\left(r, \frac{1}{\mathcal{L}_1 - c_1}\right) + O(\log r).$$

Since $k_1 k_2 > 1$,

$$\overline{N}_{(k_1+1)}\left(r,\frac{1}{\mathcal{L}_1-c_1}\right) = O(\log r).$$
(2.6)

Substituting (2.6) into (2.4),

$$\overline{N}_{(k_2+1)}\left(r,\frac{1}{\mathcal{L}_1-c_2}\right) = O(\log r).$$
(2.7)

Furthermore,

$$\overline{N}_{(2)}\left(r,\frac{1}{\mathcal{L}_1-c_2}\right) = O(\log r).$$
(2.8)

Substituting (2.7) into (2.5),

$$\overline{N}_{(2)}\left(r,\frac{1}{\mathcal{L}_1-c_1}\right)=O(\log r).$$

In addition, from (2.2) and (2.6),

$$T(r, F_1) = N(r, F_1) + m(r, F_1)$$

$$\leq \overline{N}_{(k_1+1)} \left(r, \frac{1}{\mathcal{L}_1 - c_1}\right) + \overline{N}(r, \mathcal{L}_1) + \overline{N}(r, \mathcal{L}_2) + S(r, \mathcal{L}_1) + S(r, \mathcal{L}_2)$$

$$= O(\log r);$$

this implies that $F_1(s)$ is a rational function. Set $F_1(s) = (P(s)/Q(s))$, that is,

$$\frac{\mathcal{L}_1'(s)}{\mathcal{L}_1(s) - c_1} - \frac{\mathcal{L}_2'(s)}{\mathcal{L}_2(s) - c_1} = \frac{P(s)}{Q(s)};$$
(2.9)

integrating both sides of the equality (2.9),

$$\frac{\mathcal{L}_1(s) - c_1}{\mathcal{L}_2(s) - c_1} = e^{\int (P(s)/Q(s)) \, ds}.$$
(2.10)

Since $\mathcal{L}_j(s) \to 1$ as $s \to +\infty$ for j = 1, 2,

$$\lim_{s \to +\infty} \frac{\mathcal{L}_1(s) - c_1}{\mathcal{L}_2(s) - c_1} = 1$$

for $c_1 \neq 1$. If $c_1 = 1$, then we can replace c_1 by c_2 . Thus,

$$\lim_{s \to +\infty} \int \frac{P(s)}{Q(s)} \, ds = 0.$$

It follows that $\deg(P(s)) < \deg(Q(s))$. In addition, by a simple calculation, we see that all poles of $F_1(s)$ are simple. Therefore, we can rewrite $F_1(s)$ as

$$F_1(s) = \frac{P(s)}{Q(s)} = \frac{c \prod_{i=1}^m (s - a_i)}{\prod_{j=1}^n (s - b_j)} = \sum_{j=1}^n \frac{\lambda_j}{s - b_j},$$

where $c \neq 0$ is a constant, m, n are two positive integers satisfying m < n and a_i (i = 1, 2, ..., m), b_j (j = 1, 2, ..., n) with $b_i \neq b_j$ $(i \neq j)$ being the zeros and poles of $F_1(s)$, respectively. Then

$$\int \frac{P(s)}{Q(s)} ds = \sum_{j=1}^n \int \frac{\lambda_j}{s - b_j} ds = \sum_{j=1}^n \lambda_j \ln(s - b_j) + C_1,$$

where C_1 is a constant. Note that the λ_j (j = 1, 2, ..., n) are integers because $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ are both meromorphic functions. Using this in (2.10),

$$\mathcal{L}_{1}(s) - c_{1} = A(\mathcal{L}_{2}(s) - c_{1}) \prod_{j=1}^{n} (s - b_{j})^{\lambda_{j}} = A(\mathcal{L}_{2}(s) - c_{1}) \frac{\prod_{j=1}^{l_{1}} (s - b_{j})^{\lambda_{j}}}{\prod_{j=l_{1}+1}^{n} (s - b_{j})^{-\lambda_{j}}}, \quad (2.11)$$

where $A \neq 0$ is a constant, $\lambda_j > 0$ $(j = 1, ..., t_1)$ and $\lambda_j < 0$ $(j = t_1 + 1, ..., n)$.

If $N_{1}(r, 1/\mathcal{L}_1 - c_2) \neq S(r, \mathcal{L}_1)$, then, for any s_0 such that $\mathcal{L}_1(s_0) = c_2$, we have $\mathcal{L}_2(s_0) = c_2$. Thus, from (2.11),

$$A\prod_{j=1}^{t_1}(s_0-b_j)^{\lambda_j}=\prod_{j=t_1+1}^n(s_0-b_j)^{-\lambda_j}.$$

Set

$$M(s) = A \prod_{j=1}^{t_1} (s - b_j)^{\lambda_j} - \prod_{j=t_1+1}^n (s - b_j)^{-\lambda_j}.$$

Then M(s) has at most *n* zeros, which contradicts $N_{1}(r, 1/\mathcal{L}_1 - c_2) \neq S(r, \mathcal{L}_1)$. Therefore, we have $N_{1}(r, 1/\mathcal{L}_1 - c_2) = S(r, \mathcal{L}_1)$. Combining this with (2.8),

$$\overline{N}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) = N_{1}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) + \overline{N}_{2}\left(r,\frac{1}{\mathcal{L}_{1}-c_{2}}\right) = S\left(r,\mathcal{L}_{1}\right) = O(\log r).$$
(2.12)

Since \mathcal{L}_1 , \mathcal{L}_2 share c_2 weighted k_2 ,

$$\overline{N}\left(r,\frac{1}{\mathcal{L}_2-c_2}\right)=O(\log r).$$

In the following, we consider the function

$$H = \frac{\mathcal{L}_{1}''}{\mathcal{L}_{1}'} - \frac{2\mathcal{L}_{1}'}{\mathcal{L}_{1}' - c_{1}} - \left(\frac{\mathcal{L}_{2}''}{\mathcal{L}_{2}'} - \frac{2\mathcal{L}_{2}'}{\mathcal{L}_{2}' - c_{1}}\right).$$

If $H \neq 0$, then it follows that

$$m(r,H) = S(r,\mathcal{L}_1) + S(r,\mathcal{L}_2) = O(\log r)$$

and

$$\begin{split} N(r,H) &\leq \overline{N}_{(2}(r,\mathcal{L}_1) + \overline{N}_{(2}(r,\mathcal{L}_2) + \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_1 - c_1}\right) + \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_2 - c_1}\right) \\ &\quad + \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_1 - c_2}\right) + \overline{N}_{(2}\left(r,\frac{1}{\mathcal{L}_2 - c_2}\right) + \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_1'}\right) + \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_2'}\right) \\ &\leq \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_1'}\right) + \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_2'}\right) + O(\log r), \end{split}$$

where $\overline{N}_{\otimes}(r, 1/\mathcal{L}'_1)$ denotes the reduced counting function of the zeros of \mathcal{L}'_1 which are not the zeros of $(\mathcal{L}_1 - c_1)(\mathcal{L}_1 - c_2)$. Since \mathcal{L}_1 , \mathcal{L}_2 share c_1 weighted $k_1 (\geq 1)$, by a simple calculation, we can deduce that the simple zeros of $\mathcal{L}_1 - c_1$ are the zeros of H. Thus, by the first fundamental theorem,

$$N_{1}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) \leq N\left(r,\frac{1}{H}\right) \leq N(r,H) + m(r,H) \leq \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_{1}'}\right) + \overline{N}_{\otimes}\left(r,\frac{1}{\mathcal{L}_{2}'}\right) + O(\log r).$$

Noting that the zeros of $\mathcal{L}_1 - c_1$ with multiplicity $k \ge 2$ are the zeros of \mathcal{L}'_1 with multiplicity k - 1,

$$N\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) = N_{1}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) + N_{2}\left(r,\frac{1}{\mathcal{L}_{1}-c_{1}}\right) \le N_{0}\left(r,\frac{1}{\mathcal{L}_{1}'}\right) + N_{0}\left(r,\frac{1}{\mathcal{L}_{2}'}\right) + O(\log r),$$

where $N_0(r, 1/\mathcal{L}'_1)$ denotes the counting function of the zeros of \mathcal{L}'_1 which are not the zeros of $\mathcal{L}_1 - c_2$. Suppose that

$$\psi=\frac{\mathcal{L}_1'}{\mathcal{L}_1-c_2};$$

then it is easy to see that

$$m(r,\psi) = S(r,\mathcal{L}_1), \quad N(r,\psi) \le \overline{N}(r,\mathcal{L}_1) + \overline{N}\left(r,\frac{1}{\mathcal{L}_1 - c_2}\right)$$

and

$$N_0\left(r, \frac{1}{\mathcal{L}_1'}\right) \leq N\left(r, \frac{1}{\psi}\right).$$

By the first fundamental theorem and (2.12),

$$N_0\left(r,\frac{1}{\mathcal{L}_1'}\right) = S\left(r,\mathcal{L}_1\right) = O(\log r).$$

The same argument shows that

$$N_0\left(r,\frac{1}{\mathcal{L}_2'}\right) = S\left(r,\mathcal{L}_2\right) = O(\log r).$$

Therefore, we have $N(r, 1/\mathcal{L}_1 - c_1) = O(\log r)$. By the second fundamental second theorem,

$$T(r,\mathcal{L}_1) \leq \overline{N}(r,\mathcal{L}_1) + \overline{N}\left(r,\frac{1}{\mathcal{L}_1 - c_1}\right) + \overline{N}\left(r,\frac{1}{\mathcal{L}_1 - c_2}\right) + S(r,\mathcal{L}_1) = O(\log r),$$

which is a contradiction. Thus, $H \equiv 0$. By integration,

$$\frac{1}{\mathcal{L}_1 - c_1} \equiv \frac{A}{\mathcal{L}_2 - c_1} + B,$$

where $A \neq 0, B$ are two constants. It shows that $\mathcal{L}_1, \mathcal{L}_2$ share c_1 CM. Thus, we have $\mathcal{L}_1 \equiv \mathcal{L}_2$. This completes the proof of Theorem 1.5.

2.3. Proof of Theorem 1.6. By the same argument as in the proof of Theorem 1.5, we see that if one of \mathcal{L}_1 and \mathcal{L}_2 is constant, then $\mathcal{L}_1 \equiv \mathcal{L}_2$. In the following, we consider the case that $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ are nonconstant. Define two functions

$$l_1(s) = (\mathcal{L}_1(s) - c_1)(\mathcal{L}_1(s) - c_2) \cdots (\mathcal{L}_1(s) - c_n),$$

$$l_2(s) = (\mathcal{L}_2(s) - c_1)(\mathcal{L}_2(s) - c_2) \cdots (\mathcal{L}_2(s) - c_n).$$

Then $l_1(s)$, $l_2(s)$ share the values $a = (c - c_1)(c - c_2) \cdots (c - c_n) \neq 0$ and 0 with the weights k_1 and k_2 , respectively. Next, we consider the following two auxiliary functions:

$$F_1(s) = \frac{l'_1(s)}{l_1(s)} - \frac{l'_2(s)}{l_2(s)},$$
(2.13)

$$F_2(s) = \frac{l'_1(s)}{l_1(s) - a} - \frac{l'_2(s)}{l_2(s) - a}.$$
(2.14)

If $F_1(s) \equiv 0$, by integration, then we have $l_1(s) \equiv Al_2(s)$ from (2.13), where $A \neq 0$ is a constant. This implies that $l_1(s)$, $l_2(s)$ share the value 0 CM. From the definition of $l_i(s)$ (i = 1, 2), we deduce that $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ share the set $S = \{c_1, c_2, \ldots, c_n\}$ CM. By Theorem 1.3, $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$. If $F_2(s) \equiv 0$, from (2.14), we have $l_1(s) - a \equiv$ $A(l_2(s) - a)$. Since $l_1(s)$, $l_2(s)$ share the value 0 with weight k_2 , we have A = 1. Thus, $l_1(s) \equiv l_2(s)$. From the definition of $l_i(s)$ (i = 1, 2), we deduce that $\mathcal{L}_1(s)$ and $\mathcal{L}_2(s)$ share the set $S = \{c_1, c_2, \ldots, c_n\}$ CM and, by Theorem 1.3, we get $\mathcal{L}_1(s) \equiv \mathcal{L}_2(s)$. If $F_1(s) \neq 0$ and $F_2(s) \neq 0$, then we repeat the argument from the proof of Theorem 1.5 to reach the same conclusion. This completes the proof of Theorem 1.6.

References

- G. Frank and M. Reinders, 'A unique range set for meromorphic functions with 11 elements', *Complex Variables, Theory and Application* 37 (1998), 185–193.
- [2] H. Fujimoto, 'On uniqueness of meromorphic functions sharing finite sets', Amer. J. Math. 122 (2000), 1175–1203.
- [3] F. Gross, 'Factorization of meromorphic functions and some problems', in: *Complex Analysis (Proc. Conf. Univ. Kentucky, Lexington, KY, 1976)*, Lecture Notes in Mathematics, 599 (Springer, Berlin, 1977), 51–76.
- [4] W. K. Hayman, Meromorphic Functions (Oxford University Press, Oxford, 1964).
- [5] B. Q. Li, 'A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation', *Adv. Math.* **226** (2011), 4198–4211.
- [6] P. Li and C. C. Yang, 'On the unique range set of meromorphic functions', *Proc. Amer. Math. Soc.* 124 (1996), 177–185.

Uniqueness theorems for Dirichlet series

- [7] E. Mues and M. Reinders, 'Meromorphic functions sharing one value and unique range sets', *Kodai Math. J.* 18 (1995), 515–522.
- [8] J. Steuding, 'How many values can L-functions share?', Fiz. Mat. Fak. Moksl. Semin. Darb. 7 (2004), 70–81.
- [9] J. Steuding, *Value Distribution of L-Functions*, Lecture Notes in Mathematics, 1877 (Springer, Berlin, 2007).
- [10] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions (Science Press, Beijing, 2003).
- H. X. Yi, 'Uniqueness of meromorphic functions and a question of Gross', Sci. China Ser. A 24 (1994), 457–466.
- [12] H. X. Yi, 'Unicity theorems for meromorphic or entire functions II', Bull. Aust. Math. Soc. 52 (1995), 215–224.
- [13] H. X. Yi, 'On a question of Gross concerning uniqueness of entire functions', Bull. Aust. Math. Soc. 57 (1998), 343–349.

AI-DI WU, Department of Mathematics, Shandong University, Jinan 250100, Shandong Province, PR China e-mail: wadlrr@163.com

PEI-CHU HU, Department of Mathematics, Shandong University, Jinan 250100, Shandong Province, PR China e-mail: pchu@sdu.edu.cn