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Abstract

Cryo-soft-X-ray tomography is being increasingly used in biological research to study the morphology of cellular
compartments and how they change in response to different stimuli, such as viral infections. Segmentation of these
compartments is limited by time-consuming manual tools or machine learning algorithms that require extensive time
and effort to train. Here we describe Contour, a new, easy-to-use, highly automated segmentation tool that enables
accelerated segmentation of tomograms to delineate distinct cellular compartments. Using Contour, cellular struc-
tures can be segmented based on their projection intensity and geometrical width by applying a threshold range to the
image and excluding noise smaller in width than the cellular compartments of interest. This method is less laborious
and less prone to errors from human judgement than current tools that require features to be manually traced, and it
does not require training datasets as would machine-learning driven segmentation. We show that high-contrast
compartments such as mitochondria, lipid droplets, and features at the cell surface can be easily segmented with this
technique in the context of investigating herpes simplex virus 1 infection. Contour can extract geometric measure-
ments from 3D segmented volumes, providing a newmethod to quantitate cryo-soft-X-ray tomography data.Contour
can be freely downloaded at github.com/kamallouisnahas/Contour.

Impact Statement
More research groups are using cryo-soft-X-ray tomography as a correlative imaging tool to study the
ultrastructure of cells and tissues but very few tomograms are segmented with existing segmentation programs.
Segmentation is usually a prerequisite for measuring the geometry of features in tomograms but the time- and
labor-intensive nature of current segmentation techniquesmeans that suchmeasurements are rarely across a large
number of tomograms, as is required for robust statistical analysis. Contour has been designed to facilitate the
automation of segmentation and, as a result, reducemanual effort and increase the number of tomograms that can
be segmented. Because it requires minimal manual intervention, Contour is not as prone to human error as
programs that require the users to trace the edges of cellular features. Geometry measurements of the segmented
volumes can be calculated using this program, providing a new platform to quantitate cryoSXT data. Contour
also supports quantitation of volumes imported from other segmentation programs. The generation of a large
sample of segmented volumes with Contour that can be used as a representative training dataset for machine
learning applications is a long-term aspiration of this technique.
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1. Introduction

The biology of cellular compartments has been extensively studied using high-resolution microscopy
techniques. Transmission electron microscopy of thin sections of cells stained with heavymetals has been
used for decades to produce images of intracellular ultrastructure and can resolve structures at the
nanometer level(1). For precise quantitation, cellular compartments of interest need to be delineated from
the other ultrastructural features by segmentation. These features can be segmented manually by tracing
the edges of features with Segmentation Editor in Fiji(2) or with tools such as Amira (Thermo Scientific)
that have “intelligent scissors” that predict the boundaries of the object being traced by the user(3).
However, these manual processes are time-consuming and the boundaries of the segmented volumes are
prone to human interpretation(4). Automatic tools exist, but these also have limitations. For example,
Bayesian matting, wherein a Bayesian framework is used to delineate foreground objects from the
background based on pixel range, is less likely to successfully segment features with textured or thin
edges(5). Similarly, “magic wand” segmentation, in which pixels of a given range of intensities are
segmented if they are all connected, is less applicable to features with a broad range of intensities and
where there is high noise in the background(6,7). Watershed segmentation is often used to separate objects
by estimating the boundaries between them based on the distances between their highest intensity
maxima. However, the specificity of this technique is low in noisy datasets and can lead to over-
segmentation, whereby many small segments are created within a single feature(8,9). As a result,
segmentation tools that use machine learning and deep neural networks to distinguish features of interest
from the rest of the ultrastructure have been developed for electron microscopy (e.g., Unet, Ilastik)(10–15).
However, these tools require either a large representative training dataset or modified training for each
micrograph.

For over a decade, the ultrastructural imaging technique known as cryo-soft-X-ray tomography
(cryoSXT) has been used by cell biologists and pathologists to image the cellular compartments of
unfixed whole cells in 3D(16,17). Moreover, cryoSXT is being used as a correlative imaging technique
with cryo-structured illumination microscopy (cryoSIM) to identify features in cellular ultrastruc-
ture(18,19). X rays with relatively low energy (~0.5 keV)(16), compared with those used for crystallog-
raphy and medical imaging (~5–30 keV)(20,21), are used to illuminate the sample, and transmission is
reduced by absorption through carbon-rich structures, such asmembranous cellular compartments. As a
result, the signal in cryoSXT data appears dark due to X-ray absorption, and the background appears
light due to X-ray transmission. This technique is used to resolve cellular compartments to a theoretical
resolution limit of 25 nm and produce 3D tomograms ofwhole-cell ultrastructure(17). CryoSXT imaging
of cells and tissues takes 5–20 min and thus a large set of tomograms—each containing cellular
compartments that need to be delineated by segmentation—can be collected in a relatively short
interval(16). However, segmentation tools to mine information out of X-ray tomograms still need to
be developed. One reason for this may be that X-ray tomograms are more difficult to segment than
electron micrographs captured at room temperature with heavy metal labeling because the use of soft X
rays to image the cell volume in 3D under near-native conditions produces higher noise(22). CryoEM
and CryoET datasets may be even more difficult to segment than cryoSXT datasets because they have a
lower signal-to-noise ratio. This is because these techniques require ultra-thin sections, often generated
via focused ion beam milling to produce thin 0.5–1 μm lamellae, which contain less material to scatter
electrons or absorb X-rays when compared to cryoSXT datasets that capture the entire depth of the
sample(16,23).

Although manual segmentation can be used to isolate features of interest, this is more time-
consuming for 3D datasets that span the entire depth of the field of view within the cell(4). The
development of machine learning tools for cryoSXT data could increase the rate and efficiency of
segmentation. However, the resolution, density and morphology of features can vary widely between
cryoSXT datasets (e.g., depending on collection date, passage number of cultured cells, sample
preparation strategy)(

24), and this lack of consistency may complicate the use of machine learning
tools to segment tomograms. Currently, there is a lack of training datasets for machine learning in the
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form of segmented volumes from multiple tomograms. SuRVoS has been developed to circumvent the
need for training datasets in this form. Instead, individual frames are segmented and used to train
segmentation of the whole tomogram(4). However, this strategy involves training for each tomogram,
which is time-consuming, and faster segmentation methods are needed to better cope with the high rate
of cryoSXT tomogram acquisition.

Here we developed Contour, a semi-automated segmentation tool for cryoSXT. This tool can be
used to segment high contrast features in cryoSXT tomograms, such as mitochondria, lipid droplets,
and membranous features. This is achieved by a combination of thresholding based on the projection
intensity (i.e., darkness) of the features and applying a width restriction based on the size of the
features. This automated procedure can be performed globally (i.e., on the entire tomogram). Some
features of interest may be excluded due to the strict width restriction, but segmentation of these
features can be refined locally in smaller regions of interest. Contour was developed using Python 3.7
and is available for download on Github with example datasets included (github.com/kamallouisna
has/Contour). The segmentation approach used in Contour is faster than manual segmentation tools as
it does not require laborious freehand drawing and interpolation like the Segmentation Editor available
in Fiji(2).

Extracting quantitative data from cryoSXT datasets is a current challenge, and Contour can be used to
measure the volume of segmented elements as well as their width along their longest axis. Contour was
designed to be used alongside existing segmentation tools: for features that are difficult to segment based
on projection intensity and width in Contour (e.g., cytoplasmic vesicles) other segmentation tools can be
used to generate segmented volumes that can be imported into Contour for quantitation. We have used
Contour in a recent preprint to study how the morphology of mitochondria and cytoplasmic vesicles
change during infection with herpes simplex virus-1 (HSV-1)(25). We generated multiple-segmented
volumes with Contour and found that mitochondria became more elongated, and vesicles reduced in
width as the infection progressed(25). In this paper, we discuss the algorithm and applications of this
segmentation tool to cryoSXT data.

2. Results

2.1. The width of cellular compartments and the projection intensity of their voxels can be exploited
for semi-automated segmentation

High-contrast cellular compartments in tomograms can be segmented by applying a threshold on voxel
intensity. CryoSXT Z stacks were generated for segmentation using IMOD version 5.1.2(26) with a back-
projection strategy, radial filtering in the form of a simultaneous iterations reconstruction technique
(SIRT)-like filter being subsequently applied to reduce noise. Twenty iterations of the SIRT-like filter
were applied to limit blurring and signal loss(27). Mitochondria have a low voxel intensity (low X-ray
transmittance) compared with the cytosol, and an arbitrary threshold range determined by trial and error
was used to segment them in a U2OS cell from an 8-bit reconstructed tomogram (Figure 1a)(18). However,
segmentation based solely on projection intensity was observed to be highly sensitive to voxel noise and
non-specific features, such as the outline of the lipid droplets. In order to increase specificity, an additional
segmentation parameter in Contour was used based on the width of the cellular compartments of interest
(Figure 1b). Segmentation was first performed on a complete reconstructed cryoSXT Z stack using the
global segmentation algorithm inContour.The segmentationwas later refined in smaller regions using the
local segmentation algorithm.

During global segmentation, the same threshold range applied in Figure 1a was applied to the
tomogram in Figure 1b to isolate voxels of the desired intensity and to produce binary masks for each Z
image (0 for background voxels and 1 for segmented voxels). A width restriction was determined by
manually inspecting the width of the mitochondria and was applied in the second step to exclude noise
and non-specific elements smaller in width than the mitochondria, such as the outline of lipid droplets.
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In order to apply this restriction without the slow process of iterating through each voxel, the binary
masks were compressed in a lossless manner by run-length encoding(28). Using this compression
method, the run of voxel values (e.g., 000110000) in the binary mask was compressed into a sequence
where the voxel value was coupled to the number of times it appeared consecutively (e.g., (0,3), (1,2),
(0,4)). The width restriction was applied to the compressed sequence by converting voxels with a value
of 1 to 0 if the number of consecutive voxels was lower than the desired width. The data compression

Figure 1. Semi-automated segmentation by analyzing the intensity and width of cellular features. (a) The
mitochondria in a tomogram of a U2OS cell were segmented by applying a voxel intensity threshold (blue
arrows) LD, lipid droplet; Mito, mitochondrion. This technique was highly sensitive as most of the
mitochondria were included and only a few areas were missing (white arrows). However, intensity
thresholding alone led to noise and non-specific features such as the outline of lipid droplets being
included in the segmented volume (orange arrows). (b) In Contour, a width restriction was applied in
addition to an intensity threshold to segment themitochondria. Any voxels included in the threshold range
would only be included in the product segmented volume if they formed part of a 10 � 10 voxel area or
larger (I–IV). The segmented product was specific to mitochondria, with less noise and fewer unwanted
elements. However, there were more falsely-excluded areas due to the higher specificity (white arrows).
(c) The remaining non-specific elements were manually erased (red box) and local regions of interest
containing the excluded areas were identified (white boxes) and (d) the analysis was reattempted with a
smaller width restriction of 4 voxels (green fill). (e) The final segmented volume was rendered in 3D using

3D Viewer in Fiji(2).
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and width restriction were applied twice independently along rows and columns in the horizontal and
vertical directions, respectively, and the modified sequences were decompressed into two full binary
masks. Voxels segmented within the threshold range were converted into background if their width was
less than the width restriction. As a result, the segmented voxels that remained appeared as stripes with a
width greater than or equal to the width restriction. The stripes were horizontal or vertical depending on
the direction in which the width restriction was applied (Figure 1b). The arrays of voxels that made up
the horizontal and vertical binary masks were multiplied together such that only coordinates that
contained a voxel of 1 in both masks (i.e., 1�1) were included in the product segmented volume and all
other combinations were converted to background (i.e., 1 � 0, 0 � 1, and 0 � 0). This multiplication
step eliminated most noise by ensuring that only rectangular matrices of dimensions width� width or
larger remained. In some cases, horizontal and vertical stripes were produced from noise or non-specific
features, such as the outline of lipid droplets. Voxels at the intersection between these stripes (i.e., 1�1)
were also included after the multiplication step. The run-length encoding, width restriction, and data
decompression were reapplied to the product segmented array to filter out these artifacts. The combined
application of thresholding and a width restriction results in a better-defined segmentation with less
noise and fewer non-specific elements. However, the increase in specificity afforded by width analysis
can lead to some desired elements becoming excluded from the segmented volume. In the presented
example, the global segmentation step excluded several areas based on the minimum width restriction
(Figure 1c). These areas could be filled by using the local segmentation algorithm in Contour, whereby
thresholding and width restriction were applied locally in a smaller 3D region of interest containing
these excluded areas (Figure 1d) using a lower minimum width value (4 voxels). Given that local
segmentation is performed on a smaller 3D region of interest, there is no requirement for data
compression by run-length encoding before applying width restriction to improve analysis effi-
ciency(28).

It is likely that local segmentation will be required following global segmentation. However,
global segmentation of the complete Z stack is not required before performing local segmentations.
If it is determined that the cytoplasm is too dense with high-contrast compartments to perform a
global segmentation, this step can be skipped and local segmentations can be performed on the
entire tomogram instead (Figure 2a and Table 1). In addition to the global and local segmentation
algorithms, manual “fill” and “erase” options are available for manual adjustment of the segmented
volumes (Figure 1c,d). The segmented volume can be rendered using 3D Viewer in Fiji (2) or other
appropriate visualization software (e.g., Amira [Thermo Scientific] or Chimera/ChimeraX
[UCSF](29)) (Figure 1e).

2.2. Applications of Contour to analyze the geometry of cellular compartments

We have shown that mitochondria can be segmented using the global and local segmentation parameters
based on their intensity andwidth (Figures 1, 2, and 3a).We have also been able to useContour to segment
mitochondria from other cell types, including a cultured human keratinocyte (HaCaT, Supplementary
Figure 1a), a human foreskin fibroblast immortalized by a human telomerase reverse transcriptase (HFF-
hTERT, Supplementary Figure 1b), and a green monkey kidney epithelial cell (Vero, Supplementary
Figure 1c). TheHaCaTcell (Supplementary Figure 1a) was captured using a 40 nm zone plate whereas the
HFF-hTERT and Vero cells were captured using a 25 nm zone plate, demonstrating mitochondria can be
segmented from tomograms collected using either zone plate. We were also able to segment a swollen
mitochondrion from a U2OS cell containing visible cristae (Supplementary Figure 1d). We have used
Contour to segment mitochondria in a recent preprint where we studied how mitochondrial morphology
changes during HSV-1 infection. We found that mitochondria transitioned from a heterogenous morph-
ology in uninfected U2OS cells to a more consistently elongated and branched formation as the infection
progressed(25).Contour can be used to segment other cellular compartments based on intensity andwidth,
such as lipid droplets (Figure 3b) and features at the cell surface or at cell–cell junctions, such as large
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Figure 2. Segmentation pipeline and decision tree in Contour. (a) Global and local segmentation
algorithms can be applied to delineate cellular compartments from a cryoSXT Z stack or from smaller 3D

regions of interest. Global segmentation is recommended if the cellular compartments are dispersed
throughout the tomogram. For smaller regions of interest, the local algorithm can be used to discriminate
features in crowded areas or features excluded from the global segmentation. The threshold range andwidth
restriction parameters can bemodified to optimize the specificity and sensitivity of the global segmentation.
(b) Discrete segmented elements can be differentiated and their volumes and widths can be calculated. Any
elements smaller in volume than a specified number of voxels can be filtered out and this can be used to
eliminate small segments of noise in one step. (c) Final touches can be applied to improve the appearance of
the segmented volumes. A smoothing function can be used to smoothen blocky edges in 2D slices and a
Gaussian blur can be applied to reduce the appearance of layering in between slices of the segmented
volume (Figure 4). Predicted lengths of time for each process can be found in Supplementary Table S1.
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Table 1. Troubleshooting segmentation in Contour.

Problem Possible cause Possible solution

Feature detection
Global segmentation failed to
produce a segmented volume

Thresholding and width
restriction parameters were
too stringent

Increase the threshold
range and/or reduce the
width restriction

Global segmentation produced a
lot of noise

Thresholding and width
restriction parameters were
too permissive

Reduce the threshold range
and/or increase the width
restriction

Cellular compartments in the
field of view were too crowded

Skip global segmentation
and perform local
segmentations instead

Multiple features of interest were
excluded after the global
segmentation

Thresholding and width
restriction parameters were too
stringent

Fill in the excluded regions
using local segmentations

Cellular compartments of
interest have uneven projection
intensity

The edge or terminus of a feature
or a constricted region within the
feature was excluded from a
global or local segmentation

The width restriction was too
stringent in this region

Apply a local segmentation
to this region with a
reduced width restriction

Noise elimination
Too many small regions of noise
(e.g., <1,000 voxels) are present
in the segmented volume

Width restriction parameters
were too permissive

Noise can be eliminated
altogether in one step using
the filter function that
eliminates segmented
elements below a certain
volume of voxels. The
elements need to be
differentiated as a
prerequisite

Appearance of segmented volume
The segmented elements have
blocky edges

A high minimum width
restriction led to large
width � width areas being
produced in the segmented
volume

Apply the smoothing
function to the segmented
volume

The segmented elements are too
thin in the smoothened
segmented volume

Too many iterations of the
smoothing function were applied,
resulting in overt rimming of the
edges

Use fewer iterations (one to
three are recommended)

Contour lines are visible in a 3D
render of the segmented volume

The segmented volume was not
smoothened or blurred

Apply the smoothing
function to the segmented
volume and apply a
Gaussian blur
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internalizations of the plasma membrane that may resemble bulk endosomes arising from clathrin-
independent endocytic events (Figure 3c)(30).

Discrete segmented elements can be differentiated from each other and color-coded to aid the
discrimination of the components (Figures 2b and 4). This is achieved by assigning a common ID
number to segmented voxels and their direct-contact neighbors. The inclusion criteria for direct-contact
neighbors are any two voxels that are at XY coordinates that differ by one step in any of the eight
cardinal (N, S, E, or W) and ordinal (NE, SE, SW, or NW) directions; or any two voxels at the same XY
coordinate in tandem Z planes.

Quantitation of the geometry of cellular features is a current challenge in cryoSXT because segmen-
tation is often a prerequisite and measurements may need to be taken at an angle distinct from the slices of
the 3D projection(16). Contour has the capacity to automatically calculate the volumes of cellular features
(in units of voxels) along any axis once the user has differentiated these elements. For example, the mean
volume of the mitochondria in a single 9.46� 9.46 μm2 field of view of a U2OS cell, given a voxel size of
10 � 10 � 10 nm3, was calculated to be 0.3 � 0.48 μm3 (mean � SD; Figure 3d). The width of each
segmented element along its longest axis, which may not be parallel with the slices of the tomographic
projection, can also be calculated in this program. This is achieved by isolating the voxels at the perimeter
of each segmented element in each image plane and calculating all combinations of the distance
(i.e., modulus) between any two of these voxels across the complete Z stack. The longest of these moduli

Figure 3. Segmentation and quantitation of cellular features. Contour can be used to segment high
contrast features in U2OS cells such as (a) mitochondria, (b) lipid droplets, and (c) distinctive membrane
topology at cell–cell junctions. Cyto, cytoplasm; Nuc, nucleus. Quantitative data can be extracted from
the segmented volumes. (d) The mitochondria in this 9.46� 9.46 μm2 field of view of a U2OS cell had a
mean volume of 0.3� 0.48 μm3 SD. (e) The mean width along the longest axis of each lipid droplet in this
9.46� 9.46 μm field of view of a U2OS cell was found to be 1.04� 0.51 μm SD. Scale bar = 1 μm. Error

bars show mean � SD.
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is presented as the width of the segmented element in units of voxels. The longest width of each lipid
droplet was calculated for a 9.46 � 9.46 μm2 field of view and the droplet width was found to be
1.04 � 0.51 μm (mean � SD; Figure 3e). Segmented volumes generated with other segmentation tools,
such as Segmentation Editor in Fiji(2), can be imported intoContour for quantitation based on themethods
described above.

2.3. Polishing the segmented volume

After the segmented elements have been differentiated, final touches can be applied to improve the
appearance of the 3D volume (Figure 4). The width restriction applied during the segmentation filters out
any segmented voxels that do not form part of a width � width area or larger. As a result, segmented
elements may appear blocky. A smoothing function is available to smoothen the edges of segmented
elements (Figure 4). Each segmented plane in the Z stack is converted into a binary mask (0 for
background and 1 for segment) and is translated by one step in all eight cardinal and ordinal directions
and the voxel arrays are added together such that voxels may have a value of 0 to 8. Voxels with less than a
median of five, which occur at the perimeter of segmented elements, were transformed into background,
resulting in the trimming of the edges of the segmented elements. A greater number of iterations of this
function will increase the extent of smoothing but reduce the width of the segmented elements. A
compromise of 1–3 iterations is recommended to avoid over trimming (Table 1). The smoothing function
is only applied within slices of the segmented volume and layering artifacts can be observed in between
slices. A two-dimensional Gaussian blur can also be applied per slice to reduce the appearance of layering
artefacts and improve the 3D rendering of the volume.

Figure 4.Color-coding of differentiated elements and smoothing of the 3D volume. Segmented voxels are
grouped together into separate elements that can be color-coded to help distinguish them from each other.
A smoothing function can be applied to 2D arrays of voxels to smooth the edges of segmented elements.
Because the smoothing is applied to the 2D slices, layering artefacts can be observed in between the
slices. A Gaussian blur can be applied per 2D slice to reduce the appearance of layering artefacts. Scale

bars = 1 μm.
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3. Discussion

Here we reported the development ofContour, a segmentation tool for highly contrasting cellular features
in cryoSXT tomograms that analyses the projection intensity (i.e., darkness) and width of cellular
compartments. This program also calculates 3D geometric measurements from the segmented elements.
We demonstrate thatmitochondria, lipid droplets, and the topology of the cell surface at cell–cell junctions
can be segmented using this technique. Contour was developed to accelerate segmentations of cryoSXT
tomograms. Existing segmentation techniques may be time-consuming and laborious to users: manual
segmentation tools require the user to trace the edges of features in periodic Z planes and interpolate
between them and, although machine-learning tools such as SuRVoS are available, these tools require
fresh training for each tomogram(3,4,16). The algorithm used by Contour for segmentation is largely
automated, allowing users to perform either a global segmentation on a complete cryoSXTZ stack or local
segmentations in regions of interest. In either case, training datasets are not required, and the user does not
need to trace around features, making the process less laborious and subjective(4).

We have applied Contour to one study, where we investigated how HSV-1 infection alters the
morphology of cellular compartments, and we were able to segment mitochondria in multiple tomo-
grams(25). The dependency on low projection intensity and width for the segmentation does pose
some limitations. For example, some cellular compartments such as mitochondria may have uneven
intensities(25). It is still possible to use Contour for these features, but successful analysis requires a
greater number of local segmentations to be carried out with different threshold ranges (Table 1). The use
of a width restriction parameter to distinguish features from noise complicates the application of this
technique to thin cellular features, such as cytoskeletal filaments that are normally less than five voxels in
width(32). Cytoplasmic vesicles often have a highly contrasting membrane but a light lumen, making it
difficult to segment such features when applying a minimum width restriction. Although we did not use
Contour to segment cytoplasmic vesicles in our recent study(25), we usedContour to calculate the longest
widths of each vesicle that we manually segmented using Segmentation Editor in Fiji(2). We therefore
show thatContour can be used in conjunction with other segmentation tools to calculate quantitative data.
Our semi-automated segmentation tool could be used to generate sufficient segmented volumes of
different cellular compartments to facilitate the training of machine learning algorithms in the future.
CryoSXT is a growing technique and its applications are becoming more widespread in biomedical
imaging, especially as a correlative imaging tool with cryoSIM(17–19).Contour is a largely automated tool
designed to significantly accelerate the segmentation of X-ray tomograms and the quantitation of
geometric structures within.

4. Materials and Methods

4.1. Sample preparation

A total of 3 mm gold EM grids with a holey carbon film (R 2/2, 200mesh; Quantifoil Cat no. AUG200F1
finder, batches Q45352 & Q45353) were glow discharged and treated with filtered poly-L-lysine for
10 minutes (Sigma Aldrich Cat no. P4832). U2OS cells (ATCC HTB-96; RRID CVCL_0042) were
seeded onto the grids at 3 � 105 cells per well in a 6-well plate. The cells were cultivated overnight in
Dulbecco’s Modified Eagle’s Medium (DMEM; Thermo Fisher Scientific, Cat no. 45011590366)
supplemented with 10% (v/v) fetal bovine serum (FBS; Capricorn, Cat no. FBS-11A), 4 mM L-glutamine
(Thermo Fisher Scientific, Cat no. 25030081), and penicillin/streptomycin (10,000 U/ml; Thermo Fisher
Scientific, Cat no. 15070063). A total of 2 μL of gold fiducials (BBI Solutions; EM.GC250, batch
026935) were added to the grids as previously described (18) and the grids were blotted with for 0.5–1 s at
30°C and 80% humidity with a Leica EM GP2 plunge freezer. The grids were plunged into liquid ethane
and then transferred into liquid nitrogen. The tomograms presented in this paper were collected for a study
of the effect of HSV-1 infection on the morphology of cellular compartments in U2OS cells(25). All
tomograms in Figures 1–4 were collected from uninfected cells except for Figure 3b, which was collected
from a cell infected with one plaque forming unit per cell of HSV-1 as previously described(25).
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The HaCaT cells in Supplementary Figure S1 were infected with two plaque-forming units per cell of
HSV-1 andwere fixedwith 4%paraformaldehyde. TheHFF cells were infectedwith three plaque forming
units per cell of HSV-1.

4.2. Cryo-soft-X-ray tomography

CryoSXT data were as collected at beamline B24 at the UK synchrotron Diamond Light Source using a
UltraXRM-S/L220c X-raymicroscope (Carl Zeiss X-rayMicroscopy). Soft X-rays (500 eV, λ= 2.48 nm)
were focused onto the grid sample by diffraction using a diffraction grating known as a zone plate, which
can achieve a nominal resolution of 25 nm. A 1024B Pixis CCD camera (Princeton instruments) was used
to collect tomographic data from U2OS cells with a 9.46 � 9.46 μm field of view by rotating the grid
within the range�60° to þ60° at increments of 0.5° or 1.0° and X-ray exposure times of 0.5 or 1.0 s. A
single-axis alignment of the tomographic images was generated using IMOD (version 4.9.2)(26). A coarse
alignment with a high-frequency cut-off radius of 0.1 and a subsequent fine alignment with fiducial
tracking were used to align the images. The data was reoriented in 3D using a boundary model. A final
alignment was carried out using linear interpolation and tomograms were reconstructed using the back
projection strategy with radial filtering to reduce noise in the form of 20 iterations of simultaneous
iterations reconstruction technique (SIRT)-like filter(27). The tomograms were converted from a 16-bit
signed format to an 8-bit format before segmentation.

4.3. Global segmentation

Tomographic images are stored as NumPy(33) arrays in Python 3.7 and the images in the Z plane are stored
in a list. Datasets with a field of view greater than 512� 512 voxels were downscaled by amultiple of two
to improve the efficiency of the program and the scaling was accounted for during quantitation. A
threshold range with a desired minimum and maximum value was applied to produce binary masks for
each image (0 for background and 1 for segmented voxels). The sequence of 0 and 1 s is compressed
losslessly by run-length encoding into a paired sequencewhere the value is coupled to the number of times
it is repeated(28). Values of 1 are converted to 0 if the number of repetitions is lower than the width
restriction and the processed sequence is decompressed into a full array. The run-length encoding and
width restrictions are applied twice independently—down columns and along rows. Both binary arrays
aremultiplied together so that only voxels with a value of 1 in both arrays are included in the product array.
This process is repeated to remove artifacts.

4.4. Local segmentation

Acuboidal region of interest is selected from the Z stack and a threshold range is applied to produce binary
masks for each image. Awidth restriction is applied by iterating through the voxels in each image plane in
the region of interest and counting the number of repeats. If the number of repeats is lower than the width
restriction the values are converted from 1 to 0. This process is run along rows to produce a new array. This
new array is used as the input array to rerun the width restriction down columns. This process is repeated
once along rows and columns to remove artefacts.

4.5. Quantitation and filtering

Segmented voxels were attributed with integer IDs that served to distinguish discrete elements. IDs were
shared between neighboring voxels that were one position away from each other in all cardinal (N, S, E, or
W) and ordinal (NE, SE, SW, or NW) directions or voxels with matching XY coordinates in tandem Z
planes. Neighboring voxels were first grouped together in two dimensions in the XY planes. Any two-
dimensional groups from tandemZ planes weremerged into one 3D group if they contained voxels whose
coordinates overlapped in XY. This process was run in ascending and descending order of Z slices to
ensure that segment branches, which were separated from the main body of the segment in some slices,
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were not excluded from the 3Dmerger owing to the direction of iteration through the Z stack. The volume
of each 3D segment was calculated in units of voxels. This was done by isolating all the voxels in the
segmented volume with a given ID using the NumPy.argwhere function(33), which produces an array of
XY coordinates corresponding to these voxels per Z slice. The length of the arrays for each slice was
calculated and divided by two to retrieve the number of voxels. Small segmented elements of noise were
eliminated by replacing any elements with a volume of less than a desired volume threshold (e.g., 1,000
voxels) with background voxels of value 0.

The width of a 3D segmented element was calculated by finding the longest distance between any two
voxels in the segment. First, the voxels present at the perimeter of elements were filtered from all the
voxels in the segment by determining if any neighboring voxels have a value of 0 (background). Second,
the modulus between all combinations of two perimeter voxels was calculated (equation (1)). The longest
modulus was given as the width of the segment in units of voxels. Stacks of binary masks containing
elements with known volumes and widths were generated to verify the quantitation functions and are
available at https://github.com/kamallouisnahas/Contour/tree/main/known_quantities.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xb� xað Þ2þ yb� yað Þ2þ zb� zað Þ2:

q
(1)

Themodulus of all vectors connecting perimeter voxels a and bwas calculated from coordinates x, y, and z.

4.6. Smoothing and Gaussian blur

The edges of segmented elements were smoothed by translating the arrays of voxels for each slice in the
tomographic projection by one voxel in each cardinal and ordinal direction. Binary masks were used and
each segmented voxel had a value of 1. A sum array was produced by adding together all eight translated
arrays, such that voxels ranged from 0 to 8. A median array was calculated from the sum array by
transforming voxels <5 into values of 0 and voxels ≥5 into values of 1. Several iterations of this function
(up to 3) were applied to increase the extent of smoothing.

The Gaussian filter function from the SciPy library(34) was applied with a standard deviation of one to
each of the three colors individually in RGB images of the differentiated segmented elements. Quanti-
tation of volume and width were not affected by the smoothing and Gaussian blur functions.

4.7. Statistics

SuperPlots was used to generate scatterplots and to calculate the mean and standard deviation for the
volume of mitochondria and the width of lipid droplets(35).
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