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The character table of a group of shape (2× 2.G):2

R. W. Barraclough

Abstract

We use the technique of Fischer matrices to write a program to produce the character table of
a group of shape (2 × 2.G):2 from the character tables of G, G:2, 2.G and 2.G:2.

1. Introduction

Let G be a finite group with an automorphism of order two and a double cover. We may form
a group of shape (2× 2.G):2, which we write as

(〈x〉 × 〈z〉.G):〈σ〉,

so that σ acts to swap x with xz and 〈x, z, σ〉 ∼=D8. (Here and throughout we use Atlas [2]
notation for products of groups.) This group has three interesting subgroups of index two:

G+ = 〈z〉.G:〈σ〉, G− = 〈z〉.G.〈xσ〉, G0 = 〈x〉 × 〈z〉.G.

Here G+ and G− are representatives of the two isomorphism classes of groups of shape 2.G.2
(they are isoclinic, as explained in [2]). To produce the character table of (2× 2.G):2, all we
must do is determine the class fusion from G0 and the character values on the outer conjugacy
classes. The Atlas [2] map of the character table of (2× 2.G):2 is

〈xz〉.G 〈xz〉.G:〈σ〉

〈z〉.G 〈z〉.G:〈σ〉

〈x〉 ×G 〈x〉 ×G:〈σ〉

G G:〈σ〉

s

s

r

r

r t

Here G has r conjugacy classes, 2.G has s characters that are faithful on z and G:2 has t
conjugacy classes of outer elements.

Let χ be a character in the 〈z〉.G square; then χ(z) = χ(xz) =−χ(1) and χ(x) = χ(1).
However, χσ(x) = χ(xz) =−χ(1) and χσ(xz) = χ(x) = χ(1). Thus, σ must fuse characters in
the 〈z〉.G square with characters in the 〈xz〉.G square. Therefore, the 〈z〉.G:〈σ〉 and 〈xz〉.G:〈σ〉
squares contain only zeros.

Received 30 November 2007; revised 6 January 2009.

2000 Mathematics Subject Classification 20C15, 20C40.

https://doi.org/10.1112/S1461157007000575 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157007000575


THE CHARACTER TABLE OF A GROUP OF SHAPE (2 × 2.G):2 83

Each outer class [g] of G:2 lifts to two classes in 22.G:2, namely [g, zg] and [xg, xzg]. To see
this, observe that gx = xgx= xxzg = zg, which also shows that if the order of g is indivisible
by four then the order of xg is twice the order of g. A character χ ∈ IrrG:2 takes value
χ(xg) =−χ(g), which, it would seem, completes the table.

We wish to improve the above analysis to sufficient precision to allow the character table
to actually be produced. There are about twelve different ways in which conjugacy classes of
G:2 can lift to 22.G:2, and these are explained in the case analysis beginning in § 4. (This
number is approximate because there are some subtleties involving the element orders which
one may use to produce further cases.) We choose to work with the example G= Fi22, because
the character table of 22.Fi22:2 is not stored in GAP [4], and most of the conjugacy class types
occur (the three that do not can be seen in A5 or L2(17)). Also, 22.Fi22 is a maximal subgroup
of Fi24, so we can compute the class fusion and then restrict characters in order to check our
calculations.

We compute the character table using Fischer matrices, as in this case we can eliminate all
uncertainty about the entries of the matrices. Thus, assembling the character table is easy. We
shall need the character table of G:2 and the projective character table of G. This is no more
information that we needed above, for the projective character table of G is easily deduced
from the character table of 2.G.

2. Fischer matrices

The technique of Fischer matrices [3] seems generally to have been used to calculate character
tables of maximal subgroups of sporadic simple groups and their automorphism groups, and
recently has enjoyed something of a revival; see, for example, [1] and similar papers.

The Fischer matrices method relies on the fact that every irreducible character can be
obtained by induction from the inertia groups. Specifically, let Ḡ=N.G be a group and let
θ1, θ2, . . . , θt be representatives for the orbits of G on IrrN (by convention θ1 = 1). Let H̄i be
the inertia group of θi in Ḡ. If ψi is a (possibly projective) extension of θi to H̄i, then ψiη↑Ḡ
is irreducible, where η is inflated from Hi = H̄i/N . In fact,

Irr Ḡ=
t⋃
i=1

{
(ψiη)↑Ḡ | η ∈ Irr H̄i and N ⊆ ker η

}
.

This is shown, for example, in [5] and [6].
We now let [g] be a conjugacy class of G. The set Hi ∩ [g] splits into a number of Hi conjugacy

classes; let representatives be yk ∈Hi for 1 6 k 6 r. Let these lift to classes with representatives
ylk in H̄i. When η̂ ∈ IrrHi lifts to η ∈ Irr H̄i, this gives η(ylk) = η̂(yk) for all l.

Lemma 1. With notation as above,

(ψiη)↑Ḡ(xj) =
r∑

k=1

η̂(yk)
∑

{l|ylk
∼H̄i

xj}

|CḠ(xj)|
|CH̄i

(ylk)|
ψi(ylk).

Proof. The induction formula for chosen i and j gives

(ψiη)↑Ḡ(xj) =
1
|H̄i|

∑
{h̄∈Ḡ|xh̄

j ∈H̄i}

ψiη(xh̄j ).
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Now the classes [ylk ]H̄i
partition H̄i, so the statement xh̄j ∈ H̄i is equivalent to xh̄j ∼H̄i

ylk for
those ylk that are Ḡ-conjugate to xj , that is,

(ψiη)↑Ḡ(xj) =
1
|H̄i|

r∑
k=1

∑
{l|ylk

∼Ḡxj}

∑
{h̄∈Ḡ|xh̄

j∼H̄i
ylk
}

ψiη(xh̄j ).

But, ψiη is a class function of H̄i and so its value is constant over the range of the rightmost
sum above. Hence,

(ψiη)↑Ḡ(xj) =
1
|H̄i|

r∑
k=1

∑
{l|ylk

∼Ḡxj}

|{h̄ ∈ Ḡ | xh̄j ∼H̄i
ylk}|ψiη(ylk)

=
1
|H̄i|

r∑
k=1

∑
{l|ylk

∼Ḡxj}

|[ylk ]H̄i
||{h̄ ∈ Ḡ | xh̄j = ylk}|ψiη(ylk)

=
1
|H̄i|

r∑
k=1

∑
{l|ylk

∼Ḡxj}

|[ylk ]H̄i
||{h̄ ∈ Ḡ | xh̄j = xj}|ψiη(ylk)

=
r∑

k=1

∑
{l|ylk

∼Ḡxj}

|CḠ(xj)|
|CH̄i

(ylk)|
ψiη(ylk)

=
r∑

k=1

η̂(yk)
∑

{l|ylk
∼Ḡxj}

|CḠ(xj)|
|CH̄i

(ylk)|
ψi(ylk).

Note that of course r depends on g, and [3] uses xj for our g and R(xj) for our r. By writing

a
(i)
kj =

∑
{l|ylk

∼Ḡxj}

|CḠ(xj)|
|CH̄i

(ylk)|
ψi(ylk) (2.1)

(cf. [3, equation 1.10.5]), Lemma 1 becomes

ψiη↑Ḡ(xj) =
r∑

k=1

a
(i)
kj η̂(yk).

This can be interpreted as multiplication of the matrix Mi(g) = (a(i)
kj ) by a portion of the

character table of Hi. The Fischer matrix for the class [g]G is

M(g) =


M1(g)
M2(g)

...
Mt(g),


where, if Hi ∩ [g] = ∅, then Mi(g) is not defined and is omitted from M(g).

The various properties of character tables can be used to deduce constraints on the entries
of the Fischer matrices; for example, the orthogonality relations give a weighted orthogonality
for the Fischer matrices. The Fischer matrices method relies on using these properties to deduce
the entries of the matrices. See, for example, [3], [7] or [8] and subsequent works.

3. The character table of 22.Fi22:2

The non-split extension of N = 22 by G= Fi22:2 provides a suitable example of a Fischer
matrices calculation. We use information from the character tables of the groups 2.Fi22:2 and
2× 2.Fi22:2 to check our calculations.
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Figure 1. The relationship between conjugacy classes of Fi22 and 2.Fi22:2. Horizontal arrows are for
class fusion under the automorphism, and vertical arrows show lifting to the double cover. Diagram
(a) shows the groups involved. The other diagrams give examples of some of the possibilities. Class

names are for Fi22.

We write our group Ḡ= 22.Fi22:2∼= (2× 2.Fi22):2 as

(〈x〉 × 〈z〉.Fi22):〈σ〉,

so that σ acts to swap x with xz and 〈x, z, σ〉 ∼=D8. The group Ḡ has three orbits on elements
of the normal 22 group and the stabilizers are the following.

(1) Ḡ fixing the identity. The trivial character of 22 extends to Ḡ.
(2) 2× 2.Fi22 fixing x and xz. Neither of the other two characters of the 22 that represent

z faithfully can extend to the inertia group for the following reason. Choose g ∈ 22.Fi22 that is
conjugate to zg [9] and let χ be such an extension. Then χ(g) = χ(zg), which is non-zero as χ
is linear. But, z is represented as −1, which forces χ(g) =−χ(zg).

(3) Ḡ fixing z. The character that takes values −1 on x and xz extends to the inertia group.
The required inertia factors are therefore Fi22:2, Fi22 and Fi22:2, respectively, and we must

use the projective character table of Fi22.
The program to construct the character table (ct22g2.gap) is included as an electronic

appendix to this paper. It defines a function, CharacterTableTwoSquaredGsplitTwo, for
constructing the character table of such a group.

The calculations are described in the following sections.

4. Conjugacy classes and Fischer matrices

We can easily find the number of conjugacy classes of 22.Fi22:2 lying above a class [g] of Fi22:2
by counting class fusions from our inertia groups and using the fact that Fischer matrices are
square. With a little more work, we can also compute the class fusion from 2× 2.Fi22, which
we use later to check our calculations.

We consider the diagram in Figure 1(a) and, for g ∈ 2.Fi22:2, write ĝ for the image of g
under the natural homomorphism to Fi22:2. We follow the method explained in detail in [8],
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writing k for the number of orbits of N = 22 acting by conjugation on the coset Ng, and fj for
the numbers of these fused by the action of CG(g). The following cases arise.

(1) Let [ĝ] be a conjugacy class of Fi22 that does not fuse with another class under the action
of σ.

(i) If g is not conjugate to zg in 2.Fi22, then we have the following.
(a) If g is not conjugate to zg in 2.Fi22:2 (for example, ĝ ∈ 1A, as in Figure 1(b)),
then we obtain three conjugacy classes with representatives g, xg and zg,
respectively. (The second column corresponds to a class of twice the size of the
other two, so xg and xzg must fuse to this class.) Our Fischer matrix is

M([ĝ]) =

1 1 1
2 0 −2
1 −1 1


with k = 4 and f1 = 1, f2 = 2, f3 = 1. The class [ĝ] lifts to the first of these new
classes and these elements have order |g|. If g has odd order, then the other
two classes contain elements of order 2|g|, otherwise they contain elements of order
|g|. (It is possible that |g|= 2|ĝ|. This case does not occur for Fi22; the smallest
Atlas group where it does occur is L2(17).)
(b) If g is conjugate to zg in 2.Fi22:2 (for example, ĝ ∈ 2A, as in Figure 1(c)), then
we obtain three conjugacy class representatives xg, g and xzg. Our Fischer matrix is

M([ĝ]) =

 1 1 1
2 0 −2
−1 1 −1


with k = 2 and f1 = 1, f2 = 2, f3 = 1. The class [ĝ] must lift to the second of these
new classes, which is twice the size of the other two. The order of the elements in
both classes is the same as the order of g.

(ii) (a) Suppose that g is conjugate to zg in 2.Fi22 and g has the same order as ĝ (for
example, ĝ ∈ 2C). Then g and zg are also conjugate in 2.Fi22:2 and xg is conjugate
to xzg in Ḡ. We thus obtain two conjugacy classes and our Fischer matrix is

M([ĝ]) =
(

1 1
1 −1

)
with k = 2 and f1 = 1, f2 = 1. The class [ĝ] lifts to the first of these new classes.
Both new classes contain elements with the same order as ĝ.
(b) Suppose that g is conjugate to zg in 2.Fi22 and g has twice the order of ĝ. This
case does not occur for Fi22. An example is class 2A of A5. The only difference from
case 1(b)i is the element orders, which are doubled.

(2) Let [ĝ] be a conjugacy class of Fi22 that is fused with a class [ĥ] under the action of σ.
(i) If g is conjugate to zg in 2.Fi22 (for example, g ∈ 16A, as in Figure 1(d)), then

we obtain two conjugacy classes with representatives g ∼ zg ∼ h∼ zh and zg ∼ xzg ∼
xh∼ xzh. The Fischer matrix is

M([ĝ]) =
(

1 1
1 −1

)
with k = 2 and f1 = 1, f2 = 1, and the class [ĝ] lifts to the first of these new classes.
(ii) Suppose that g is not conjugate to zg in 2.Fi22 and [g] fuses with [h] in 2.Fi22:2

(for example, ĝ ∈ 11A and ĥ ∈ 11B, as in Figure 1(e)). It follows that g ∼ h, xg ∼ xh,
xzg ∼ xzh and zg ∼ zh and these are representatives for the four new conjugacy classes
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in that order. Our Fischer matrix is

M([ĝ]) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


with k = 4 and f1 = f2 = f3 = f4 = 1.
(iii) Suppose that g is not conjugate to zg in 2.Fi22 and [g] fuses with [zh] in 2.Fi22:2
(for example, ĝ ∈ 18A and ĥ ∈ 18B, as in Figure 1(f)). The four new conjugacy classes
are those of xg ∼ xzh, g ∼ zh, zg ∼ h and xzg ∼ xh in that order. The Fischer matrix is

M([ĝ]) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


with k = 4 and f1 = f2 = f3 = f4 = 1.

(3) Suppose now that ĝ ∈ Fi22:2 \ Fi22. Then gx = xgx= xxzg = zg, so g is always conjugate
to zg in G.

(i) Suppose that ĝ has order indivisible by four and lifts to one class in 2.Fi22:2 of
elements of the same order, for example, ĝ ∈ 2D. Now (xg)(xg) = zg2, which must have
even order, so ĝ lifts to two classes in Ḡ, the second (with representatives xg and xzg)
consisting of elements of twice the order of those in the first, which have the same order
as ĝ ∈ Fi22:2.
(ii) Suppose that ĝ has order indivisible by four and lifts to one class in 2.Fi22:2 of
elements of twice the order, for example, ĝ ∈ 2F . This means that (g)(g) = zg2, so ĝ lifts
to two classes in Ḡ, the first (with representatives g and zg) consisting of elements of
twice the order of those in the second, which have the same order as ĝ ∈ Fi22:2.
(iii) If ĝ has order indivisible by four and lifts to two classes in 2.Fi22:2 of elements of
the same order, for example, ĝ ∈ 6M , then (zg)(zg) = g2 and (xg)(xg) = zg2. Therefore,
ĝ lifts to two classes in Ḡ, the second (with representatives xg and xzg) consisting of
elements of twice the order of those in the first, which have the same order as ĝ ∈ Fi22:2.
(iv) Suppose that ĝ has order divisible by four and lifts to two classes of elements of the
same order as ĝ, for example, ĝ ∈ 8F . Then ĝ lifts to two conjugacy classes in 2.Fi22:2,
both consisting of elements of the same order as ĝ ∈ Fi22:2.
(v) Suppose that ĝ has order divisible by four and lifts to two classes of elements of the

same order as ĝ. This case does not occur in Fi22; an example is class 4A of A5. In this
case ĝ lifts to two conjugacy classes in 2.Fi22:2, both consisting of elements of twice the
order as ĝ ∈ Fi22:2.

In all of these cases the Fischer matrix is
(

1 1
1 −1

)
with k = 2 and f1 = f2 = 1.

5. From class functions to characters

Our Fischer matrices are only defined up to multiplication of rows by −1, and in the 4× 4
matrices any permutation of the bottom three rows is possible. However, we have chosen class
fusion from 2× 2.Fi22, which forces us to use the matrices given above.

Using the Fischer matrices from above, and from GAP the character table of Fi22:2 and the
projective character table of Fi22, we assemble a table of class functions χi for Ḡ that obey
row and column orthogonality. The element orders follow from the calculations above, as does
class fusion from 2× 2.Fi22. Because of our choice of ordering of the conjugacy classes, we can
also write down the projection map to 2.Fi22:2.

We use these maps to restrict each of our class functions to a class function ψ of the group
Fi22:2. We then check that 〈ψ, χ〉 ∈ N ∪ {0} for all χ ∈ Irr(Fi22:2). (Whenever it was not, the

https://doi.org/10.1112/S1461157007000575 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157007000575


88 R. W. BARRACLOUGH

reason was always because we had not used the correct Fischer matrix for our chosen ordering
of the conjugacy classes.)

6. Power maps

To compute the power maps, we observe that classes lying above [ĝ] must power up to classes
lying above [ĝp] for all p and, for odd p, elements in [ng] must p-power to elements in [ngp] for
all n ∈ 〈x, z〉. For p= 2 and ĝ ∈ Fi22, elements in [ng] square to elements in [g] and, for outer
elements, the 2-power map is clear from item 4 of the case analysis.

We can also use GAP to compute possible power maps from the character table. Unusually,
it produces unique p-power maps for our table and these agree with ours. Furthermore, these
agree with the power maps of 2× 2.Fi22.

To further test our class functions and power maps, we check that all symmetric and
anti-symmetric parts of all irreducibles have non-negative inner products with all irreducibles.

Finally, GAP produces four possible class fusions to Fi24. There are two independent choices.
– There are two classes of elements of order 26 lying above class 13A of Fi22:2. These could

fuse either way round to the algebraically conjugate classes 26B and 26C of Fi24.
– Our labelling of the involutions x and xz was arbitrary; if we swap them then our choice

of class representatives in cases 1(a)ii, 2(b) and 2(c) is affected. For example, in case 2(b),
the class representatives would become (in order) g ∼ h, xzg ∼ xzh, zg ∼ zh and zg ∼ zh.
The labelling of x and xz corresponds to the other choice for class fusion. (The classes of
elements of order four lying above 11A are not affected, since they fuse to the same class
in Fi24.)

7. A GAP function for the general case

The function
CharacterTablleTwoSquaredGsplitTwo(t_g, t_g2, t_2g, t_2g2, proj1, proj2)
assembles the character table. The arguments are:

(1) t g, the character table of G;
(2) t g2, the character table of G:2;
(3) t 2g, the character table of 2.G;
(4) t 2g2, the character table of 2.G:2;
(5) proj1, the index in ProjectivesInfo(t g) for the record with name 2.G. This is usually

1;
(6) proj2, the index in ProjectivesInfo(t g2) for the record with name 2.G:2. This is

usually 1.
The function takes only a few seconds, so such character tables can be computed on demand.

8. Conclusions

Finally, a word of warning. We have always assumed that in 2.G:2 the normal subgroup 2.G has
a complement. However, this need not always be the case: for example, A6 has three involutory
automorphisms, σ, τ and ρ= στ say, with

A6:〈σ〉 ∼= S6 A6:〈τ〉 ∼= PGL2(9) A6
.〈ρ〉 ∼= M10.

Our program can produce character tables for 22.S6 and 22.PGL2(9), but not for 22.M10. This is
because there is no group 2.A6.23, just a group (4 ◦ 2.A6).23 which is isoclinic to (2× 2.A6).23.
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