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Abstract

In this paper we discuss the continuity of the Hausdorff dimension of the invariant set of generalised
graph-directed systems given by contractive infinitesimal similitudes on bounded complete metric spaces.
We use the theory of positive linear operators to show that the Hausdorff dimension varies continuously
with the functions defining the generalised graph-directed system under suitable assumptions.
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1. Introduction

Given a generalised graph-directed iterated function system where the maps are
contractions and ‘infinitesimal similitudes’, there is an associated invariant set list
for the system (see [14]). The definitions and the precise results are given in the
next section. We would like to emphasise that we work in the general setting of
complete metric spaces rather than only Euclidean spaces. Graph-directed systems are
generalisations of the well-known iterated function systems (IFSs). Such constructions
have been studied by several authors (see, for example, [2–4, 10–12] and [15]).
An IFS can be thought of as a graph-directed IFS with a single vertex. On the
other hand, it is known (see [2]) that there are graph-directed IFSs whose invariant
sets (or attractors) cannot be attractors of standard IFSs. Thus the study of graph-
directed IFSs indeed gives something more than the study of IFSs. Hutchinson [6]
has obtained results for the Hausdorff dimension of the invariant set for a finite IFS
consisting of contractive similitudes on Euclidean space. He has shown that the
Hausdorff dimension matches the ‘similarity dimension’ under the assumption of the
‘open set condition’. Schief [18] has worked on IFSs consisting of similitudes on
complete metric spaces and has shown that in this generality, the open set condition
is no longer sufficient and must be strengthened to the ‘strong open set condition’.
Nussbaum et al. [14] have generalised the concept of similitudes to that of infinitesimal
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similitudes on general metric spaces (a generalisation of conformal maps on Euclidean
spaces), and have obtained a formula for the Hausdorff dimension of the invariant set
for a generalised graph-directed IFS under appropriate disjointness assumptions.

In this paper we investigate how the Hausdorff dimensions of invariant sets vary if
one varies the infinitesimal similitudes defining the generalised graph-directed IFS. If
we consider IFSs defined by contractive similitudes, it is easy to see that the similarity
dimensions (and hence the Hausdorff dimensions of the invariant sets, in the setting
of Hutchinson [6]) vary continuously with the similarity ratios. We shall show that
similar results are true in our general setting too. The precise statements and proofs
are given in Section 3 of this paper.

The setting and conclusion of the main result (Theorem 3.3) are as follows. Let
(V, E, Γ, α) be a generalised directed graph with a sequence of graph-directed IFSs
given by the maps {θ( j,e),m : ( j, e) ∈ Γ}, m ∈ N. Let σm be the Hausdorff dimension
of each C j,m, 1 ≤ j ≤ p, where {C j,m : 1 ≤ j ≤ p} denotes the unique invariant set
list for the system {θ( j,e),m : ( j, e) ∈ Γ} (see (2.1)). For ( j, e) ∈ Γ and x ∈ Sj, assume
that limm→∞ θ( j,e),m(x) = θ( j,e)(x) and limm→∞ Dθ( j,e),m(x) = Dθ( j,e)(x), where these limits
define θ( j,e)(x) and we assume that the convergences are uniform in x ∈ Sj. Let
{C j : 1 ≤ j ≤ p} be the unique invariant set list for the system {θ( j,e) : ( j, e) ∈ Γ}. If
σ0 denotes the Hausdorff dimension of each C j, 1 ≤ j ≤ p, then σ0 = limm→∞ σm. In
other words, the Hausdorff dimension of the invariant set list of the limiting graph-
directed system given by the maps {θ( j,e) : ( j, e) ∈ Γ} is the same as the limit of the
Hausdorff dimension of the invariant set list of the systems {θ( j,e),m : ( j, e) ∈ Γ}, m ∈ N.

2. Preliminaries

We begin by recalling some definitions and notation from [14] for a ‘generalised
graph-directed IFS’. Throughout this paper, V = { j ∈ N : 1 ≤ j ≤ p}, E is a finite set
and Sj, j ∈ V , are bounded complete metric spaces. Let d j denote the distance metric
on Sj. Let Γ be a given subset of V × E and α : Γ→ V a given map. For each ( j, e) ∈ Γ,
let θ( j,e) : Sj → S α( j,e) be a Lipschitz map with the Lipschitz constant Lip(θ( j,e)) ≤ c for
a fixed positive constant c < 1. We call (V, E, Γ, α, {θ( j,e) : ( j, e) ∈ Γ}) a generalised
graph-directed IFS. For j ∈ V , we shall consistently denote sets Γ j and E j by

Γ j := {(k, e) ∈ Γ : α(k, e) = j}

and
E j := {e ∈ E : ( j, e) ∈ Γ}.

In the original construction of Mauldin and Williams [12] of a ‘graph-directed IFS’, V
is the set of vertices and E is the set of edges of a directed multigraph. Also, Γ is the
collection of all (t(e), e) ∈ V × E, where t(e) denotes the terminal vertex of the edge
e and α(t(e), e) is the initial vertex of the edge e. Furthermore, E j is the collection
of all edges with terminal vertex j and Γ j is the collection of all (t(e), e) for which j
is the initial vertex of e. We refer the reader to [5, Ch. 4.3] for a discussion of the
Mauldin–Williams graph.
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Definition 2.1 (Hypothesis H2.1). We say that the generalised graph (V, E, Γ, α) is
strongly connected if for each pair j and k in V , there exist n ≥ 1 and (J, E) :=
[( j1, e1), . . . , ( jn, en)] such that ( ji, ei) ∈ Γ for 1 ≤ i ≤ n, j1 = j, α( ji, ei) = ji+1, 1 ≤ i < n,
and α( jn, en) = k.

Note that for a directed multigraph, strong connectedness means that for any two
vertices j and k there is a path (that is, a finite sequence of directed edges such that
the terminal vertex of an edge is the initial vertex of the next edge) starting at j and
terminating at k.

For a strongly connected generalised graph (V, E, Γ, α), the sets Γ j and E j are
nonempty sets for each j ∈ V . For the directed multigraph, this means that for every
vertex j there is an edge starting at j and there is an edge terminating at j.

Under the assumption of H2.1 (in fact, one needs only to assume that Γ j is nonempty
for all j ∈ V), an application of the contraction mapping theorem gives the existence
of a unique invariant set list for the system {θ( j,e) : ( j, e) ∈ Γ}, that is, a unique list of
nonempty compact sets C j ⊆ Sj for j ∈ V such that

Ci =
⋃

( j,e)∈Γi

θ( j,e)(C j) ∀i ∈ V. (2.1)

See [14, Theorem 2.3] for a proof.
For j ∈ V , we denote by X j the space of all continuous and bounded real-valued

functions on Sj, that is,

X j := { f : Sj → R : f is continuous and bounded}. (2.2)

This is a Banach space with ‖ f ‖ = sups∈Sj
| f (s)|. For M > 0, λ ≥ 0 and j ∈ V , define

K j(M, λ) := { f ∈ X j : 0 ≤ f (s) ≤ f (t) exp(M(d j(s, t))λ) ∀s, t ∈ Sj}. (2.3)

If Y is a real Banach space, a closed set K ⊆ Y is called a closed cone if aK + bK ⊆ K
for all a ≥ 0, b ≥ 0 and K ∩ (−K) = {0}. It is not hard to prove the following lemma.

Lemma 2.2 ([14], Lemma 3.2). Let K j := K j(M, λ) be defined by (2.3) with λ > 0. Then
K j is a closed cone in (X j, ‖.‖) and { f ∈ K j : ‖ f ‖ ≤ 1} is equicontinuous.

Next, we need to define the concept of an infinitesimal similitude.

Definition 2.3. Let (S1, d1) be a perfect metric space and let (S2, d2) be any metric
space. A map θ : S1 → S2 is said to be an infinitesimal similitude at s ∈ S1 if for any
sequences (sk)k and (tk)k in S1 with sk , tk for k ≥ 1 and sk → s, tk → s, the limit

lim
k→∞

d2(θ(sk), θ(tk))
d1(sk, tk)

=: (Dθ)(s)

exists and is independent of the particular sequences (sk)k and (tk)k. We shall say that θ
is an infinitesimal similitude on S1 if θ is an infinitesimal similitude at s for all s ∈ S1.
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Remark 2.4. The concept of an infinitesimal similitude generalises the concept of a
similitude, which is a map θ : S1 → S2 satisfying d2(θ(x), θ(y)) = cd1(x, y) for all x, y ∈
S1 and a fixed constant c. Note that every similitude θ : S1 → S2 is an infinitesimal
similitude with (Dθ)(s) = c for all s ∈ S1. Furthermore, if θ : S1 → S2 is a Lipschitz
map and also an infinitesimal similitude, then (Dθ)(s) ≤ Lip(θ) for all s ∈ S1. Thus for
an infinitesimal similitude θ : S1 → S2 which is also a contraction map, (Dθ)(s) < 1 for
all s ∈ S1. The idea of an ‘infinitesimal similitude’ allows us to extend the concept of
‘conformality’ to the more general metric space setting.

Definition 2.5 (Hypothesis H2.2). We say that a generalised strongly connected graph-
directed IFS satisfies H2.2 if, for each ( j, e) ∈ Γ, the map θ( j,e) : Sj → S α( j,e) is an
infinitesimal similitude, (Dθ( j,e))(s) > m > 0 for all s ∈ Sj and the function Dθ( j,e) : Sj→

R is Hölder continuous with Hölder exponent λ > 0 for each ( j, e) ∈ Γ.

Under Hypothesis H2.2, it can be shown that for each ( j, e) ∈ Γ, the function Dθ( j,e)
is in the cone K j(M0, λ) defined by (2.3) for some M0 > 0 (see [14, Lemma 4.5]).

For σ ≥ 0, define the so-called Perron–Frobenius operator

Lσ :
p∏

j=1

X j →

p∏
j=1

X j

by

(Lσ f ) j(s) :=
∑
e∈E j

((Dθ( j,e))(s))σ fα( j,e)(θ( j,e)(s)) for s ∈ Sj, 1 ≤ j ≤ p, (2.4)

where X j is the space in (2.2) and the norm on
∏p

j=1 X j is given by ‖ f ‖ = max1≤ j≤p ‖ f j‖

if f = ( f1, f2, . . . , fp). Under the assumptions made in this section, it is easy to see
that Lσ is a positive bounded linear operator (that is, f j ≥ 0 on Sj, 1 ≤ j ≤ p, implies
that (Lσ f ) j ≥ 0 on Sj for 1 ≤ j ≤ p) and it maps the cone K :=

∏p
j=1 K j(M, λ) into

itself for some M > 0 (see [14, Lemma 3.3]). Furthermore, the linear operator Lσ
has an eigenvector uσ ∈ K \ {0} with eigenvalue r(Lσ), the spectral radius of Lσ, and
r(Lσ) > 0 (see [14, Theorem 3.6]). The proof involves generalisations of the Kreı̆n–
Rutman theorem to noncompact linear operators (see [1, 7–9, 13, 16] and [17]).
Let us recall that the spectral radius of a bounded linear operator L is given by
r(L) = limn→∞ ‖Ln‖1/n.

The following two propositions can be found in [14].

Proposition 2.6 ([14], Lemma 4.6). The map σ 7→ r(Lσ), σ ≥ 0, is continuous and
monotonically decreasing. Furthermore, there is a unique σ0 ≥ 0 such that r(Lσ0 ) = 1.

Proposition 2.7 ([14], Lemma 4.8). Assume that the hypotheses H2.1 and H2.2 are
satisfied and let uσ ∈ K \ {0} be an eigenvector of Lσ with eigenvalue r(Lσ). Then each
component (uσ) j is a strictly positive function on Sj for 1 ≤ j ≤ p. Furthermore, there
are constants l1 and l2 with 0 < l1 ≤ l2 <∞ such that for every j, 1 ≤ j ≤ p,

l1 ≤ (uσ) j(t) ≤ l2 for all t ∈ Sj. (2.5)
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Lemma 2.8. Assume hypotheses H2.1 and H2.2. Let u = (u1, u2, . . . , up) ∈
∏p

j=1 X j

be such that l1 ≤ u j ≤ l2 on Sj, 1 ≤ j ≤ p, for some 0 < l1 ≤ l2 < ∞. Then
limn→∞ ‖Ln

σu‖1/n = r(Lσ).

Proof. First, we prove that ‖Ln
σ‖ = ‖Ln

σe‖ for all n ∈ N, where e denotes the function
in
∏p

j=1 X j with each component identically equal to one. For f = ( f1, f2, . . . , fp) and
g = (g1, g2, . . . , gp) we write f ≤ g to mean f j ≤ g j on Sj for 1 ≤ j ≤ p. Since Lσ
is a positive bounded linear operator, it follows that Lσ f ≤ Lσg whenever f ≤ g. If
f ∈
∏p

j=1 X j with ‖ f ‖ ≤ 1, then −e ≤ f ≤ e. Thus −Ln
σe ≤ Ln

σ f ≤ Ln
σe, which implies

that ‖Ln
σ f ‖ ≤ ‖Ln

σe‖. Taking the supremum over the set { f ∈
∏p

j=1 X j : ‖ f ‖ ≤ 1}, we get
‖Ln

σ‖ ≤ ‖L
n
σe‖. The reverse inequality obviously holds as ‖e‖ = 1. Thus ‖Ln

σ‖ = ‖Ln
σe‖

for all n ∈ N.
Now the assumption on the given function u can be rewritten as l1e ≤ u ≤ l2e

for some 0 < l1 ≤ l2 < ∞. This implies l1Ln
σe ≤ Ln

σu ≤ l2Ln
σe, for any n ∈ N, which

gives l1‖Ln
σe‖ ≤ ‖Ln

σu‖ ≤ l2‖Ln
σe‖. Using ‖Ln

σe‖ = ‖Ln
σ‖, we have l1‖Ln

σ‖ ≤ ‖L
n
σu‖ ≤

l2‖Ln
σ‖. Taking the nth root and passing to the limit, we find limn→∞ ‖Ln

σu‖1/n =

limn→∞ ‖Ln
σ‖

1/n = r(Lσ). This completes the proof. �

Finally, we shall need the following important theorem about the Hausdorff
dimension of the invariant set.

Theorem 2.9 ([14], Theorem 4.17). Assume that the hypotheses H2.1 and H2.2 are
satisfied and let C j ⊆ Sj, 1 ≤ j ≤ p, be the unique invariant set list such that

Ci =
⋃

( j,e)∈Γi

θ( j,e)(C j) for 1 ≤ i ≤ p.

Also assume that θ( j,e)|C j is injective for all ( j, e) ∈ Γ and that θ( j,e)(C j) ∩ θ( j′,e′)(C j′) is
empty whenever α( j, e) = α( j′, e′) and ( j, e) , ( j′, e′). Letσ0 be the unique nonnegative
real number such that r(Lσ0 ) = 1. Then the Hausdorff dimension of each Ci, 1 ≤ i ≤ p,
is the same and equals σ0.

3. Continuity of the Hausdorff dimension

We shall show that the Hausdorff dimension of the invariant set of a generalised
graph-directed IFS varies continuously with the functions θ( j,e), ( j, e) ∈ Γ under the
assumptions of Theorem 2.9. Let (V, E, Γ, α) be a generalised directed graph and
let S1, S2, . . . , Sp be bounded complete metric spaces. For each integer m ≥ 1 and
( j, e) ∈ Γ, suppose that θ( j,e),m : Sj → S α( j,e) is a Lipschitz map with Lip(θ( j,e),m) ≤ c < 1.
Assume that, for each m ≥ 1, the graph-directed IFS (V, E, Γ, α, {θ( j,e),m : ( j, e) ∈ Γ})
satisfies the assumptions of Theorem 2.9 and let σm be the Hausdorff dimension
of each C j,m, 1 ≤ j ≤ p, where {C j,m : 1 ≤ j ≤ p} denotes the unique invariant set
list for the system {θ( j,e),m : ( j, e) ∈ Γ} (see (2.1)). For ( j, e) ∈ Γ and x ∈ Sj, assume
that limm→∞ θ( j,e),m(x) = θ( j,e)(x) and limm→∞ Dθ( j,e),m(x) = Dθ( j,e)(x), where these limits
define θ( j,e)(x) and we assume that the convergences are uniform in x ∈ Sj. Assume that
the system {θ( j,e) : ( j, e) ∈ Γ} satisfies H2.1 and H2.2 and that θ( j,e)|C j is injective, where
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{C j : 1 ≤ j ≤ p} denotes the unique invariant set list for the system {θ( j,e) : ( j, e) ∈ Γ}.
For σ ≥ 0, we have, in the obvious notation, linear operators Lσ,m corresponding
to {θ( j,e),m : ( j, e) ∈ Γ} and Lσ corresponding to {θ( j,e) : ( j, e) ∈ Γ} (see (2.4)). By
Theorem 2.9, we know that r(Lσm,m) = 1. Let σ0 denote the unique value of σ for
which r(Lσ) = 1. We shall show that limm→∞ σm = σ0.

If K is a closed cone in a Banach space Y and L : Y → Y is a bounded linear operator
with L(K) ⊆ K, we define

‖L‖K = sup{‖L(y)‖ : y ∈ K, ‖y‖ ≤ 1}. (3.1)

Lemma 3.1. The notations and assumptions are as given in this section. Let σ ≥ 0 be
fixed. Assume that there exist M0 > 0 and λ > 0 such that Dθ( j,e),m ∈ K j(M0, λ) and
Dθ( j,e) ∈ K j(M0, λ) for all ( j, e) ∈ Γ and for all m ∈ N. Choose M > 0 such that the
cone K(M, λ) =

∏p
j=1 K j(M, λ) in

∏p
j=1 X j is mapped into itself by the operators Lσ,m,

m ∈ N and Lσ. Then ‖Lσ,m − Lσ‖K(M,λ) → 0 as m→∞.

Proof. Let ε > 0 be given and 1 ≤ j ≤ p. By Lemma 2.2, { f j ∈ K j(M, λ) : ‖ f j‖ ≤ 1}
is equicontinuous. Therefore, we can find a δ > 0, independent of j, such that
d j(s, t) < δ implies | f j(s) − f j(t)| < ε for all f j ∈ K j(M, λ) with ‖ f j‖ ≤ 1. Suppose
f = ( f1, f2, . . . , fp) ∈ K(M, λ), ‖ f ‖ ≤ 1 and let ( j, e) ∈ Γ. Since θ( j,e),m → θ( j,e) and
Dθ( j,e),m → Dθ( j,e) as m→∞, uniformly on Sj, there exists a positive integer m0 such
that dα( j,e)(θ( j,e),m(t), θ( j,e)(t)) < δ and |(Dθ( j,e),m(t))σ − (Dθ( j,e)(t))σ| < ε for all t ∈ Sj and
m ≥ m0. This implies that | fα( j,e)(θ( j,e),m(t)) − fα( j,e)(θ( j,e)(t))| < ε for every t ∈ Sj and
m ≥ m0. So, for 1 ≤ j ≤ p and t ∈ Sj,

|(Lσ,m f ) j(t) − (Lσ f ) j(t)|

≤
∑
e∈E j

|(Dθ( j,e),m(t))σ fα( j,e)(θ( j,e),m(t)) − (Dθ( j,e)(t))σ fα( j,e)(θ( j,e)(t))|

≤
∑
e∈E j

|(Dθ( j,e),m(t))σ − (Dθ( j,e)(t))σ| | fα( j,e)(θ( j,e),m(t))|

+
∑
e∈E j

(Dθ( j,e)(t))σ| fα( j,e)(θ( j,e),m(t)) − fα( j,e)(θ( j,e)(t))|

≤ 2|E j|ε ≤ 2|E|ε

for all m ≥ m0, where |E j| is the cardinality of the set E j and |E| is the cardinality
of the set E. Using the definition in (3.1), we have ‖Lσ,m − Lσ‖K(M,λ) ≤ 2|E|ε for
all m ≥ m0. Since E is a finite set and ε > 0 was arbitrary, we have proved that
‖Lσ,m − Lσ‖K(M,λ) → 0 as m→∞. �

Lemma 3.2. The assumptions are as in the previous lemma. Then, for σ ≥ 0, we have
r(Lσ,m)→ r(Lσ) as m→∞.

Proof. Let uσ ∈ K(M, λ) \ {0} be an eigenvector of Lσ with eigenvalue rσ := r(Lσ).
By Lemma 3.1, it follows that ‖Lσ,muσ − Lσuσ‖ → 0 as m→∞. Since Lσuσ = rσuσ,
‖Lσ,muσ − rσuσ‖ → 0 as m→ ∞. By Proposition 2.7, there exists l1 > 0 such that
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(uσ) j > l1 on Sj for 1 ≤ j ≤ p. So, given 0 < δ < 1, there exists m0(δ) ∈ N such that
(1 − δ)rσ(uσ) j ≤ (Lσ,muσ) j ≤ (1 + δ)rσ(uσ) j on Sj for all m ≥ m0(δ) and 1 ≤ j ≤ p.
That is, (1 − δ)rσuσ ≤ Lσ,muσ ≤ (1 + δ)rσuσ for m ≥ m0(δ). Iterating this step, for
m ≥ m0(δ), (1 − δ)nrn

σuσ ≤ Ln
σ,muσ ≤ (1 + δ)nrn

σuσ for all n ∈ N. This implies that for
every n ∈ N, (1 − δ)nrn

σ‖uσ‖ ≤ ‖L
n
σ,muσ‖ ≤ (1 + δ)nrn

σ‖uσ‖ for all m ≥ m0(δ). Taking the
nth root and taking the limit as n→∞, (1 − δ)rσ ≤ limn→∞ ‖Ln

σ,muσ‖1/n ≤ (1 + δ)rσ for
m ≥ m0(δ). From Lemma 2.8 and Proposition 2.7, (1 − δ)rσ ≤ r(Lσ,m) ≤ (1 + δ)rσ for
m ≥ m0(δ). Since 0 < δ < 1 was arbitrary,

rσ ≤ lim inf
m→∞

r(Lσ,m) ≤ lim sup
m→∞

r(Lσ,m) ≤ rσ and lim
m→∞

r(Lσ,m) = r(Lσ). �

Theorem 3.3. The assumptions are as given in this section. Suppose that r(Lσm,m) = 1
for m ≥ 1 and r(Lσ0 ) = 1. Then limm→∞ σm = σ0. Furthermore, if we also assume
that θ( j,e)(C j) ∩ θ( j′,e′)(C j′) = ∅ whenever ( j, e) , ( j′, e′) and α( j, e) = α( j′, e′), then, for
1 ≤ j ≤ p, the Hausdorff dimension of C j is the limit of the Hausdorff dimension of
C j,m as m→∞.

Proof. We argue by contradiction. Suppose that limm→∞ σm , σ0. Then there
exist δ > 0 and a subsequence {mi}i≥1 such that either σmi > σ0 + δ for all i ≥ 1
or σmi < σ0 − δ for all i ≥ 1. Assume σmi > σ0 + δ for all i ≥ 1. Then by the
strictly decreasing property (Proposition 2.6), r(Lσmi ,mi ) < r(Lσ0+δ,mi ) for all i ≥ 1. By
Lemma 3.2, limi→∞ r(Lσ0+δ,mi ) = r(Lσ0+δ), which is strictly less than r(Lσ0 ) = 1. On
the other hand, r(Lσmi ,mi ) = 1 for all i ≥ 1, which gives r(Lσ0+δ) ≥ 1. Thus we arrive at
a contradiction. Similarly, σmi < σ0 − δ for all i ≥ 1 leads to a contradiction. Hence
we must have limm→∞ σm = σ0.

If we further assume that θ( j,e)(C j) ∩ θ( j′,e′)(C j′) = ∅ whenever ( j, e) , ( j′, e′) and
α( j, e) = α( j′, e′), then Theorem 2.9 implies that σ0 is the Hausdorff dimension of
C j for 1 ≤ j ≤ p. We already know that σm is the Hausdorff dimension of C j,m.
Thus limm→∞ σm = σ0 implies that the Hausdorff dimension of C j is the limit of the
Hausdorff dimension of C j,m as m→∞. �

Remark 3.4. If we could allow some overlap in Theorem 2.9, for instance, if
Theorem 2.9 is true under the open set condition or the strong open set condition (in
the context of graph-directed systems on Euclidean spaces or graph-directed systems
given by similitudes), then the first half of Theorem 3.3 still gives the continuity of the
Hausdorff dimension.
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