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Abstract

In Flaminio and Montagna [‘An algebraic approach to states on MV-algebras’, in: Fuzzy Logic
2, Proc. 5th EUSFLAT Conference, Ostrava, 11–14 September 2007 (ed. V. Novák) (Universitas
Ostraviensis, Ostrava, 2007), Vol. II, pp. 201–206; ‘MV-algebras with internal states and probabilistic
fuzzy logic’, Internat. J. Approx. Reason. 50 (2009), 138–152], the authors introduced MV-
algebras with an internal state, called state MV-algebras. (The letters MV stand for multi-
valued.) In Di Nola and Dvurečenskij [‘State-morphism MV-algebras’, Ann. Pure Appl. Logic
161 (2009), 161–173], a stronger version of state MV-algebras, called state-morphism MV-algebras,
was defined. In this paper, we present the Loomis–Sikorski theorem for σ -complete MV-
algebras with a σ -complete state-morphism-operator, showing that every such MV-algebra is a
σ -homomorphic image of a tribe of functions with an internal state induced by a function where all
the MV-operations are defined by points.
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1. Introduction

MV-algebras were introduced in the late fifties by Chang [3] as algebraic semantics
for Łukasiewicz many-valued logic; the letters MV stand for multi-valued. Nowadays
MV-algebras enter in many areas of mathematics and its applications, including
quantum structures; see, for example, [12]. The seminal paper that is crucial for the
theory of MV-algebras is that of Mundici [23], concerning the categorical equivalence
of the variety of MV-algebras and the category of unital `-groups; for an overview of
MV-algebras see [4].
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The Loomis–Sikorski theorem was proved independently by Loomis [22] and
Sikorski [29]; see, for example, [30]. It states that each σ -complete Boolean algebra
is a σ -epimorphic image of a σ -algebra of subsets of some set �. This result was
extended to σ -complete MV-algebras in [9, 25]; see also [1]. In this case, every
σ -complete MV-algebra is a σ -epimorphic image of a tribe of [0, 1]-valued functions
on a set �, where the MV-algebraic operations among functions are defined by points.
This result was also extended to monotone σ -complete effect algebras in [2].

Forty years after the appearance of MV-algebras, Mundici [24] presented an
analogue of probability measure for MV-algebras, called a state, as an averaging
process for formulas in Łukasiewicz logic. In the last decade, the theory of
states on MV-algebras and relative structures has been intensively studied; see, for
example, [13, 16, 19, 20, 26–28]. We emphasize that a state is a proper notion for
quantum structures; see [12].

Recently, Flaminio and Montagna in [14, 15] extended the language of MV-
algebras, adding a unary operation τ , called an internal state or a state-operator. Such
MV-algebras are called state MV-algebras. We recall that modality Pr (interpreted
as probably) in many-valued logic has the following semantic interpretation: the
probability of an event a is the truth value of Pr(a). Furthermore, if s is a state, then
s(a) is interpreted as an average of the appearances of the many-valued event a.

State MV-algebras have been intensively studied; see, for example, [5–7]. There is
a special type of state-operators: state-morphism-operators, which are state-operators
that are also MV-homomorphisms. In [5], we characterized the set of subdirectly
irreducible state-morphism MV-algebras (we note that there is still no characterization
of subdirectly irreducible state MV; see [14]). In [7, 8], we described different varieties
of state MV-algebras; in particular, we showed that if A is an MV-algebra, τ is a state-
operator and τ(A) ∈ V(S1, . . . , Sn), then τ is a state-morphism-operator; we recall
that V(S1, . . . , Sn) is the variety of MV-algebras generated by S1, . . . , Sn and Si is
the MV-algebra of the form Si = {0, 1/ i, 2/ i, . . . , i/ i}.

In this paper, we show that every σ -complete state-morphism MV-algebra (A, τ )
is an epimorphic image of an appropriate tribe of functions on some set � with a
state-morphism-operator induced by a function from � into itself. This gives a new
variant of the Loomis–Sikorski theorem for σ -complete state-morphism MV-algebras
with internal state.

The paper is organized as follows. In Section 2, we give elements of the theory
of MV-algebras. We mention general comparability, which every σ -complete MV-
algebra satisfies, and recall some basic representations of MV-algebras satisfying
general comparability. Section 3 presents state MV-algebras and state-morphism
MV-algebras. We give some characterizations of semisimple state-morphism MV-
algebras and show that each state-morphism-operator is induced by some idempotent
function g, which we may assume is continuous on some compact Hausdorff
topological space. The main body of the article is Section 4, where the Loomis–
Sikorski theorem and its variants, including a continuous variant, are proved. The last
section gives some alternative proofs of Theorem 3.7 for special cases.
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2. MV-algebras and general comparability—properties

We recall that an MV-algebra is an algebra (A; ⊕, ∗, 0) of signature 〈2, 1, 0〉,
where (A; ⊕, 0) is a commutative monoid with neutral element 0 and the following
conditions hold for all x, y ∈ A:
• (x∗)∗ = x ;
• x ⊕ 1= 1, where 1= 0∗;
• x ⊕ (x ⊕ y∗)∗ = y ⊕ (y ⊕ x∗)∗.
We define an additional total operation � on A via x � y := (x∗ ⊕ y∗)∗.

Suppose that (G, u) is an Abelian `-group with a strong unit u ≥ 0, that is, G is a
lattice-ordered group and for all g ∈ G, there is a positive integer n such that g ≤ nu.
Then a prototypical example of an MV-algebra is

A = (0(G, u); ⊕, ∗, 0)

where 0(G, u) := [0, u], 0 being the Mundici functor, g1 ⊕ g2 := (g1 + g2) ∧ u and
g∗ := u − g; indeed, by [23], every MV-algebra is isomorphic to some 0(G, u).

We recall that an ideal of an MV-algebra A is a nonempty subset I of A such that if
a ≤ b and b ∈ I , then a ∈ I , and also if a, b ∈ I , then a ⊕ b ∈ I . An ideal I is maximal
if I 6= A, and also, if J is an ideal and I ⊆ J 6= A, then I = J . The dual notion to an
ideal is a filter. We define the radical of A by Rad(A) :=

⋂
{I ∈M(A)}, where M(A)

is the set of all maximal ideals of A.
A state on an MV-algebra A is a mapping s : A→ [0, 1] such that s(1)= 1 and

s(a ⊕ b)= s(a)+ s(b) whenever a � b = 0. The set of all states on A is denoted by
S(A). The set S(A) is convex, that is, if s1, s2 are states on A and λ ∈ [0, 1], then
λs1 + (1− λ)s2 is a state on A. A state s is extremal if it cannot be written in the form
s = λs1 + (1− λ)s2, where s1, s2 ∈ S(A) and λ ∈ (0, 1). The set of extremal states is
denoted by ∂e S(A). We recall that a state s is extremal if and only if Ker(s), given by

Ker(s) := {a ∈ A : s(a)= 0},

is a maximal ideal of A, or equivalently, s(a ⊕ b)=min{s(a)+ s(b), 1} for all
a, b ∈ A (such a mapping is also called a state-morphism). It is possible to show that
both S(A) and ∂e S(A) are nonempty. When we introduce the weak topology on the set
of states, that is, a net {sα} of states converges weakly to a state s if limα sα(a)= s(a)
for every a ∈ A, then S(A) and ∂e S(A) are compact Hausdorff topological spaces. By
the Krein–Mil’man theorem, [17, Theorem 5.17], every state on A is a weak limit of
a net of convex combinations of extremal states. In addition, the topological space
∂e S(A) is homeomorphic to the space of all maximal ideals M(A) (ultrafilters F(A))
with the hull-kernel topology. This homeomorphism is given by s↔ Ker(s), see [11],
[17, Theorem 15.32], because every maximal ideal is the kernel of a unique extremal
state, and a state s is extremal if and only if Ker(s) is a maximal ideal.

Let A be an MV-algebra. An element a ∈ A is said to be Boolean if a ⊕ a = a.
Then a is Boolean if and only if any or all the following hold:

a � a = a; a ∧ a∗ = 0; a ∨ a∗ = 1.
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Let B(A) be the set of all Boolean elements of A. Then B(A) is a Boolean subalgebra
of A. Let a be a fixed Boolean element of A. Then the interval [0, a] can be endowed
with the restriction of⊕,� to [0, a] and with ∗a , where x∗a := x∗ ∧ a for all x ∈ [0, a],
and ([0, a],⊕,�, ∗a, 0, a) is an MV-algebra. The mapping pa : a→ [0, a] defined
by pa(x)= x ∧ a for all x ∈ A, is an MV-homomorphism. In addition, the mapping
8a : a→ [0, a] × [0, a∗], defined by

8a(x)= (pa(x), pa∗(x))= (x ∧ a, x ∧ a∗) ∀x ∈ A,

is an MV-isomorphism.
We say that an MV-algebra A satisfies general comparability if, given x, y ∈ A,

there is a Boolean element a ∈ A such that pa(x)≤ pa(y) and pa∗(x)≥ pa∗(y).
This means that the two coordinates of the elements x = (pa(x), pa∗(x)) and y =
(pa(y), pa∗(y)) can be compared in [0, a] and [0, a∗], respectively.

For example, every linearly ordered MV-algebra satisfies general comparability
(trivially); every Cartesian product of linearly ordered MV-algebras and every
σ -complete MV-algebra satisfy general comparability. Further, if A satisfies the
general comparability, so does A/I for each ideal I of A. However, there are examples
of MV-algebras that do not satisfy the general comparability.

We recall that a topological space� is said to be connected if it cannot be expressed
as a union of two nonempty disjoint open subsets, totally disconnected if it has a base
consisting of clopen (closed and open) sets, and basically disconnected provided the
closure of every open Fσ subset of � is open (an Fσ set is a countable union of closed
sets). Totally disconnected spaces are also called Stone spaces or Boolean spaces. For
example, if � is finite, or if � is a Cantor set in [0, 1], then � is totally disconnected.
Further, if A is a σ -complete MV-algebra, then ∂e S(A) is a basically disconnected,
compact, Hausdorff topological space [17].

Now let � be a compact Hausdorff topological space and let C(�) be the set of
all continuous real-valued functions on �. Then C(�) is an Abelian `-group with
strong unit 1� under the pointwise ordering of functions. Define the MV-algebra
C1(�)= 0(C(�), 1�). Then B(C1(�))= {χA : A is clopen in �}. The system of
all clopen subsets of � forms a Boolean algebra of a Stone space if and only if � is
totally disconnected [17]. Therefore C1(�) can satisfy general comparability only if
� is totally disconnected.

For example, if �= [0, 1] with the usual topology, then C1([0, 1]) is an MV-
algebra which does not satisfy general comparability, while B(C1([0, 1]))= {0�, 1�}.
The same is true for all connected compact Hausdorff spaces X .

It is known that every extremal state on a Boolean algebra is two-valued. In what
follows, we show every two-valued state on B(A) can be uniquely extended to an
extremal state on an MV-algebra A provided A satisfies general comparability.

The following results concerning MV-algebras satisfying general comparability can
be found in [10].
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THEOREM 2.1. Let A be an MV-algebra satisfying general comparability, and let
K be a maximal ideal of B(A). Then there is a unique state s on A such that
B(A) ∩ Ker(s)= K . This state is extremal.

We denote by M(B(A)) the set of all maximal ideals of the Boolean algebra B(A).
With the hull-kernel topology, it is totally disconnected.

THEOREM 2.2. Let A be an MV-algebra satisfying general comparability. Then the
mapping,

φ(s) := B(A) ∩ Ker(s) ∀s ∈ ∂e S(A), (2.1)

defines a homeomorphism φ of ∂e S(A) onto M(B(A)).

THEOREM 2.3. Let A be an MV-algebra satisfying general comparability. Then
∂e S(A) and ∂e S(B(A)) are homeomorphic compact Hausdorff totally disconnected
spaces. The mapping φA : s ∈ ∂e S(A) 7→ s|B(A) implements the homeomorphism.

PROOF. This is a direct consequence of Theorems 2.2 and 2.1. 2

We recall that an extremal state s is discrete if s(A)= {0, 1/n, . . . , n/n} for some
positive integer n. An extremal state is discrete if and only if there exists a positive
integer n such that A/Ker(s)= Sn =: 0(n−1Z, 1).

Let A be an MV-algebra. Given an element a ∈ A, we define a continuous function
â : ∂e S(A)→ [0, 1] by â(s) := s(a) for all s ∈ ∂e S(A). Then Â := {â : a ∈ A} is an
MV-algebra, and the mapping,

ψ(a)= â ∀a ∈ A, (2.2)

is an MV-homomorphism from A onto Â. The mapping ψ is an isomorphism if and
only if A is semisimple, that is, Rad(A)= {0}.

The following representation of MV-algebras satisfying general comparability
follows from [17, Theorem 8.20].

THEOREM 2.4. Let A be an MV-algebra satisfying general comparability. Set

M(A) := { f ∈ C1(∂e S(A)) : f (s) ∈ s(A) for all discrete s ∈ ∂e S(A)}. (2.3)

Then ψ(A) is an MV-subalgebra of M(A) that is dense in M(A) in the supremum
norm topology. If moreover A is semisimple, then A can be isomorphically embedded
into M(A).

If A is a σ -complete MV-algebra, then A is isomorphic to M(A).

We note that if A is an MV-algebra, then Â is a subalgebra of M(A).

3. State-morphism-operators on semisimple MV-algebras

In this section, we define state MV-algebras and we characterize state-morphism-
operators, defined mainly on semisimple MV-algebras. We show that, if A is
representable as an MV-algebra of functions on some compact Hausdorff topological
space, then each state-morphism-operator τ on A is of the form τ( f )= f ◦ g for all
f ∈ A, for some continuous function g : ∂e S(A)→ ∂e S(A) with g2

= g.

https://doi.org/10.1017/S144678871100111X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871100111X
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According to [14, 15], a state MV-algebra (A, τ ) := (A; ⊕, ∗, 0, τ ) is an algebraic
structure, where (A; ⊕, ∗, 0) is an MV-algebra [4] and τ is a unary operator on A,
called an internal state or a state-operator, satisfying the following properties, for
each x, y ∈ A:

(i) τ(0)= 0;
(ii) τ(x∗)= (τ (x))∗;
(iii) τ(x ⊕ y)= τ(x)⊕ τ(y � (x � y)∗);
(iv) τ(τ (x)⊕ τ(y))= τ(x)⊕ τ(y).

In [15] it is shown that in each state MV-algebra the following hold:
• τ(τ (x))= τ(x);
• τ(1)= 1;
• if x ≤ y, then τ(x)≤ τ(y);
• τ(x ⊕ y)≤ τ(x)⊕ τ(y);
• the image τ(A) is the domain of an MV-subalgebra of A and (τ (A), τ ) is a state

MV-subalgebra of (A, τ ).
In [5], the authors defined a stronger structure, a state-morphism MV-algebra,

as a state MV-algebra (A, τ ) (that is, an algebra satisfying (i)–(iv) above) with the
following additional property.

(v) τ(x ⊕ y)= τ(x)⊕ τ(y).

Equivalently, τ is an MV-endomorphism of A such that τ = τ ◦ τ . In this case, τ is
called a state-morphism-operator.

PROPOSITION 3.1. Let τ be a state-morphism-operator on an MV-algebra A. Then
τ(B(A))⊆ B(A) and τ restricted to B(A) is a state-morphism.

PROOF. Because τ preserves �, for each Boolean element a ∈ B(A), it is clear that
a � a = a so that τ(a)= τ(a � a)= τ(a)� τ(a). 2

Consider the following conditions on a system T of functions:

(i) 1 ∈ T ;
(ii) If f ∈ T , then 1− f ∈ T ;
(iii) if f, g ∈ T , then f ⊕ g ∈ T , where ( f ⊕ g)(ω)=min{ f (ω)+ g(ω), 1} for all

ω ∈�;
(iv) if { fn} is a sequence of elements of T , then

⊕
n fn ∈ T , where (

⊕
n fn)(ω) :=

min{
∑

n fn(ω), 1} for all ω ∈�.

We say that a system T of functions from [0, 1]� is a Bold algebra if (i)–(iii) hold, and
a tribe if T also satisfies (iv). Hence, every Bold algebra is an MV-algebra whilst every
tribe is a σ -complete MV-algebra, and in both cases, the MV-operations are defined
pointwise.

We recall that if A is an MV-algebra, then Â := {â : a ∈ A} is a Bold algebra
of continuous functions defined on the compact space ∂e S(A). In addition, A is
isomorphic to Â under the mapping a 7→ â if and only if A is semisimple. Then B(A)
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under this representation has the form

B̂(A)= {â : a ∈ B(A)} = {χA : A is a clopen subset of ∂e S(A)}.

Moreover, from Proposition 3.2, if τ is a state-operator on A, then we can define a
state-operator τ̂ on Â by τ̂ (â)= (τ (a))ˆ for all a ∈ A.

Similarly, let τB be the restriction of τ to B(A) and let τ̂B correspond to τB defined
on B̂(A).

PROPOSITION 3.2. Let A be an MV-algebra, Â be the associated Bold algebra, and
τ be a state-morphism-operator on A.

(1) The mapping g that assigns to each extremal state s ∈ ∂e S(A) the extremal state
s ◦ τ is a continuous mapping from ∂e S(A) into itself such that g ◦ g = g and
g(s)(A)⊆ s(A) for all discrete extremal states s ∈ ∂e S(A). Let

M(A)= { f ∈ C1(∂e S(A)) : f (s) ∈ s(A) for all discrete s ∈ ∂e S(A)}. (3.1)

Define τg : M(A)→ M(A) by τg( f )= f ◦ g for all f ∈ M(A). Then τg is a
state-morphism-operator on the Bold algebra M(A).

(2) Define τ̂ : Â→ Â by τ̂ (â) := (τ (a)) ˆ for all a ∈ A. Then τ̂ is a well-defined
state-morphism-operator on Â that is the restriction of τg .

PROOF. First we prove (1). If s is a state on A, then s ◦ τ is a state on A too. Further,
if s is extremal, then s ◦ τ is extremal by the characterization of extremal states and
because τ is an endomorphism. Hence the mapping g on ∂e S(A) is well defined.

Moreover, g is continuous because if sα→ s, then

lim
α

g(sα)(a)= lim
α

sα(τ (a))= s(τ (a))= g(s)(a) ∀a ∈ A.

From the construction of g it follows that g ◦ g = g because

g(g(s))= g(s ◦ τ)= s ◦ τ ◦ τ = s ◦ τ = g(s) ∀s ∈ ∂e S(A).

Let s be a discrete state on A. Then s(A)= {0, 1/n, . . . , n/n} for some positive
integer n. Then s(τ (A))⊆ {0, 1/n, . . . , n/n}, and because g(s) is an extremal state,
s(τ (A))= {0, 1/m, . . . , m/m} for some divisor m of n.

Now take f ∈ M(A). Then f is a continuous function taking values in the interval
[0, 1]. To verify that τg( f ) ∈ M(A) we have to show that τg( f )(s) ∈ s(A) for all
discrete extremal states s on A. We can check that

τg( f )(s)= f (g(s))= f (s ◦ τ) ∈ (s ◦ τ)(A)⊆ s(A)

by the statement just proved. Hence, τg( f ) is also an element of M(A). It is now easy
to verify that τg is a state-morphism-operator on the Bold algebra M(A).

Now we prove (2). We are going to show that τ̂ is a well-defined operator on Â.
Assume that â = b̂. This means that s(a)= s(b) for all s ∈ ∂e S(A). Hence

s(τ (a))= g(s)(a)= g(s)(b)= s(τ (b)),

so that (τ (a)) ˆ = (τ (b)) ˆ and then τ̂ (â)= â ◦ g = b̂ ◦ g = τ̂ (b̂). Now Â is a
subalgebra of M(A), so τ̂ is the restriction of τg . 2
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REMARK 3.3. We summarize Proposition 3.2: if A is a semisimple MV-algebra and
τ is a state-morphism-operator on A, then τ is uniquely determined by an appropriate
continuous function g.

THEOREM 3.4. Let τ be a state-morphism-operator on an MV-algebra A. Then there
is a continuous function g : ∂e S(A)→ ∂e S(A) such that g ◦ g = g, g(s)(A)⊆ s(A)
for all discrete extremal states s and (τ (a)) ˆ = τ̂ (â)= â ◦ g for all a ∈ A.

PROOF. Take the continuous function g defined in Proposition 3.2. Then g ◦ g = g
and g(s)(A)⊆ s(A) for all discrete extremal states s on A. Define τ̂ on Â by
τ̂ (â)= (τ (a)) ˆ for all a ∈ A, as in Proposition 3.2. Then τ̂ is a state-morphism-
operator on Â. Now let s ∈ ∂e S(A) and a ∈ A. Then

τ̂ (â)(s)= τ(â)(s)= s(τ (a))= (s ◦ g)(a)= g(s)(a)= â(g(s))= (â ◦ g)(s),

as required. 2

Let B be a Boolean algebra and let ∂e S(B) be the system of all extremal states on
B. Then each such state is two-valued on B. For each b ∈ B, define the continuous
function b̂ on ∂e S(B) by b̂(s)= s(b) for all s ∈ ∂e S(B), and let B̂ := {b̂ : b ∈ B}. Each
b̂ is in fact the characteristic function of some clopen set E ⊆ ∂e S(B). Let τB be
a state-operator on B, and let g = gB be the continuous function on ∂e S(B) whose
existence is guaranteed by Proposition 3.2.

PROPOSITION 3.5. Let B be a Boolean algebra and τB be a state-operator on B.
Then τB is a state-morphism-operator. Define the mapping τgB on B̂ by τgB (b̂)=
b̂ ◦ gB for all b̂ ∈ B̂. Then τgB is a state-morphism on B̂ and τgB = τ̂B , where τ̂B is the
state-morphism-operator on B̂ defined by τ̂B(b̂)= τB(b) ˆ .

PROOF. Let s ∈ ∂e S(B). Then we have τgB (b̂)(s)= b̂(g(s))= b̂(s ◦ τB)= s(τB(b))=
τ̂B(b̂)(s). 2

PROPOSITION 3.6. Suppose that A is a σ -complete MV-algebra. Then the mapping
ψ : A→ C1(∂e S(A)), given by ψ(a)= â for all a ∈ A, preserves all countable
suprema and infima that exist in A.

PROOF. If A = 0(G, u), where (G, u) is an Abelian `-group with strong unit u,
then, by [18], A is σ -complete if and only if G is Dedekind σ -complete, that is,
if gn, g ∈ G and gn ≤ g for all n ≥ 1 imply that

∨
n gn exists in G. Applying the

Mundici functor [4] and [17, Lemma 9.12], we have the desired statement. 2

Let A be an MV-algebra. We introduce a partial binary operation + as follows:
a + b is defined in A if and only if a ≤ b∗ and, when it is defined, a + b := a ⊕ b.
Then the operation + is commutative and associative. Further, if A = 0(G, u), then
a + b corresponds to the group addition + in the Abelian `-group G.

We define 0 · a := 0 and 1 · a := a. Inductively, if n · a is defined in A and
n · a ≤ a∗, then we set (n + 1) · a := (n · a)+ a. Now Rad(A) consists of all elements
a ∈ A such that n · a exists in A for each integer n ≥ 1. Such elements are said to be
infinitesimal.
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We say that a state-operator τ on an MV-algebra A is monotone σ -complete if
an ↗ a (that is, an ≤ an+1 for all n ≥ 1 and a =

∨
n an) implies that τ(a)=

∨
n τ(an).

We recall that if τ is monotone σ -complete, then it preserves all countable suprema
and infima that exist in A, and we call it a σ -complete state-morphism-operator.

For any function f : ∂e S(A)→ [0, 1], we set N ( f ) := {s ∈ ∂e S(A) : f (s) 6= 0}.

THEOREM 3.7. Let τ be a σ -complete state-morphism-operator on a σ -complete
MV-algebra A. Then there is a continuous function g defined on ∂e S(A) such that
g ◦ g = g, g(s)(A)⊆ s(A) for all discrete extremal states s on E and τ̂ (â)= â ◦ g for
all a ∈ A.

Conversely, let g : ∂e S(A)→ ∂e S(A) be a continuous function such that g ◦ g = g
and g(s)(A)⊆ s(A) for all discrete extremal states s. Define the mapping τg on Â by
τg(â) := â ◦ g for all a ∈ A. Then τg is a σ -complete state-morphism-operator on Â.

In addition, if τ̃g is defined on A via τ̃g(a)= τg(â) for all a ∈ A, then τ̃g is a σ -
complete state-morphism-operator on A, and g(s)= s ◦ τ̃g for all s ∈ ∂e S(A).

PROOF. Since A is necessarily semisimple, because A is σ -complete, it follows from
Theorem 3.4 that (τ (a)) ˆ = τ̂ (â)= â ◦ g for all a ∈ A.

By Proposition 3.2(2), the mapping τg , defined on Â by τg(â) := â ◦ g for all a ∈ A,
is a state-morphism-operator on Â.

Assume that an ↗ a. Then ân ◦ g ≤ ân+1 ◦ g ≤ â ◦ g. Further, a =
∨

n an , whence
â =

∨
n ân .

If a0(s)= limn ân(s) for all s ∈ ∂e S(A), that is, a0 is a pointwise limit of a sequence
of continuous functions on a compact Hausdorff space, then by [21, pp. 86, 405–406],
the set N (a0 − â) is meager. Similarly, N (â ◦ g − a0 ◦ g) is a meager set. If
h =

∨
n ân ◦ g, then h ≤ â ◦ g. Since

N (h − â ◦ g)⊆ N (h − a0 ◦ g) ∪ N (a0 ◦ g − â ◦ g),

it follows that N (h − â ◦ g) is a meager set. By the Baire category theorem, no
nonempty open subset of a compact Hausdorff space can be meager, and consequently
N (h − â ◦ g)= ∅, that is, h = â ◦ g.

Finally, let a ∈ A and s ∈ ∂e S(A). Then

(s ◦ τ̃g)(a)= s(τ̃g(a))= s(τg(â))= â(g(s))= g(s)(a),

that is, g(s)= s ◦ τ̃g for all s ∈ ∂e S(A). 2

Two alternative proofs for special cases of Theorem 3.7 are presented in Section 5.

4. The Loomis–Sikorski theorem

We now present the main result of this paper: a generalization of the Loomis–
Sikorski theorem for σ -complete state-morphism MV-algebras. We show that each
such algebra is a σ -epimorphic image of some tribe, that is, a σ -complete MV-algebra
of functions on some nonempty set�, where the MV-operations are defined pointwise,
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and the state-morphism-operator is induced by an idempotent function g. In addition,
we present a continuous version of the Loomis–Sikorski theorem.

Let A be a σ -complete MV-algebra. Then Â = M(A), but Â is not necessarily a
tribe. Let T (A) be the tribe of functions on [0, 1]∂e S(A) generated by Â = M(A).

PROPOSITION 4.1. Let A be a σ -complete MV-algebra and let g be a continuous
function on ∂e S(A) such that g ◦ g = g and g(s)(A)⊆ s(A) for all discrete s ∈
∂e S(A). Then the operator Tg , defined on T (A) by Tg( f )= f ◦ g for all f ∈ T (A), is
a σ -complete state-morphism-operator that is the unique extension of the σ -complete
state-morphism-operator τg on M(A) defined by τg( f )= f ◦ g for all f ∈ M(A).

PROOF. First, we show that Tg is a well-defined operator on T (A), that is, if f ∈
T (A), then f ◦ g ∈ T (A). Let T ′ be the set of all f ∈ T (A) such that f ◦ g ∈ T (A).
Then T ′ contains M(A)= Â and if f ∈ T ′, then 1− f ∈ T ′. Now let f1, f2 ∈ T ′,
then f1 ⊕ f2 and f1 ∨ f2 belong to T ′. Hence, if { fn} is a sequence of monotone
functions from T ′, then f ◦ g = limn fn ◦ g ∈ T ′, where f = limn fn . This implies
that T ′ is the tribe generated by M(A), and consequently, T ′ = T (A) and Tg is a
σ -complete state-morphism-operator on T (A) that is an extension of τg .

Now, if τ is any σ -complete state-morphism-operator on T (A) that is an extension
of τg , then the set of elements f ∈ T (A) such that τ( f )= Tg( f ) is a tribe containing
M(A), and so has to be T (A), whence τ = Tg . 2

We now characterize the tribe generated by C1(�)= 0(C(�), 1�), where C(�) is
the space of all continuous fuzzy functions on a compact Hausdorff space �. We
recall that B(�) denotes the Baire σ -algebra generated by compact Gδ sets on �
(a Gδ set is a countable intersection of open sets), or equivalently, by the collection
{ f −1([a,∞)) : f ∈ C(�), a ∈ R}.

The following result can be found, for example, in [12, Proposition 7.1.11].

PROPOSITION 4.2. Let � be a compact Hausdorff space. Then T (C1(�))=M(�),
where T (C1(�)) is the tribe generated by C1(�), and M(�) is the set of all Baire
measurable functions on [0, 1]�.

PROPOSITION 4.3. Let T be a tribe of functions defined on a nonempty set �. Let g
be a function on� such that g ◦ g = g and f ◦ g ∈ T for all f ∈ T . Then the operator
τg : T → T , defined by τg( f )= f ◦ g for all f ∈ T , is a σ -complete state-morphism-
operator.

PROOF. Clearly τg is a state-morphism-operator on T . Suppose that fn(ω)↗ f (ω)
for all ω ∈�. Then fn(g(ω))↗ f (g(ω)) for all ω ∈�, so that τg is monotone
σ -complete; consequently, it is a σ -complete state-morphism-operator. 2

Suppose that (A1, τ1) and (A2, τ2) are state MV-algebras. An MV-homomorphism
h : A1→ A2 is said to be a state MV-homomorphism if h ◦ τ1 = τ2 ◦ h. Similarly we
define both a state-morphism MV-homomorphism if τ1 and τ2 are state-morphisms,
and a σ -state-morphism MV-homomorphism if (A1, τ1) and (A2, τ2) are σ -complete
state-morphism MV-algebras and h is a state-morphism σ -MV-homomorphism.
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We now present a variant of the Loomis–Sikorski theorem for σ -complete state-
morphism MV-algebras.

THEOREM 4.4 (Loomis–Sikorski theorem). Let (A, τ ) be a σ -complete state-
morphism MV-algebra. Then there are a σ -complete state-morphism MV-algebra
(T , Tg), where T is a tribe of functions from [0, 1]� and a function g :�→� such
that g ◦ g = g and f ◦ g ∈ T for all f ∈ T , such that Tg , defined by Tg( f ) := f ◦ g
for all f ∈ T , is a σ -complete state-morphism-operator on T . Moreover, there is a
σ -state-morphism MV-homomorphism h from T onto A such that h ◦ Tg = τ ◦ h.

PROOF. Let A be a σ -complete MV-algebra with a σ -complete state-morphism-
operator τ . We isomorphically embed A onto Â. We set �= ∂e S(A); then � is
a basically disconnected compact Hausdorff topological space and Â = M(A). Let
T = T (A) be the tribe of functions from [0, 1]� that is generated by Â. According
to Proposition 3.2, the function g : ∂e S(A)→ ∂e S(A), defined by g(s)= s ◦ g for
all s ∈ ∂e S(A), is continuous and g ◦ g = g. The mapping Tg : T → T , defined by
Tg( f )= f ◦ g for all f ∈ T (A), is a σ -complete state-morphism-operator on T by
Theorem 3.7, and by Proposition 4.1, it is a unique extension of the σ -complete state-
morphism-operator τg on T , defined by τg(â)= â ◦ g for all a ∈ A.

Let f ∈ T and a ∈ A. We will say that f ∼ a if N ( f − â) := {s ∈ ∂e S(A) :
f (s) 6= â(s)} is a meager set. Let us denote by T ′ the set of all functions f ∈ T
such that there is a ∈ A with f ∼ a.

If a1 and a2 are two elements of A such that f ∼ a1 and f ∼ a2, then

N (â1 − â2)⊆ N ( f − â1) ∪ N ( f − â2),

so N (â1 − â2) is a meager set. The functions â1 and â2 are continuous, and it follows
from the Baire category theorem that â1 = â2.

Therefore the mapping h : T ′→ A defined by h( f )= a when f ∼ a is well
defined. In [9], it was proved that T ′ is a tribe containing Â, so T ′ = T , and h is
in fact a σ -homomorphism from T onto A.

Finally, we now let f ∈ T and a ∈ A be such h( f )= a. Then f ∼ a so that
N ( f − â) is a meager set. Then N ( f ◦ g − â ◦ g)= g−1(N ( f − â)) is also meager.
It follows from Theorem 3.4 that h(Tg f )= τ(a)= τ(h( f )). 2

Theorem 4.4 can also be reformulated using topological language.

THEOREM 4.5. Let (A, τ ) be a σ -complete state-morphism MV-algebra. Then there
is a nonempty basically disconnected compact Hausdorff topological space �, a tribe
T of functions on [0, 1]�, and a continuous function g :�→� such that g ◦ g = g
and f ◦ g ∈ T for all f ∈ T , such that Tg , given by Tg( f ) := f ◦ g for all f ∈ T , is a
σ -complete state-morphism-operator on T . Moreover, there is a σ -homomorphism h
from T onto A such that h ◦ Tg = τ ◦ h.

PROOF. Set �= ∂e S(A); then the result follows from the proof of Theorem 4.4. 2

Let (A, τ ) be a σ -complete state-morphism MV-algebra. We define a quintuple
(�, T , g, Tg, h), where �= ∂e S(A), T = T (A), g is the continuous function on �
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such that g ◦ g = g defined by Proposition 3.2, Tg( f ), given by Tg( f )= f ◦ g for all
f ∈ T , is a σ -complete state-morphism on T , and h is a σ -MV-homomorphism from

T onto A such that h ◦ Tg = τ ◦ h. Then (�, T , g, Tg, h) is said to be a canonical
representation of the σ -complete state-morphism MV-algebra (A, τ ).

5. Alternative proofs for special cases

In this final section, we give alternative proofs to Theorem 3.7 for two special
cases: for tribes, in Theorem 5.2, and for weakly divisible σ -complete MV-algebras,
in Theorem 5.4.

First, the following result can be found, for example, in [12, Theorem 7.1.7].

THEOREM 5.1. Let T be a tribe of [0, 1]-valued functions on the nonempty set �,
and define

S0(T ) := {A ⊆� : χA ∈ T }. (5.1)

Then the following results hold.

(1) S0(T ) is a σ -algebra of subsets of �.
(2) If f ∈ T , then f is S0(T )-measurable.
(3) T contains all S0(T )-measurable functions from � into the real interval [0, 1]

if and only if T contains all constant functions with values in [0, 1].

THEOREM 5.2. Let T be a tribe of functions from [0, 1]� containing all constant
functions and let τ be a σ -complete state-morphism-operator on T such that the tribe
T is countably generated and such that χ{ω} ∈ T for all ω ∈�. Then there is a unique
S0(T )-measurable function g from� into itself such that g ◦ g = g and τg = τ , where
τg( f ) := f ◦ g for all f ∈ T .

PROOF. There are three steps in the proof.

Step 1. Note that T is countably generated if and only if S0(T ) is countably generated,
where S0(T ) is defined by (5.1). Indeed, if { fn} is a countable generator of T , then
{ f −1

n (B) : B ∈ B0}, where B0 is a countable generator of the Borel σ -algebra B(R), is
a countable generator of S0(T ).

Conversely, let {An} be a countable generator of S0(T ). We assert that the system
{rnχAn }, where each rn is a rational number in [0, 1], is a countable generator of T .
Let T ′ be the tribe generated by {rnχAn }. Then χA ∈ T ′ for all A ∈ S0(T ), so tχA ∈ T ′

for all t ∈ [0, 1] and A ∈ S0(T ). Therefore every step function f =
∑k

i=1 tiχBi , where
ti ∈ [0, 1] and B1, . . . , Bk are mutually disjoint sets from S0(T ), is in T ′. It is well
known that if f ∈ T , then there is a sequence of step functions { fn} in T ′ such that
fn ↗ f , and this implies that f ∈ T ′. Hence, T ′ = T .

Step 2. Given ω ∈�, let Iω := { f ∈ T : f (ω)= 0}. This is a σ -ideal of T , that is, if
fn ∈ Iω then supn fn ∈ Iω. If f ∈ T \ Iω, then f (ω) > 0, so there is a positive integer
n such that n f (ω) ∧ 1= 1, whence (n f )∗ ∈ Iω, and this says that Iω is a maximal
ideal.
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Conversely, let I be any maximal ideal of T that is a σ -ideal. We claim that there is
a unique ω ∈� such that I = Iω. Let Î := {A ∈ S0(T ) : χA ∈ I }. Then Î is a maximal
ideal of S0(T ) that is also a σ -ideal, that is, if Cn ∈ Î when n ≥ 1, then

⋃
n Cn ∈ Î .

Since if {An} is a generator of S0(T ), then {Bn}, where Bn = An if ω /∈ An and Bn =

� \ An otherwise, is also a generator of S0(T ). Set B0 =
⋂

n Bn , then B0 ∈ S0(T ).
Let S0 := {A ∈ S0(T ) : a ∩ B0 = ∅ or A ⊇ B0}. Then S0 is a σ -algebra containing
the generator {Bn} so that S0 = S0(T ). Since each singleton {ω} belongs to S0, then
there is a unique ω ∈� such that B0 = {ω}. Now let I ′ω := { f ∈ I : f (ω)= 0}. Then
each χBn ∈ I ′ω as well as χA ∈ I ′ω whenever A ∈ Î . Because tχA ≤ χA, we have
tχA ∈ I ′ω and therefore each step function f =

∑k
i=1 tiχCi ∈ I ′ω with ti ∈ [0, 1] and

with mutually disjoint sets C1, . . . , Ck ∈ Î . Hence, by approximating any function
f ∈ I from below by step functions from I ′ω, we see that f ∈ I ′ω and I = Iω.

Step 3. Let Iω be given. Then τ−1(Iω) := { f ∈ T : τ( f ) ∈ Iω} is also a maximal ideal
that is a σ -ideal. By Step 2, there is a unique ω′ ∈� such that τ−1(Iω)= Iω′ , so we
can define a function g :�→� such that g(ω)= ω′ if and only if τ−1(Iω)= Iω′ . It
is clear that g ◦ g = g.

Given ω ∈�, define sω : T → [0, 1] by sω( f ) := f (ω) for all f ∈ T . Then sω is
an extremal state that is σ -continuous, that is, if fn ↗ f , then sω( f )= limn sω( fn).
Then Ker(sω)= Iω and f = g if and only if sω( f )= sω(g) for all ω ∈�. Moreover,

Ker(sω ◦ τ)= (sω ◦ τ)−1({0})= τ−1(Iω)= Ig(ω).

Then
(τ ( f ))(ω)= sω(τ ( f ))= sω ◦ τ ◦ f = sg(ω) ◦ f = f (g(ω)),

and so τ( f )= f ◦ g ∈ T for all f ∈ T . We show that g is S0(T )-measurable. For all
B ∈ B0(R),

(τ ( f ))−1(B)= ( f ◦ g)−1(B)= g−1( f −1(B)) ∈ S0(T ).

Hence, if A ∈ S0(T ) and B = {1}, then g−1(A)= g−1(χ−1
A ({1})) ∈ S0(T ), so g is

S0(T )-measurable.
Hence, the mapping τg , defined by τg( f ) := f ◦ g for all f ∈ T , is a σ -complete

state-morphism-operator on T such that τ = τg . Now let g′ :�→� be an S0(T )-
measurable function such that g′ ◦ g′ = g′ and f ◦ g′ = f ◦ g for all f ∈ T . Then
for all A ∈ S0(T ), we have χA ◦ g′ = χA ◦ g, that is, g′−1(A)= g−1(A). If ω0 is an
element of �, then {ω ∈� : g′(ω)= ω0} = {ω ∈� : g(ω)= ω0}. As ω0 is arbitrary,
this yields g′ = g. 2

The second case depends on the notions of divisibility and the following lemma.

LEMMA 5.3. Let � be a basically disconnected compact Hausdorff topological
space. For each continuous function f :�→ [0, 1], there is a monotone sequence
{ fn} of continuous step functions defined on � and with values in the interval [0, 1]
such that fn ↗ f uniformly.
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PROOF. There are three steps in the proof.

Step 1. Let X be a clopen subset of � and f : X→ [α, β] be a continuous function,
where 0≤ α < β ≤ 1. Then there are two mutually disjoint clopen sets X1 and X2
such that X = X1 ∪ X2 and f (X1)⊆ [α, (α + β)/2] and f (X2)⊆ [(α + β)/2, β].
Indeed, the set f −1(((α + β)/2, β]) is an open Fσ set. Its closure X2 is both open
and closed. Then X1 = X \ X2 is also a clopen set, f (X1)⊆ [α, (α + β)/2] and
f (X2)⊆ [(α + β)/2, β].

The function g : X→ [α, β], defined by g(x)= α if x ∈ X1 and g(x)= (α + β)/2
if x ∈ X2, is continuous, g ≤ f and f (x)− g(x)≤ (β − α)/2 for all x ∈ X .

Step 2. Let f :�→ [0, 1] be a continuous function. Setting X0 =� and applying
Step 1, we can find two disjoint clopen sets X1

1 and X1
2 such that X0 = X1

1 ∪ X1
2 and

f (X1
1)⊆ [0, 1/2] and f (X2

1)⊆ [1/2, 1].
Suppose inductively that we have partitioned X into mutually disjoint clopen

sets X0
n, X1

n, . . . , X2n
−1

n such that f (X i
n)⊆ [i/2

n, (i + 1)/2n
] when i = 0, 1, . . . ,

2n
− 1.
Using Step 1, we decompose each of the sets X0

n, X1
n, . . . , X2n

−1
n into two

mutually disjoint clopen sets, to obtain a partition of X into clopen sets

X0
n+1, X1

n+1, . . . , X2n+1
−1

n+1 such that f (X i
n+1)⊆ [i/2

n+1, (i + 1)/2n+1
] when i =

0, 1, . . . , 2n+1
− 1.

Step 3. Given a sequence of refining partitions into clopen sets X0
n, X1

n, . . . , X2n
−1

n ,
where n ≥ 1, we can define the function fn : X→ [0, 1] by fn(x)= i/2n when
x ∈ X i

n and i = 0, 1, . . . , 2n
− 1. Then fn is a continuous step function and fn(x)≤

fn+1(x)≤ f (x) for all x ∈ X and all n ≥ 1. Moreover, f (x)− fn(x)≤ 1/2n for all
x ∈ X . Hence the sequence of step functions { fn} converges uniformly to f . 2

We say that an MV-algebra A is weakly divisible if, given a positive integer n, there
is an element v ∈ A such that n · v = 1, and divisible if, given any a ∈ A and positive
integer n, there is an element v ∈ A such that n · v = a. In any case, A has no extremal
discrete state. According to (2.3), for σ -complete MV-algebras, the notions of weak
divisibility and divisibility, as well as the property that A admits no discrete (extremal)
state, coincide.

THEOREM 5.4. Let τ be a σ -complete state-morphism-operator on a weakly divisible
σ -complete MV-algebra A. If g is the mapping defined in Proposition 3.2, then the
operator τg : Â→ Â, defined by τg(â)(s)= â(g(s)) for all a ∈ A and s ∈ ∂e S(A), is
a σ -complete state-morphism-operator on Â such that

τg(â)= (τ (a)) ˆ ∀a ∈ A.

PROOF. By Theorem 2.4, Â = M(A), where M(A) is defined by (2.3).
Define the operator τg on M(A) by τg( f ) := f ◦ g for all f ∈ M(A). Then τg is a

state-morphism-operator on M(A), by Proposition 3.5. We will now show that τg = τ̂ .
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Since A is σ -complete, A satisfies general comparability. Let B(A) be the set of all
Boolean elements of A; then B(A) is a Boolean σ -algebra. In view of Proposition 3.5,
the restriction, τB of τ onto B is a state-morphism-operator on B. We set B := B(A).
By Theorem 2.3, the state spaces ∂e S(A) and ∂e S(B) are homeomorphic basically
disconnected compact spaces. Therefore the functions g on Â and gB on B̂ determined
by Proposition 3.2 are practically the same, that is, if φA is the homeomorphism from
Theorem 2.3, then gB ◦ φA = φA ◦ g. Using Proposition 3.5, we see that τgB = τ̂B .

First, let f be a Boolean element in Â. Then f̃ := f ◦ φ−1
A is a Boolean

element in B̂, and vice versa. Moreover, if s ∈ ∂e S(A), then s̃ = φA ◦ s = s|B(A).
Consequently,

τ̂ ◦ f ◦ s = τ̂B ◦ f̃ ◦ s̃ = f̃ ◦ gB ◦ s̃ = f ◦ φ−1
A ◦ gB ◦ φA ◦ s = f ◦ g ◦ s,

and so τ̂ ( f )= τg( f ) whenever f is a Boolean element.
Second, since M(A) consists of all continuous functions defined on ∂e S(A) taking

values in the interval [0, 1], then if f ∈ M(A), then n−1 f ∈ M(A) for all positive
integers n. Suppose that f is a Boolean element from M(A), then f = n · n−1 f , so
τg( f )= τ̂ ( f )= n · τ̂ (n−1 f ). Hence

τ̂ (n−1 f )= n−1τg( f )= τg(n
−1 f )= n−1τ̂ ( f ).

Therefore τg((m/n) f )= τ̂ ((m/n) f ) for all integers m between 0 and n. Let t be an
irrational number in [0, 1], and take sequences of rational numbers rn ↗ t and sn ↘ t .
Hence

rnτg( f )= τg(rn f )= τ̂ (rn f )≤ τ̂ (t f )≤ τ̂ (sn f )= τg(sn f )= snτg( f ),

so τg(t f )= tτg( f )= τ̂ (t f )= t τ̂ ( f ).
Third, let f ∈ M(A) be a step function, that is, f =

∑n
i=1 ti fi , where each fi is

a characteristic function of some clopen set Ei and ti ∈ [0, 1] for all i . Without loss
of generality, we can assume that E1, . . . , En are pairwise disjoint. Consequently,
f = t1 f1 + · · · + tn fn , where + is the partial addition in the MV-algebra M(A),
which coincides with addition of functions. Hence,

τ̂ ( f )= τ̂ (t1 f1)+ · · · + τ̂ (tn fn)

= τg(t1 f1)+ · · · + τg(tn fn)

= τg(t1 f1 + · · · + tn fn)= τg( f ).

Finally, let f be a continuous function from M(A). By Lemma 5.3, there is a
sequence { fn} of continuous step functions from M(A) such that { fn} ↗ f uniformly.
Then f =

∨
n fn . In view of Proposition 3.6, τ̂ is also a σ -complete state-morphism-

operator, so that

τ̂ ( f )=
∨

n
τ̂ ( fn)=

∨
n
τg( f )= τg

(∨
n

fn

)
= τg( f ),

by the argument of the previous paragraph. 2
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[7] A. Di Nola, A. Dvurečenskij and A. Lettieri, ‘On varieties of MV-algebras with internal states’,

Internat. J. Approx. Reason. 51 (2010), 680–694.
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