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ULTRABORNOLOGICAL BOCHNER INTEGRABLE
FUNCTION SPACES

J.C. FERRANDO

If (R, L, p) is a finite measure space and X is a normed space such that X* has
the Radon-Nikodym property with respect to u, we show first that each space
Lp(p, =), 1 < p < o0, is ultrabornological whenever pu is atomless. When p is
arbitrary, we prove later on that the space L,(i, X) is ultrabornological if X* has
the Radon-Nikodym property with respect to p and X is itself an ultrabornological
space.

In what follows, (£, X, p) will be a finite measure space and X a normed space.
If1<p<oo, Lp(p, X) stands for the space of all (equivalence classes of) X-valued
Bochner integrable functions f on Q with [ ||f||” du < oo, provided with the norm

1= ([ 1scayre dﬂ(w))”p-

In this paper a Hausdorff locally convex spaces is said to be ultrabornological if it
can be represented as the locally convex hull of all its Banach subspaces with a basis.

If the measure g is atomless and the Banach space X* has the Radon-Nikodym
property with respect to p1, we are going to show first that Ly(g, X) is an ultrabornolog-
ical space for each 1 < p < oo, regardless of whether or not X is ultrabornological.
This must not be a surprising fact if we take into account the two following results
concerning finite atomless measure spaces which has been proved recently.

(A): (Drewnowski, Florencio and Pail, [5], Theorem 3). Let (€2, X, ) be a finite
measure space and X be a normed space. If the measure y is atomless, then L,(u, X)
with 1 < p < oo is barrelled.

(B): (Diaz, Florencio and Pail [2, Main Theorem]). Let (£, Z, s) be a finite
measure space and X be a normed space. If the measire p is atomless, then every

weak bounded subset of the dual of Leo(p, X) is bounded in norm; in other words
Loo(p, X) is barrelled.
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Supposing that g is an arbitrary finite measure on € and X is an ultrabornological
space such that X* has the Radon-Nikodym property with respect to u, we shall
prove later on that the dense subspace Sp(p, X) of Lp(p, X), with 1 < p < oo,
of all countably valued functions, is ultrabornological. In the particular case when
p is purely atomic, this implies that each normed space £{X}, 1 < p < o0, of
absolutely £,-summable sequences [6, p.139] with the usual norm, is ultrabornological.
Since each finite measure space decomposes into a purely atomic part and an atomless
part, the previous results imply that if p is an arbitrary finite measure on 0, X is
ultrabornological and X* has the Radon-Nikokym property with respect to p, then
the space Ly(p, X), 1 < p < oo, is ultrabornological.

THEOREM 1. Let 1 < p < co. If the measure p is atomless and X* has the
Radon-Nikodym property with respect to p, then Ly(p, X) is ultrabornological.

PROOF: Suppose there exists some p, 1 < p < oo such that Ly(p, X) is not an
ultrabornological space. Then, there is an absolutely convex set V in Lp(p, X) that
meets each Banach subspace F with a basis of Ly(p, X) in a neighbourhood of the
origin in F, but V is not itself a neighbourhood of the origin in Lp(p, X). We are
going to begin the proof building inductively a sequence {(n, Zn, pn), n=1,2,...}
of atomless finite measure spaces satisfying for each n € N the following properties

(1) Qn € Baci, Qnt1 C Qa, (%) = p(0n-1)/2
(11) T = E'n—1|ﬂ,. y bn = fn-1|z,
(i1) V does not absorb the unit sphere of Ly(p, X).

The atomless character of p assures the existence of an 4 € X such that
u(A) = p(Q2)/2. By restricting £ and g to A and its complement 2 \ A we ob-
tain the atomless measure spaces (A4, A, ) and (Q\ 4, A', X') so that Ly(p, X) is
the topological direct sum of L,(), X) and L,(X', X). If W and W' denote the unit
spheres of Ly(A, X) and L,(A', X), respectively, then it is clear that V either does not
absorb W or it does not absorb W'. Thus, setting (€1, X1, 1) to be either (4, A4, X),
or (2\ 4, A, X'), depending on whether V does not absorb W or does not absort W',
we have accomplished the first step of our induction process.

Now assuming (£;, I;, ), 1 € 1 € n, are already defined, we proceed to build
(On+1s Znt1, nt1) with the former requirements.

The atomless character of p, yields a certain A, € X, such that u,(4,) =
#n(02n)/2. As before, Ly(pin, X) can be descomposed as the topological direct sum
of Ly(An, X) and Ly(A},, X), where (An, An, An) and (2, \ A, A, A,) are the re-
spective restrictions of ¥,, and p, to A, and 2, \ A,. Since V does not absorb the
unit sphere V, of Ly(pn, X), it cannot absorb both W, and W] (the unit spheres of
Ly(An, X) and L,(A},, X), respectively). Hence, we choose again (n+1, Znt1, Bnt1)
to be either (An, An, An) or (2, \ A,, A, A,), according to whether V' does not
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absorb W, or does not absorb W, . This ends our induction process.

For each n € N we select an element h, € V,, such that h, ¢ nV, and then we
form the sequence (h,) contained in the unit sphere of Ly(p, X), with the support of
each h, contained in 2, .

o0
Define E := () §1; and note that u(E) = ﬁn}»l‘(nn) =0.
k=1 T

Since X* has the Radon-Nikodym property with respect to p, then L,(p, X*)
with 1/p+1/g =1 is the topological dual of Ly(¢, X), (see [3, p.98]) and we are going
to see next that (f, h,) — 0 for each f € Lg(u, X*).

In fact, if p> 1 and f € Lg(pu, X*), then

q

I(F, Bl = | [ (7@, afe)duto)

|| @) hatopautal|
= (Fe(@n), Ba)l* < IFe(Ra)* = [ £} du(o).
On
But, as w — || f(w)||? € Li(pn) and p(Q,) — 0, it follows that
tim [ 1@ dut) =0

and, therefore, (f, hn) — 0.
This shows that (h,) is a weakly null normalised sequence in Lp(p, X). Conse-
quently, the Bessaga-Pelczynski selection principle, (3], guarantees the existence of a

subsequence (hn,) of (hn) which is a basic sequence in L,( , X ) .

Define finally gj(w) = hj(w) if w ¢ E and gj(w) = 0 otherwise. So g; is equivalent
to h; for each j € N and on the one hand we have

gn ¢ nV

for each n € N while, on the other hand, (g,.,.) is a basic sequence in Ly(p, X). Now,
since suppgn; C Qn; \ E, Qp,,, C 0, foreach i € N and N{Q,; \ E,i € N} =0, itis
easy to notice that every element g of the closed linear cover G of the sequence (g,.'.)
in L, (p, X’) belongs to L,(p, X). Indeed, g(w) € X for each w € §2. Hence, G is a
Banach subspace of L,(p, X).

Given that V meets G in a neighbourhood of the origin in G, this leads to the
existence of some positive integer ¢ such that

gng € n,V.

This contradiction ends our proof. 0
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REMARK. If we apply the previous argument to the dense subspace Sp(p, X) of
L,(p, X) formed by all X-valued functions with countably many values, it also shows
that this subspace is ultrabornological whenever u is atomless and X* has the Radon-
Nikodym property with respect to .

In the sequel (2, X, p) will be an arbitrary finite measure space. If M is a set
of a linear space L, (M) stands for the linear hull of M in L. By S(p, X) we shall
denote the space of all X-valued u-simple functions defined on §}. On the other hand,
given 1 < p < oo and E € I, the spaces S(u |g, X) and Sp(p |g, X) will be denoted
simply by S(E, X) and S,(E, X), respectively.

Given f € Sp(p, X), suppose that g is some appropriate canonical representing
of f having only countably many values. If z € Sg then by [1, p.167] we have that
g (=) € . Hence, {g~!(z), z € Sg} is a countable partition of 2 formed by pairwise
non-empty elements of ¥ such that f is essentially constant in each of its members.

LEMMA 1. Let {A,.,n € N} be a pairwise disjoint sequence of non-empty ele-
ments of ¥. Assume that X* has the Radon-Nikodym property with respect to p. If
V is an absolutely convex set in Sp(p, X) which meets each Banach subspace F with

a basis in a neighbourhood of the origin in F, then there exists an m € N such that V
absorbs the closed unit ball of Sp(U{4n,n > m}, X).

PROOF: If the property is not true, V', does not absorb the closed unit ball of

Sp(U{An, n >m}, X) for each m € N. Hence, for each m € N there is some f, €
Sp(U{An, n >m}, X) such that ||fa|| =1 and

fm & mV.

If we set Q,, := U{4n, n > m}, then (fn) is a normalised sequence in Sp(u, X)
such that supp fm C Q,, for each m € N. Since X* has the Radon-Nikodym property
with respect to p and p(0,,) — 0, then we may proceed as in Theorem 1 in order to
show that (h, fn) — O for every h € Ly(p, X*) with 1/p+1/q = 1. Therefore, (f,) is
a weakly null normailised sequence in Ly(u, X) and the Bessaga-Pelczynski selection
principle establishes the existence of a subsequence (f,,'.) of (fn) which is a basic
sequence in L,(p., f) . Now, as Qn4; € Qy, for each n € N and N{Q,,n € N} =0,
it is easy to notice that every element f of the closed linear span F of the sequence
( fn;) in Ly (p,, X ) is X-valued and has countably many values. Consequently, F' is a
Banach subspace of Sp(u, X).

Given that V meets F in a neighbourhood of the origin in F, the Baire category
theorem leads to the existence of some positive integer g such that

f"’q (3 'n-qV.
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This contradiction ends our proof. 0

LEMMA 2. Let V be an absolutely convex set in S.(u, X) meeting each Banach
subspace F with a basis of Sp(p, X) in a neighbourhood of the origin in F. If X is
ultrabornological and X* has the Radon-Nikodym property with respect to p, then V
absorb the closed unit ball of S(u, X).

PROOF: Suppose the property is not true. Since V does not absorb the unit sphere
of S(u, X), there is some f; € S(p, X) with ||fi]| =1 such that

fr g 2v.

Let {Q11, Q12, --., Qix(1)} be a partition of Q by non-empty sets of £ such that
f1 takes a different constant value u-almost everywhere in each @Q;; with 1 <1 < k(1).
Now, as S(u, X) is the topological direct sum of the subspaces S(Q11, X), 1 <1<
k(1), there is some m(1) € {1,2,..., k(1)} such that V does not absorb the unit
sphere of S(le(l), X). Thus, there is some f, € S(le(l), X) with ||f2]| =1 such
that
f2 ¢ 4V.

Again, there exists a finite partition {Q21, Q22, ..., Q2k(2)} of Qim(1) by non-
empty sets of ¥ such that f, is constant p-almost everywhere in each set @2;, 1 <
i < k(2) and takes a different value. As S(Qym(1), X) is the topological direct sum
of the subspaces S§(Q2:, X), 1 < i < k(2) and V does not absorb the unit sphere of
S(Q1m(1)s X), there is some m(2) € {1, 2, ..., k(2)} such that V does not absorb the
unit sphere of S(QZm(z), X) . Hence, there is some f5 € S(sz(z), X) with ||fs]| =1
such that

fs ¢ 6T.

Proceeding by recurrence we obtain a sequence (f,) of p-simple functions and a
sequence (£2,), with 0, = Qp m(n) for each n € N, of sets in I, verifying that, for
each n € N,

@ Nfall=1
(ii) supp fat1 S 0a
(iii) f» is essentially constant in Q,
(iv) Qa41 €O,
(v) fag2nV

Let P := () ;. Two cases are in order depending on whether p(P) is or is not
i=1
different from zero.

If u(P) # 0 and for each n € N z, denotes the constant value of f, p-almost
everywhere in ), , we define hj(w) = fj(w) if w ¢ P and hj(w) = z; if w € P for
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each j € N. Then we write
b} :=h; — zje(P)
for all j € N.

Since z — e(P)z is an isometry from X into Sp(y, X), the ultrabornology of X
guarantees that the set V N e(P)X is a neighbourhood of the origin in ¢(P)X, which
leads to the existence of some r € N such that z;e(P) € rV for each i € N. Hence,

zne(P) € nV

for each n > r, consequently,
h’j ¢ Vv

for each j > r. Finally, we define g; = h}/ ||h;|| for each 7 € N. Since ||h_’,” <1 for
each j € N, it follows that

9 ¢V
for each j > r. Clearly (gn) is a normalised sequence with supp g, C £, \ P for each
n € N and N{Q, \ P,n € N} =0.
If u(P) =0, for each j € N, we take gj(w) = fj(w) if w ¢ P and gj(w) =0
otherwise, for each j € N. Then g; is equivalent to f; for each j € N and consequently,

g;i ¢ 3V

for each j € N. As ||gj|| = ||fjll =1 for each j, (gn) is normalised. On the other hand,
we have again that suppg; C Q; \ P foreach j € N.

Since p(suppgn) — 0 in both cases, we proceed as in the previous results to show
that (gn) is weakly nullin L,(p, X) and consequently that it contains a basic sequence

(g,,..) in Lp(p, )?) . As suppg, C Q,\P foreach n € Nand N{Q2,\P,n e N} =0, it
is easy to show that the closed linear span [g,;] in L, (p, )?) is contained in Sp(p, X).
This yields a contradiction.

THEOREM 2. Let1 < p < oo and suppose that X is ultrabornological. If X* has
the Radon-Nikodym property with respect to p, then Sp(p, X) is ultrabornological.

PROOF: Assume that X is ultrabornological but S,(x, X) is not. Then there is
some f; € Sp(p, X) with || fi|| =1 such that

fr¢2v

As we noticed before, there is a partition {Q1;, + € N} of ! by non-empty sets of
¥ such that f; is essentially constant in each set @;;. By Lemma 1 thereis an n; € N
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such that V does absorb the closed unit ball of Sp(U{Qin, n > n1}, X). So V does
not absorb the unit sphere of Sp(U{Q1n, n < n1}, X).

Let £ := U{Q1n, n € n1}. Since V does not absorb the unit sphere of Sp(1, X),
there is some f; € Sp(Q1, X) with [|f2]| =1 such that

fa & 3V.

Let {Q2:,1 € N} be a partition of Q; formed by non-empty sets of X such that
f2 is essentially constant in each Q2;. Applying Lemma 1 again, there is an ny € N
such that V' does absorb the closed unit ball of the subspace Sp(U{Q2n, 7 > n2}, X).
Hence, defining 5 := U{Q2;, 1 < n2}, V cannot absorb the unit sphere of S,(22, X)
and thus there is some fs € S;(Q2, X) with ||fs]| =1 such that

fs ¢ 4V.

Proceeding by recurrence we obtain a sequence (f5) of functions of S,(f2, X) and
a sequence ({2,) of sets in ¥ verifying for each n € N the following properties

(@) lfall=1
(i) supp fn+1 € On
(i) e(@n)fn € S(m, X)
(lv) Qﬂ+l cQ,
(v) faé(n+1)V.
For each j € N we set
g; = fi — e(Q) ;.

Clearly, e(€2;)f; € S(p, X) for each j € N and taking into account Lemma 2, there is
no loss of generality in assuming that

e(Q)fi eV
for each j € N. This implies that
9; ¢V
for each j € N.
It is clear that supp g; Nsuppg; = 0 if 4 # 7, and it is not difficult to see from this
fact that the closed linear span [g;] in L, (p, X ) of the sequence (g;) is a copy of £,
which is contained in S,(p, X). Now the Baire category theorem leads to the existence

of some k € N such that
gr € kV.

This contradiction ends the proof. 0
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COROLLARY. Suppose that X is ultrabornological and pu is a purely atomic,
measure on §). Then Ly(p, X) is ultrabornological.

PRroOF: If p is purely atomic X* has the Radon-Nikodym property with respect

to p and Lp(p, X) is isometric to £,{X}. So, the conclusion follows from Theorem
2. 0

THEOREM 4. Let (9, X, u) be an arbitrary finite measure space and let X be an
ultrabornological normed space. If X* has the Radon-Nikodym property with respect
to p, then L,(p, X) with 1 < p < oo is ultrabornological.

PROOF: Since each finite measure space containing some atom decomposes into a
purely atomic part and an atomless part, this is an obvious consequence of Theorem 1
and the previous Corollary. 1]
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