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COMPOSITION OPERATORS
AND SEVERAL COMPLEX VARIABLES

R.K. SINGH AND S.D. SHARMA

Let IT be the open unit polydisc, and let T be a mapping from

if into itself. Then the composition transformation C_ is a

mapping on the Hardy space H [if) into the space of complex

functions on if defined as C_f = f ° T for every

f £ H [if) . An attempt is made to study some properties of C_

in this note. A partial generalization of a result of Schwartz,

and a relation between intertwining analytic Toeplitz operators

and composition operators are reported.

1. Introduction

Let U be the open unit disc in the complex plane and 3£/ i t s

boundary. Let u and (9f/) denote the Cartesian products of n copies

of U and 3i/ respectively. If ^[if1] i s the Hilbert space of

functions / holomorphic in U for which

ll/ll2 = sup {[ \n™)\2dm (w)\ < - ,
0<r<1 U ( 9 ) « '

where m is the normalized Lebesgue measure on (W) , and T : if •*• U
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i s a holomorphic mapping (for defini t ions, see [2] and [4 ] ) , then the

composition transformation C~ on H [u ) i s defined as

Cjf = f ° T for every / € ff2(y") .

If Cy maps H (jrJ into itself, then by an application of the closed

graph theorem Cy is a bounded linear operator on H (u J . in case Cj,

is bounded, we call it a composition operator induced by T . The

composition operators have been studied on various function spaces

including the classical Hardy space (see, for example, [5], [6] and'[7]).

A study of these operators on H [lr) , in the case when n = 2 , is made

in this paper. For L € H {if) , the Banach algebra of bounded holomorphic

functions on IT , the Toeplitz operator AL on ir[ly) is defined by

[MLf){z) = L(z)'f(z) .

NOTATIONS. If 0 < r £ 1 , then U will stand for the open disc

{s £ C : |s| < r} ; in particular U = U and we write IT for the

Cartesian product of n copies of U . Similarly, by (3^)r we mean

the Cartesian product of n copies of (9i/) , where

Otf)r = {2 € £ : \z\ = r} and (W)1 = 30 . If 3 = (z^ 32) € 0
2 and

a = (a a j € Z+ (= Z+ x Z+) , we write za for the monomial s «a ,

where Z+ is the set of all non-negative integers. By B[H [if1)) we

denote the Banach algebra of all bounded linear operators on H (u) •

DEFINITIONS. A continuous complex valued function f on an open

subset of C is n-harmonic if / is harmonic in each variable

separately [4, p. 16].

Suppose T is a holomorphic map from if1 into itself. Then T is

said to be proper if T (.E) is a compact subset of lP for every compact

subset E of if1 .
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A biholomorphic mapping of a domain onto itself is called an

automorphism [8, p. 1*7].

2. Boundedness and norm estimates

We begin this section with the following lemmas.

LEMMA 2.1. Let f be a holomorphio function from IT onto a domain

D of U , and let g : D -*• C be real harmonic. Then g ° f is

2-harmonicr

The proof of the lemma follows from the facts that every real harmonic

function of a complex variable is the real part of a holomorphic function

and that real parts of holomorphic functions of two complex variables are

2-harmonic.

LEMMA 2.2. Let 0 < s < 1 and let f be 2-harmonic on u . Then

f(0, 0) = J f(rw)dm2(w) ,
(W)2

where w - [w , w ) and 0 < r < e .

Proof.

/(O, 0) = I f[rw , O)*L [wA
inn x x

f[rw , rw)dm(w)dm(w) .
Jaw x d 1 x i dL

From Fubini's theorem, we have

/(0, 0) = f f(rw)dm (w) .
J 2

We now give the main theorem of this section.

THEOREM 2.1. If T : U2 -*• V2 is a holomorphic function such that

T^(z) =' a(\a\ < 1) , where T(z) = (2^(2), ^(s)) for every

z = (s1, z2) £ U
2 , then Cf € B[H2[I?}) and
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where & = ^ ( O , 0)1 .

Proof. Let us choose v sufficiently close to 1 such that T maps

the closed polydisc £/? (<? < 1) into £/2 Then for z £ U2 and

f t H [U) we have t>y Poisson's integral,

dmAw)

Taking absolute values and using the fact that T is constant we get

Integrating on (3f) , we have

(2.1) f \f[T(qw'))fdmAW)

We claim that

(wV
o)|
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Since we know t h a t t h e Poisson ke rne l (a - | s | ) / ( | a e -z \ ) i s harmonic

for 131 < s , by Lemma 2 . 1 ,

(r2-|2'2(3)|2J/| |rw2-2'2(z)|2j is 2-harmonic in Z/2, .

Hence an application of Lemma 2.2 completes the proof of the required

claim.

In l ight of the above claim, (2.1) yields

| \f{T{qu>'))\2dm2{.w')
Of)2

< ((iH-|a|)/(i.-|a|))[(r+|T2(0, 0) | ) / (r- | r 2<0, 0)|)] |
Of/)2

If P tends to 1 , then the above inequality becomes

IKyil < {{l+\a\)/(l-\a\)f{(i+6)/(l-&)f f .

This proves that C_ is bounded, and

REMARKS. I. If T is constant, say b , in the statement of the

above theorem, then a similar result can be proved. In this case

\\CT\\ S ((1+M)/(1-N))
%((1+IV0' 0)0/(1-1^(0, 0)|))% .

2. It would be nice to prove the above theorem in a more general

form; that is, when both T.'s are non-constant.

Schwartz [6] proved that if T is a holomorphic function from U

into itself, then C_, € B[B2{U)) . We give a partial generalization of

this result to H2{lP) and finally to H2{lP) with n > 2 in the

following theorems.

THEOREM 2.2. Let t. and *„ be two holomopphio functions from U

into itself and let T : IT •+ u be suah that
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l t a2) = ( t j a j , *2(a2)) for every (a r a^ 6 i/2

Proof. We have, as in the proof of Theorem 2 . 1 , for f € lr[lr) ,

f \f{T(qw'))\2dm-(W)

W

= f f f f \n™)\'
' aw ' aw > aw > aw

•dm (w) dm Aw'

) |

The rest of the proof is similar to that of Theorem 1 of Ryff [5].

COROLLARY 2.1. If tx = *2 = t

Theorem 2.2 can easily be generalized to H ({/*) with n > 2 . We

state the result without proof in the following theorem.

THEOREM 2.3. Let [i , ..., i ) be a permutation of (l, ..., n)

and let t, : U •+ W be holomorphia for 1 S k £ n . If T : lP •+ if1 i,

defined by T(z , ..., z) = [t [z. ), ..., t [z. )) , then C €
1 n 1 %x n in 1

and

\\cT\\ s
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COROLLARY 2.2. Let T : iP •*• iP be a proper holomorphic map. Then

is a composition operator on H [lP] .

Proof. By Theorem ^.3.3 of [4], there exist n holomorphic functions

t , ..., t such that

for z = [z , ... , 2 ) € lP and a suitable permutation (•£.. , ... , i ) of

(l, , n) . Hence, by Theorem 2.3, C- is bounded.

COROLLARY 2.3. If T is an automorphism of iP , then CT is a

composition operator on H (y ) .

The proof follows from the corollary to Theorem 7.3.3 of [4] and

Theorem 2.3 above.

The family of functions ea(z) = s™ for a = (a , a ) € Z+ is an

orthonormal basis for the Hilbert space H [ir) . If y = [y , y ) € IT ,

then the reproducing kernel k of a\p) is given by the relation

y

{f, k > = f{y) , for every / € ff2(y2) .

Using Problem 30 of [3], it can be shown that

kAz) = (l-z y )~ '{l-z^2)~ for z = (z , z^\ € IT .

Furthermore, the function k is itself in a [li ) and its norm is given
y

by

"V1 = <V V = Vy)

In the following theorem these functions are used as effective tools

to obtain a lower bound for the norm of a composition operator.
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THEOREM 2.4. If CT is a composition operator on H2[lP) , then

sup ' ' . . . - . - . - _ . . - - -

We require some additional machinery to prove the theorem.

Let / be holomorphic in IT . Then f(z) = £ a(a)z ,

a = (a -a ) € Z . The function / is in a (lr) if and only if

|e(a) | 2 < «> . In fact

ll/ll = ( l k(a)|2}

14, p . 5 0 ] .

LEMMA 2 . 3 . Let f €

(2.2) | /(2) | < ||f||[l-|2l|
2] (l-|32|2) for

Proof. Let / € ̂ (t/2) . Then we have

f(z) = Yo(a)za

Therefore

= II/II-
Hence the proof of the lemma is completed.

Proof of Theorem 2.4. For a fixed z € IT , we have
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(2.3)

I 2 ) " 1 -
Applying (2.2) to fc^^j ° J1 and using (2.3), we have

]
Thus

which implies that

Since z € IT is arbitrary, the result follows.

COROLLARY 2.4. 1/ C is a composition operator on H2[lP) and

T(0, 0) = (0, 0) , then 11(7̂11 = 1 .

The proof follows from Theorems 2.1 and 2.U.

3. Intertwining analytic Toeplitz operators on n[lr)

DEFINITION. Let A and B be bounded linear operators on a Hilbert

space H . We say that a bounded linear operator X intertwines A and

B if XA = BX .

Let t € lT{V) be univalent. Then define T on IT as

r(Sl, z2) = t(a1) for (z^ zg) € U
2 . Clearly T € H°[l?) . Also let

£ € H [y) . In this section we give a sufficient condition for existence

of a non-zero bounded linear operator X which intertwines Mm and MT .
1 L
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THEOREM 3 . 1 . Let t, T and L be ae above. If the range of L is

a subspace of the range of t 3 then there exists a non-zero bounded linear

operator X on ir[u) satisfying the condition XM- = MJC .

Proof. Since t i s one-to-one and the range of L i s a subspaee of

the range of * , the function F
1i

s
1> O = *~ (^(2., z )) i s a

holomorphic mapping from IT into V . Then

i s a holomorphic mapping from IT into u . Define X on H [y) by

{Xf)[z±, Z2) = f(P1(31, Z2), 0)

Then, by Theorem 2.1, X is a bounded linear operator on H [yj and

^ , z2), 0)-f{F[z1,

for every (s. , 3p) ^ " a n d hence

(™r)(/) = {MLX)(f)

for every f € ̂ [u2) , which implies that

This completes the proof of the theorem.

EXAMPLE. Let t : U •* U be the identity map and let

L[zl' Z2^ = Sl32 f o r (sl' S2^ € ^ ' T h e n L € ^f"2) a n d a l s o t h e

function T defined as

T[zlt z2) = t(3 l )
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is in H°[lr) . Clearly the bounded linear operator X on n[ir)

defined by the relation

U/)(2l, z2) = /(a1a2, 0)

intertwines M- and M^ .
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