CONTINUITY OF THE HAUSDORFF DIMENSION FOR GRAPH-DIRECTED SYSTEMS

AMIT PRIYADARSHI

(Received 10 March 2016; accepted 27 April 2016; first published online 16 August 2016)

Abstract

In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces. We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously with the functions defining the generalised graph-directed system under suitable assumptions.

2010 Mathematics subject classification: primary 37F35; secondary 28A80, 37C30, 47B65.
Keywords and phrases: Hausdorff dimension, graph-directed systems, iterated function systems, positive operators, spectral radius.

1. Introduction

Given a generalised graph-directed iterated function system where the maps are contractions and 'infinitesimal similitudes', there is an associated invariant set list for the system (see [14]). The definitions and the precise results are given in the next section. We would like to emphasise that we work in the general setting of complete metric spaces rather than only Euclidean spaces. Graph-directed systems are generalisations of the well-known iterated function systems (IFSs). Such constructions have been studied by several authors (see, for example, [2-4, 10-12] and [15]). An IFS can be thought of as a graph-directed IFS with a single vertex. On the other hand, it is known (see [2]) that there are graph-directed IFSs whose invariant sets (or attractors) cannot be attractors of standard IFSs. Thus the study of graphdirected IFSs indeed gives something more than the study of IFSs. Hutchinson [6] has obtained results for the Hausdorff dimension of the invariant set for a finite IFS consisting of contractive similitudes on Euclidean space. He has shown that the Hausdorff dimension matches the 'similarity dimension' under the assumption of the 'open set condition'. Schief [18] has worked on IFSs consisting of similitudes on complete metric spaces and has shown that in this generality, the open set condition is no longer sufficient and must be strengthened to the 'strong open set condition'. Nussbaum et al. [14] have generalised the concept of similitudes to that of infinitesimal

[^0]similitudes on general metric spaces (a generalisation of conformal maps on Euclidean spaces), and have obtained a formula for the Hausdorff dimension of the invariant set for a generalised graph-directed IFS under appropriate disjointness assumptions.

In this paper we investigate how the Hausdorff dimensions of invariant sets vary if one varies the infinitesimal similitudes defining the generalised graph-directed IFS. If we consider IFSs defined by contractive similitudes, it is easy to see that the similarity dimensions (and hence the Hausdorff dimensions of the invariant sets, in the setting of Hutchinson [6]) vary continuously with the similarity ratios. We shall show that similar results are true in our general setting too. The precise statements and proofs are given in Section 3 of this paper.

The setting and conclusion of the main result (Theorem 3.3) are as follows. Let $(V, \mathcal{E}, \Gamma, \alpha)$ be a generalised directed graph with a sequence of graph-directed IFSs given by the maps $\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}, m \in \mathbb{N}$. Let σ_{m} be the Hausdorff dimension of each $C_{j, m}, 1 \leq j \leq p$, where $\left\{C_{j, m}: 1 \leq j \leq p\right\}$ denotes the unique invariant set list for the system $\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}$ (see (2.1)). For $(j, e) \in \Gamma$ and $x \in S_{j}$, assume that $\lim _{m \rightarrow \infty} \theta_{(j, e), m}(x)=\theta_{(j, e)}(x)$ and $\lim _{m \rightarrow \infty} D \theta_{(j, e), m}(x)=D \theta_{(j, e)}(x)$, where these limits define $\theta_{(j, e)}(x)$ and we assume that the convergences are uniform in $x \in S_{j}$. Let $\left\{C_{j}: 1 \leq j \leq p\right\}$ be the unique invariant set list for the system $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$. If σ_{0} denotes the Hausdorff dimension of each $C_{j}, 1 \leq j \leq p$, then $\sigma_{0}=\lim _{m \rightarrow \infty} \sigma_{m}$. In other words, the Hausdorff dimension of the invariant set list of the limiting graphdirected system given by the maps $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$ is the same as the limit of the Hausdorff dimension of the invariant set list of the systems $\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}, m \in \mathbb{N}$.

2. Preliminaries

We begin by recalling some definitions and notation from [14] for a 'generalised graph-directed IFS'. Throughout this paper, $V=\{j \in \mathbb{N}: 1 \leq j \leq p\}, \mathcal{E}$ is a finite set and $S_{j}, j \in V$, are bounded complete metric spaces. Let d_{j} denote the distance metric on S_{j}. Let Γ be a given subset of $V \times \mathcal{E}$ and $\alpha: \Gamma \rightarrow V$ given map. For each $(j, e) \in \Gamma$, let $\theta_{(j, e)}: S_{j} \rightarrow S_{\alpha(j, e)}$ be a Lipschitz map with the Lipschitz constant $\operatorname{Lip}\left(\theta_{(j, e)}\right) \leq c$ for a fixed positive constant $c<1$. We call $\left(V, \mathcal{E}, \Gamma, \alpha,\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}\right)$ a generalised graph-directed IFS. For $j \in V$, we shall consistently denote sets Γ_{j} and \mathcal{E}_{j} by

$$
\Gamma_{j}:=\{(k, e) \in \Gamma: \alpha(k, e)=j\}
$$

and

$$
\mathcal{E}_{j}:=\{e \in \mathcal{E}:(j, e) \in \Gamma\} .
$$

In the original construction of Mauldin and Williams [12] of a 'graph-directed IFS', V is the set of vertices and \mathcal{E} is the set of edges of a directed multigraph. Also, Γ is the collection of all $(t(e), e) \in V \times \mathcal{E}$, where $t(e)$ denotes the terminal vertex of the edge e and $\alpha(t(e), e)$ is the initial vertex of the edge e. Furthermore, \mathcal{E}_{j} is the collection of all edges with terminal vertex j and Γ_{j} is the collection of all $(t(e), e)$ for which j is the initial vertex of e. We refer the reader to [5, Ch. 4.3] for a discussion of the Mauldin-Williams graph.

Definition 2.1 (Hypothesis H2.1). We say that the generalised graph $(V, \mathcal{E}, \Gamma, \alpha)$ is strongly connected if for each pair j and k in V, there exist $n \geq 1$ and $(J, E):=$ $\left[\left(j_{1}, e_{1}\right), \ldots,\left(j_{n}, e_{n}\right)\right]$ such that $\left(j_{i}, e_{i}\right) \in \Gamma$ for $1 \leq i \leq n, j_{1}=j, \alpha\left(j_{i}, e_{i}\right)=j_{i+1}, 1 \leq i<n$, and $\alpha\left(j_{n}, e_{n}\right)=k$.

Note that for a directed multigraph, strong connectedness means that for any two vertices j and k there is a path (that is, a finite sequence of directed edges such that the terminal vertex of an edge is the initial vertex of the next edge) starting at j and terminating at k.

For a strongly connected generalised graph $(V, \mathcal{E}, \Gamma, \alpha)$, the sets Γ_{j} and \mathcal{E}_{j} are nonempty sets for each $j \in V$. For the directed multigraph, this means that for every vertex j there is an edge starting at j and there is an edge terminating at j.

Under the assumption of H 2.1 (in fact, one needs only to assume that Γ_{j} is nonempty for all $j \in V$), an application of the contraction mapping theorem gives the existence of a unique invariant set list for the system $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$, that is, a unique list of nonempty compact sets $C_{j} \subseteq S_{j}$ for $j \in V$ such that

$$
\begin{equation*}
C_{i}=\bigcup_{(j, e) \in \Gamma_{i}} \theta_{(j, e)}\left(C_{j}\right) \quad \forall i \in V \tag{2.1}
\end{equation*}
$$

See [14, Theorem 2.3] for a proof.
For $j \in V$, we denote by X_{j} the space of all continuous and bounded real-valued functions on S_{j}, that is,

$$
\begin{equation*}
X_{j}:=\left\{f: S_{j} \rightarrow \mathbb{R}: f \text { is continuous and bounded }\right\} \tag{2.2}
\end{equation*}
$$

This is a Banach space with $\|f\|=\sup _{s \in S_{j}}|f(s)|$. For $M>0, \lambda \geq 0$ and $j \in V$, define

$$
\begin{equation*}
K_{j}(M, \lambda):=\left\{f \in X_{j}: 0 \leq f(s) \leq f(t) \exp \left(M\left(d_{j}(s, t)\right)^{\lambda}\right) \forall s, t \in S_{j}\right\} \tag{2.3}
\end{equation*}
$$

If Y is a real Banach space, a closed set $K \subseteq Y$ is called a closed cone if $a K+b K \subseteq K$ for all $a \geq 0, b \geq 0$ and $K \cap(-K)=\{0\}$. It is not hard to prove the following lemma.

Lemma 2.2 ([14], Lemma 3.2). Let $K_{j}:=K_{j}(M, \lambda)$ be defined by (2.3) with $\lambda>0$. Then K_{j} is a closed cone in $\left(X_{j},\|\|.\right)$ and $\left\{f \in K_{j}:\|f\| \leq 1\right\}$ is equicontinuous.

Next, we need to define the concept of an infinitesimal similitude.
Definition 2.3. Let $\left(S_{1}, d_{1}\right)$ be a perfect metric space and let $\left(S_{2}, d_{2}\right)$ be any metric space. A map $\theta: S_{1} \rightarrow S_{2}$ is said to be an infinitesimal similitude at $s \in S_{1}$ if for any sequences $\left(s_{k}\right)_{k}$ and $\left(t_{k}\right)_{k}$ in S_{1} with $s_{k} \neq t_{k}$ for $k \geq 1$ and $s_{k} \rightarrow s, t_{k} \rightarrow s$, the limit

$$
\lim _{k \rightarrow \infty} \frac{d_{2}\left(\theta\left(s_{k}\right), \theta\left(t_{k}\right)\right)}{d_{1}\left(s_{k}, t_{k}\right)}=:(D \theta)(s)
$$

exists and is independent of the particular sequences $\left(s_{k}\right)_{k}$ and $\left(t_{k}\right)_{k}$. We shall say that θ is an infinitesimal similitude on S_{1} if θ is an infinitesimal similitude at s for all $s \in S_{1}$.

Remark 2.4. The concept of an infinitesimal similitude generalises the concept of a similitude, which is a map $\theta: S_{1} \rightarrow S_{2}$ satisfying $d_{2}(\theta(x), \theta(y))=c d_{1}(x, y)$ for all $x, y \in$ S_{1} and a fixed constant c. Note that every similitude $\theta: S_{1} \rightarrow S_{2}$ is an infinitesimal similitude with $(D \theta)(s)=c$ for all $s \in S_{1}$. Furthermore, if $\theta: S_{1} \rightarrow S_{2}$ is a Lipschitz map and also an infinitesimal similitude, then $(D \theta)(s) \leq \operatorname{Lip}(\theta)$ for all $s \in S_{1}$. Thus for an infinitesimal similitude $\theta: S_{1} \rightarrow S_{2}$ which is also a contraction map, $(D \theta)(s)<1$ for all $s \in S_{1}$. The idea of an 'infinitesimal similitude' allows us to extend the concept of 'conformality' to the more general metric space setting.
Definition 2.5 (Hypothesis H2.2). We say that a generalised strongly connected graphdirected IFS satisfies H2.2 if, for each $(j, e) \in \Gamma$, the map $\theta_{(j, e)}: S_{j} \rightarrow S_{\alpha(j, e)}$ is an infinitesimal similitude, $\left(D \theta_{(j, e)}\right)(s)>m>0$ for all $s \in S_{j}$ and the function $D \theta_{(j, e)}: S_{j} \rightarrow$ \mathbb{R} is Hölder continuous with Hölder exponent $\lambda>0$ for each $(j, e) \in \Gamma$.

Under Hypothesis H2.2, it can be shown that for each $(j, e) \in \Gamma$, the function $D \theta_{(j, e)}$ is in the cone $K_{j}\left(M_{0}, \lambda\right)$ defined by (2.3) for some $M_{0}>0$ (see [14, Lemma 4.5]).

For $\sigma \geq 0$, define the so-called Perron-Frobenius operator

$$
L_{\sigma}: \prod_{j=1}^{p} X_{j} \rightarrow \prod_{j=1}^{p} X_{j}
$$

by

$$
\begin{equation*}
\left(L_{\sigma} f\right)_{j}(s):=\sum_{e \in \mathcal{E}_{j}}\left(\left(D \theta_{(j, e)}\right)(s)\right)^{\sigma} f_{\alpha(j, e)}\left(\theta_{(j, e)}(s)\right) \quad \text { for } s \in S_{j}, 1 \leq j \leq p \tag{2.4}
\end{equation*}
$$

where X_{j} is the space in (2.2) and the norm on $\prod_{j=1}^{p} X_{j}$ is given by $\|f\|=\max _{1 \leq j \leq p}\left\|f_{j}\right\|$ if $f=\left(f_{1}, f_{2}, \ldots, f_{p}\right)$. Under the assumptions made in this section, it is easy to see that L_{σ} is a positive bounded linear operator (that is, $f_{j} \geq 0$ on $S_{j}, 1 \leq j \leq p$, implies that $\left(L_{\sigma} f\right)_{j} \geq 0$ on S_{j} for $1 \leq j \leq p$) and it maps the cone $K:=\prod_{j=1}^{p} K_{j}(M, \lambda)$ into itself for some $M>0$ (see [14, Lemma 3.3]). Furthermore, the linear operator L_{σ} has an eigenvector $u_{\sigma} \in K \backslash\{0\}$ with eigenvalue $r\left(L_{\sigma}\right)$, the spectral radius of L_{σ}, and $r\left(L_{\sigma}\right)>0$ (see [14, Theorem 3.6]). The proof involves generalisations of the KreĭnRutman theorem to noncompact linear operators (see [1, 7-9, 13, 16] and [17]). Let us recall that the spectral radius of a bounded linear operator L is given by $r(L)=\lim _{n \rightarrow \infty}\left\|L^{n}\right\|^{1 / n}$.

The following two propositions can be found in [14].
Proposition 2.6 ([14], Lemma 4.6). The map $\sigma \mapsto r\left(L_{\sigma}\right), \sigma \geq 0$, is continuous and monotonically decreasing. Furthermore, there is a unique $\sigma_{0} \geq 0$ such that $r\left(L_{\sigma_{0}}\right)=1$.
Proposition 2.7 ([14], Lemma 4.8). Assume that the hypotheses H 2.1 and H 2.2 are satisfied and let $u_{\sigma} \in K \backslash\{0\}$ be an eigenvector of L_{σ} with eigenvalue $r\left(L_{\sigma}\right)$. Then each component $\left(u_{\sigma}\right)_{j}$ is a strictly positive function on S_{j} for $1 \leq j \leq p$. Furthermore, there are constants l_{1} and l_{2} with $0<l_{1} \leq l_{2}<\infty$ such that for every $j, 1 \leq j \leq p$,

$$
\begin{equation*}
l_{1} \leq\left(u_{\sigma}\right)_{j}(t) \leq l_{2} \quad \text { for all } t \in S_{j} \tag{2.5}
\end{equation*}
$$

Lemma 2.8. Assume hypotheses H 2.1 and H 2.2 . Let $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right) \in \prod_{j=1}^{p} X_{j}$ be such that $l_{1} \leq u_{j} \leq l_{2}$ on S_{j}, $1 \leq j \leq p$, for some $0<l_{1} \leq l_{2}<\infty$. Then $\lim _{n \rightarrow \infty}\left\|L_{\sigma}^{n} u\right\|^{1 / n}=r\left(L_{\sigma}\right)$.

Proof. First, we prove that $\left\|L_{\sigma}^{n}\right\|=\left\|L_{\sigma}^{n} e\right\|$ for all $n \in \mathbb{N}$, where e denotes the function in $\prod_{j=1}^{p} X_{j}$ with each component identically equal to one. For $f=\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ and $g=\left(g_{1}, g_{2}, \ldots, g_{p}\right)$ we write $f \leq g$ to mean $f_{j} \leq g_{j}$ on S_{j} for $1 \leq j \leq p$. Since L_{σ} is a positive bounded linear operator, it follows that $L_{\sigma} f \leq L_{\sigma} g$ whenever $f \leq g$. If $f \in \prod_{j=1}^{p} X_{j}$ with $\|f\| \leq 1$, then $-e \leq f \leq e$. Thus $-L_{\sigma}^{n} e \leq L_{\sigma}^{n} f \leq L_{\sigma}^{n} e$, which implies that $\left\|L_{\sigma}^{n} f\right\| \leq\left\|L_{\sigma}^{n} e\right\|$. Taking the supremum over the set $\left\{f \in \prod_{j=1}^{p} X_{j}:\|f\| \leq 1\right\}$, we get $\left\|L_{\sigma}^{n}\right\| \leq\left\|L_{\sigma}^{n} e\right\|$. The reverse inequality obviously holds as $\|e\|=1$. Thus $\left\|L_{\sigma}^{n}\right\|=\left\|L_{\sigma}^{n} e\right\|$ for all $n \in \mathbb{N}$.

Now the assumption on the given function u can be rewritten as $l_{1} e \leq u \leq l_{2} e$ for some $0<l_{1} \leq l_{2}<\infty$. This implies $l_{1} L_{\sigma}^{n} e \leq L_{\sigma}^{n} u \leq l_{2} L_{\sigma}^{n} e$, for any $n \in \mathbb{N}$, which gives $l_{1}\left\|L_{\sigma}^{n} e\right\| \leq\left\|L_{\sigma}^{n} u\right\| \leq l_{2}\left\|L_{\sigma}^{n} e\right\|$. Using $\left\|L_{\sigma}^{n} e\right\|=\left\|L_{\sigma}^{n}\right\|$, we have $l_{1}\left\|L_{\sigma}^{n}\right\| \leq\left\|L_{\sigma}^{n} u\right\| \leq$ $l_{2}\left\|L_{\sigma}^{n}\right\|$. Taking the nth root and passing to the limit, we find $\lim _{n \rightarrow \infty}\left\|L_{\sigma}^{n} u\right\|^{1 / n}=$ $\lim _{n \rightarrow \infty}\left\|L_{\sigma}^{n}\right\|^{1 / n}=r\left(L_{\sigma}\right)$. This completes the proof.

Finally, we shall need the following important theorem about the Hausdorff dimension of the invariant set.

Theorem 2.9 ([14], Theorem 4.17). Assume that the hypotheses H 2.1 and H 2.2 are satisfied and let $C_{j} \subseteq S_{j}, 1 \leq j \leq p$, be the unique invariant set list such that

$$
C_{i}=\bigcup_{(j, e) \in \Gamma_{i}} \theta_{(j, e)}\left(C_{j}\right) \quad \text { for } 1 \leq i \leq p
$$

Also assume that $\theta_{(j, e)} \mid C_{j}$ is injective for all $(j, e) \in \Gamma$ and that $\theta_{(j, e)}\left(C_{j}\right) \cap \theta_{\left(j^{\prime}, e^{\prime}\right)}\left(C_{j^{\prime}}\right)$ is empty whenever $\alpha(j, e)=\alpha\left(j^{\prime}, e^{\prime}\right)$ and $(j, e) \neq\left(j^{\prime}, e^{\prime}\right)$. Let σ_{0} be the unique nonnegative real number such that $r\left(L_{\sigma_{0}}\right)=1$. Then the Hausdorff dimension of each $C_{i}, 1 \leq i \leq p$, is the same and equals σ_{0}.

3. Continuity of the Hausdorff dimension

We shall show that the Hausdorff dimension of the invariant set of a generalised graph-directed IFS varies continuously with the functions $\theta_{(j, e)},(j, e) \in \Gamma$ under the assumptions of Theorem 2.9. Let $(V, \mathcal{E}, \Gamma, \alpha)$ be a generalised directed graph and let $S_{1}, S_{2}, \ldots, S_{p}$ be bounded complete metric spaces. For each integer $m \geq 1$ and $(j, e) \in \Gamma$, suppose that $\theta_{(j, e), m}: S_{j} \rightarrow S_{\alpha(j, e)}$ is a Lipschitz map with $\operatorname{Lip}\left(\theta_{(j, e), m}\right) \leq c<1$. Assume that, for each $m \geq 1$, the graph-directed IFS ($\left.V, \mathcal{E}, \Gamma, \alpha,\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}\right)$ satisfies the assumptions of Theorem 2.9 and let σ_{m} be the Hausdorff dimension of each $C_{j, m}, 1 \leq j \leq p$, where $\left\{C_{j, m}: 1 \leq j \leq p\right\}$ denotes the unique invariant set list for the system $\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}$ (see (2.1)). For $(j, e) \in \Gamma$ and $x \in S_{j}$, assume that $\lim _{m \rightarrow \infty} \theta_{(j, e), m}(x)=\theta_{(j, e)}(x)$ and $\lim _{m \rightarrow \infty} D \theta_{(j, e), m}(x)=D \theta_{(j, e)}(x)$, where these limits define $\theta_{(j, e)}(x)$ and we assume that the convergences are uniform in $x \in S_{j}$. Assume that the system $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$ satisfies H 2.1 and H 2.2 and that $\left.\theta_{(j, e)}\right|_{C_{j}}$ is injective, where
$\left\{C_{j}: 1 \leq j \leq p\right\}$ denotes the unique invariant set list for the system $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$. For $\sigma \geq 0$, we have, in the obvious notation, linear operators $L_{\sigma, m}$ corresponding to $\left\{\theta_{(j, e), m}:(j, e) \in \Gamma\right\}$ and L_{σ} corresponding to $\left\{\theta_{(j, e)}:(j, e) \in \Gamma\right\}$ (see (2.4)). By Theorem 2.9, we know that $r\left(L_{\sigma_{m}, m}\right)=1$. Let σ_{0} denote the unique value of σ for which $r\left(L_{\sigma}\right)=1$. We shall show that $\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{0}$.

If K is a closed cone in a Banach space Y and $L: Y \rightarrow Y$ is a bounded linear operator with $L(K) \subseteq K$, we define

$$
\begin{equation*}
\|L\|_{K}=\sup \{\|L(y)\|: y \in K,\|y\| \leq 1\} . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The notations and assumptions are as given in this section. Let $\sigma \geq 0$ be fixed. Assume that there exist $M_{0}>0$ and $\lambda>0$ such that $D \theta_{(j, e), m} \in K_{j}\left(M_{0}, \lambda\right)$ and $D \theta_{(j, e)} \in K_{j}\left(M_{0}, \lambda\right)$ for all $(j, e) \in \Gamma$ and for all $m \in \mathbb{N}$. Choose $M>0$ such that the cone $K(M, \lambda)=\prod_{j=1}^{p} K_{j}(M, \lambda)$ in $\prod_{j=1}^{p} X_{j}$ is mapped into itself by the operators $L_{\sigma, m}$, $m \in \mathbb{N}$ and L_{σ}. Then $\left\|L_{\sigma, m}-L_{\sigma}\right\|_{K(M, \ell)} \rightarrow 0$ as $m \rightarrow \infty$.
Proof. Let $\epsilon>0$ be given and $1 \leq j \leq p$. By Lemma 2.2, $\left\{f_{j} \in K_{j}(M, \lambda):\left\|f_{j}\right\| \leq 1\right\}$ is equicontinuous. Therefore, we can find a $\delta>0$, independent of j, such that $d_{j}(s, t)<\delta$ implies $\left|f_{j}(s)-f_{j}(t)\right|<\epsilon$ for all $f_{j} \in K_{j}(M, \lambda)$ with $\left\|f_{j}\right\| \leq 1$. Suppose $f=\left(f_{1}, f_{2}, \ldots, f_{p}\right) \in K(M, \lambda),\|f\| \leq 1$ and let $(j, e) \in \Gamma$. Since $\theta_{(j, e), m} \rightarrow \theta_{(j, e)}$ and $D \theta_{(j, e), m} \rightarrow D \theta_{(j, e)}$ as $m \rightarrow \infty$, uniformly on S_{j}, there exists a positive integer m_{0} such that $d_{\alpha(j, e)}\left(\theta_{(j, e), m}(t), \theta_{(j, e)}(t)\right)<\delta$ and $\left|\left(D \theta_{(j, e), m}(t)\right)^{\sigma}-\left(D \theta_{(j, e)}(t)\right)^{\sigma}\right|<\epsilon$ for all $t \in S_{j}$ and $m \geq m_{0}$. This implies that $\left|f_{\alpha(j, e)}\left(\theta_{(j, e), m}(t)\right)-f_{\alpha(j, e)}\left(\theta_{(j, e)}(t)\right)\right|<\epsilon$ for every $t \in S_{j}$ and $m \geq m_{0}$. So, for $1 \leq j \leq p$ and $t \in S_{j}$,

$$
\begin{aligned}
& \left|\left(L_{\sigma, m} f\right)_{j}(t)-\left(L_{\sigma} f\right)_{j}(t)\right| \\
& \quad \leq \sum_{e \in \mathcal{E}_{j}}\left|\left(D \theta_{(j, e), m}(t)\right)^{\sigma} f_{\alpha(j, e)}\left(\theta_{(j, e), m}(t)\right)-\left(D \theta_{(j, e)}(t)\right)^{\sigma} f_{\alpha(j, e)}\left(\theta_{(j, e)}(t)\right)\right| \\
& \quad \leq \sum_{e \in \mathcal{E}_{j}}\left|\left(D \theta_{(j, e), m}(t)\right)^{\sigma}-\left(D \theta_{(j, e)}(t)\right)^{\sigma}\right|\left|f_{\alpha(j, e)}\left(\theta_{(j, e), m}(t)\right)\right| \\
& \quad \quad \quad \sum_{e \in \mathcal{E}_{j}}\left(D \theta_{(j, e)}(t)\right)^{\sigma}\left|f_{\alpha(j, e)}\left(\theta_{(j, e), m}(t)\right)-f_{\alpha(j, e)}\left(\theta_{(j, e)}(t)\right)\right| \\
& \quad \leq 2\left|\mathcal{E}_{j}\right| \epsilon \leq 2|\mathcal{E}| \epsilon
\end{aligned}
$$

for all $m \geq m_{0}$, where $\left|\mathcal{E}_{j}\right|$ is the cardinality of the set \mathcal{E}_{j} and $|\mathcal{E}|$ is the cardinality of the set \mathcal{E}. Using the definition in (3.1), we have $\left\|L_{\sigma, m}-L_{\sigma}\right\|_{K(M, \downarrow)} \leq 2|\mathcal{E}| \epsilon$ for all $m \geq m_{0}$. Since \mathcal{E} is a finite set and $\epsilon>0$ was arbitrary, we have proved that $\left\|L_{\sigma, m}-L_{\sigma}\right\|_{K(M, l)} \rightarrow 0$ as $m \rightarrow \infty$.
Lemma 3.2. The assumptions are as in the previous lemma. Then, for $\sigma \geq 0$, we have $r\left(L_{\sigma, m}\right) \rightarrow r\left(L_{\sigma}\right)$ as $m \rightarrow \infty$.

Proof. Let $u_{\sigma} \in K(M, \lambda) \backslash\{0\}$ be an eigenvector of L_{σ} with eigenvalue $r_{\sigma}:=r\left(L_{\sigma}\right)$. By Lemma 3.1, it follows that $\left\|L_{\sigma, m} u_{\sigma}-L_{\sigma} u_{\sigma}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Since $L_{\sigma} u_{\sigma}=r_{\sigma} u_{\sigma}$, $\left\|L_{\sigma, m} u_{\sigma}-r_{\sigma} u_{\sigma}\right\| \rightarrow 0$ as $m \rightarrow \infty$. By Proposition 2.7, there exists $l_{1}>0$ such that
$\left(u_{\sigma}\right)_{j}>l_{1}$ on S_{j} for $1 \leq j \leq p$. So, given $0<\delta<1$, there exists $m_{0}(\delta) \in \mathbb{N}$ such that $(1-\delta) r_{\sigma}\left(u_{\sigma}\right)_{j} \leq\left(L_{\sigma, m} u_{\sigma}\right)_{j} \leq(1+\delta) r_{\sigma}\left(u_{\sigma}\right)_{j}$ on S_{j} for all $m \geq m_{0}(\delta)$ and $1 \leq j \leq p$. That is, $(1-\delta) r_{\sigma} u_{\sigma} \leq L_{\sigma, m} u_{\sigma} \leq(1+\delta) r_{\sigma} u_{\sigma}$ for $m \geq m_{0}(\delta)$. Iterating this step, for $m \geq m_{0}(\delta),(1-\delta)^{n} r_{\sigma}^{n} u_{\sigma} \leq L_{\sigma, m}^{n} u_{\sigma} \leq(1+\delta)^{n} r_{\sigma}^{n} u_{\sigma}$ for all $n \in \mathbb{N}$. This implies that for every $n \in \mathbb{N},(1-\delta)^{n} r_{\sigma}^{n}\left\|u_{\sigma}\right\| \leq\left\|L_{\sigma, m}^{n} u_{\sigma}\right\| \leq(1+\delta)^{n} r_{\sigma}^{n}\left\|u_{\sigma}\right\|$ for all $m \geq m_{0}(\delta)$. Taking the nth root and taking the limit as $n \rightarrow \infty,(1-\delta) r_{\sigma} \leq \lim _{n \rightarrow \infty}\left\|L_{\sigma, m}^{n} u_{\sigma}\right\|^{1 / n} \leq(1+\delta) r_{\sigma}$ for $m \geq m_{0}(\delta)$. From Lemma 2.8 and Proposition 2.7, $(1-\delta) r_{\sigma} \leq r\left(L_{\sigma, m}\right) \leq(1+\delta) r_{\sigma}$ for $m \geq m_{0}(\delta)$. Since $0<\delta<1$ was arbitrary,

$$
r_{\sigma} \leq \liminf _{m \rightarrow \infty} r\left(L_{\sigma, m}\right) \leq \limsup _{m \rightarrow \infty} r\left(L_{\sigma, m}\right) \leq r_{\sigma} \quad \text { and } \quad \lim _{m \rightarrow \infty} r\left(L_{\sigma, m}\right)=r\left(L_{\sigma}\right) .
$$

Theorem 3.3. The assumptions are as given in this section. Suppose that $r\left(L_{\sigma_{m}, m}\right)=1$ for $m \geq 1$ and $r\left(L_{\sigma_{0}}\right)=1$. Then $\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{0}$. Furthermore, if we also assume that $\theta_{(j, e)}\left(C_{j}\right) \cap \theta_{\left(j^{\prime}, e^{\prime}\right)}\left(C_{j^{\prime}}\right)=\emptyset$ whenever $(j, e) \neq\left(j^{\prime}, e^{\prime}\right)$ and $\alpha(j, e)=\alpha\left(j^{\prime}, e^{\prime}\right)$, then, for $1 \leq j \leq p$, the Hausdorff dimension of C_{j} is the limit of the Hausdorff dimension of $C_{j, m}$ as $m \rightarrow \infty$.

Proof. We argue by contradiction. Suppose that $\lim _{m \rightarrow \infty} \sigma_{m} \neq \sigma_{0}$. Then there exist $\delta>0$ and a subsequence $\left\{m_{i}\right\}_{i \geq 1}$ such that either $\sigma_{m_{i}}>\sigma_{0}+\delta$ for all $i \geq 1$ or $\sigma_{m_{i}}<\sigma_{0}-\delta$ for all $i \geq 1$. Assume $\sigma_{m_{i}}>\sigma_{0}+\delta$ for all $i \geq 1$. Then by the strictly decreasing property (Proposition 2.6), $r\left(L_{\sigma_{m_{i}}, m_{i}}\right)<r\left(L_{\sigma_{0}+\delta, m_{i}}\right)$ for all $i \geq 1$. By Lemma 3.2, $\lim _{i \rightarrow \infty} r\left(L_{\sigma_{0}+\delta, m_{i}}\right)=r\left(L_{\sigma_{0}+\delta}\right)$, which is strictly less than $r\left(L_{\sigma_{0}}\right)=1$. On the other hand, $r\left(L_{\sigma_{m_{i}}, m_{i}}\right)=1$ for all $i \geq 1$, which gives $r\left(L_{\sigma_{0}+\delta}\right) \geq 1$. Thus we arrive at a contradiction. Similarly, $\sigma_{m_{i}}<\sigma_{0}-\delta$ for all $i \geq 1$ leads to a contradiction. Hence we must have $\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{0}$.

If we further assume that $\theta_{(j, e)}\left(C_{j}\right) \cap \theta_{\left(j^{\prime}, e^{\prime}\right)}\left(C_{j^{\prime}}\right)=\emptyset$ whenever $(j, e) \neq\left(j^{\prime}, e^{\prime}\right)$ and $\alpha(j, e)=\alpha\left(j^{\prime}, e^{\prime}\right)$, then Theorem 2.9 implies that σ_{0} is the Hausdorff dimension of C_{j} for $1 \leq j \leq p$. We already know that σ_{m} is the Hausdorff dimension of $C_{j, m}$. Thus $\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{0}$ implies that the Hausdorff dimension of C_{j} is the limit of the Hausdorff dimension of $C_{j, m}$ as $m \rightarrow \infty$.

Remark 3.4. If we could allow some overlap in Theorem 2.9, for instance, if Theorem 2.9 is true under the open set condition or the strong open set condition (in the context of graph-directed systems on Euclidean spaces or graph-directed systems given by similitudes), then the first half of Theorem 3.3 still gives the continuity of the Hausdorff dimension.

References

[1] F. F. Bonsall, 'Linear operators in complete positive cones', Proc. Lond. Math. Soc. (3) 8 (1958), 53-75.
[2] G. C. Boore and K. J. Falconer, 'Attractors of directed graph IFSs that are not standard IFS attractors and their Hausdorff measure', Math. Proc. Cambridge Philos. Soc. 154(2) (2013), 325-349.
[3] M. Das, 'Contraction ratios for graph-directed iterated constructions', Proc. Amer. Math. Soc. 134(2) (2006), 435-442; (electronic).
[4] M. Das and G. A. Edgar, 'Separation properties for graph-directed self-similar fractals', Topology Appl. 152(1-2) (2005), 138-156.
[5] G. Edgar, Measure, Topology, and Fractal Geometry, 2nd edn, Undergraduate Texts in Mathematics (Springer, New York, 2008).
[6] J. E. Hutchinson, 'Fractals and self-similarity', Indiana Univ. Math. J. 30(5) (1981), 713-747.
[7] M. G. Kreĭn and M. A. Rutman, 'Linear operators leaving invariant a cone in a Banach space', Amer. Math. Soc. Transl. 1950(26) (1950), 1-128.
[8] J. Mallet-Paret and R. D. Nussbaum, 'Eigenvalues for a class of homogeneous cone maps arising from max-plus operators', Discrete Contin. Dyn. Syst. 8(3) (2002), 519-562.
[9] J. Mallet-Paret and R. D. Nussbaum, 'Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index', J. Fixed Point Theory Appl. 7(1) (2010), 103-143.
[10] R. D. Mauldin, T. Szarek and M. Urbański, 'Graph directed Markov systems on Hilbert spaces’, Math. Proc. Cambridge Philos. Soc. 147(2) (2009), 455-488.
[11] R. D. Mauldin and M. Urbański, 'Geometry and dynamics of limit sets', in: Graph Directed Markov Systems, Cambridge Tracts in Mathematics, 148 (Cambridge University Press, Cambridge, 2003).
[12] R. D. Mauldin and S. C. Williams, 'Hausdorff dimension in graph directed constructions', Trans. Amer. Math. Soc. 309(2) (1988), 811-829.
[13] R. D. Nussbaum, 'Eigenvectors of nonlinear positive operators and the linear Kreı̆n-Rutman theorem', in: Fixed Point Theory, Proc. Int. Conf., Sherbrooke, QC, 1980, Lecture Notes in Mathematics, 886 (Springer, Berlin-New York, 1981), 309-330.
[14] R. D. Nussbaum, A. Priyadarshi and S. Verduyn Lunel, 'Positive operators and Hausdorff dimension of invariant sets', Trans. Amer. Math. Soc. 364(2) (2012), 1029-1066.
[15] M. Roy, 'A new variation of Bowen's formula for graph directed Markov systems', Discrete Contin. Dyn. Syst. 32(7) (2012), 2533-2551.
[16] H. H. Schaefer, Banach Lattices and Positive Operators (Springer, New York-Heidelberg, 1974).
[17] H. H. Schaefer and M. P. Wolff, Topological Vector Spaces, 2nd edn, Graduate Texts in Mathematics, 3 (Springer, New York, 1999).
[18] A. Schief, 'Self-similar sets in complete metric spaces', Proc. Amer. Math. Soc. 124(2) (1996), 481-490.

AMIT PRIYADARSHI, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas,
New Delhi-110016, India
e-mail: priyadarshi@maths.iitd.ac.in

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

