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Abstract

We generalise a result of Chern [‘A curious identity and its applications to partitions with bounded part
differences’, New Zealand J. Math. 47 (2017), 23–26] on distinct partitions with bounded difference
between largest and smallest parts. The generalisation is proved both analytically and bijectively.
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1. Introduction

Throughout the paper, we adopt the following q-series notation:

(a; q)0 = 1,

(a; q)n =

n−1∏
i=0

(1 − aqi), n ∈ N.

A partition λ of a positive integer n is a nonincreasing sequence of positive integers
λ = (λ1, λ2, . . . , λl) such that n = λ1 + λ2 + · · · + λl (see [1]). The terms λi are called
the parts of λ, and the number of parts of λ is called the length of λ.

Recently, partitions with fixed or bounded difference between the largest and
smallest parts have received much attention. In 2015, Andrews et al. [2] initiated the
study of partitions where the difference between largest and smallest parts is a fixed
positive integer t, and proved the following surprising result.

Theorem 1.1 [2]. Let P(t, n) be the set of partitions of n with fixed difference t between
largest and smallest parts. For t > 1,

∞∑
n=1

|P(t, n)|qn =
qt−1(1 − q)

(1 − qt)(1 − qt−1)
−

qt−1(1 − q)
(1 − qt)(1 − qt−1)(q; q)t

+
qt−1

(1 − qt−1)(q; q)t
.
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This work motivated studies of partitions with the difference between largest and
smallest parts being at most t (see [2–9]). The results on distinct partitions and odd
partitions, which were found by Chern [5], interest us the most.

Theorem 1.2 [5]. Let Pd(t, n) be the set of partitions of n into distinct parts in which
the difference between the largest and smallest parts is at most t. For t ≥ 1,

∞∑
n=1

|Pd(t, n)|qn =
1

1 − qt+1 ((−q; q)t+1 − 1).

Theorem 1.3 [5]. Let Po(t, n) be the set of partitions of n into odd parts in which the
difference between the largest and smallest parts is at most t. For t ≥ 1,

∞∑
n=1

|Po(t, n)|qn =
1

1 − q2t

(
1

(q; q2)t
− 1

)
.

More recently, Lin [8] generalised the result on odd partitions to k-regular partitions
(partitions with no part divisible by k).

Theorem 1.4 [8]. Let Rk(t, n) be the set of k-regular partitions of n with the difference
between the largest and smallest parts at most kt. For t ≥ 1 and k ≥ 2,

∞∑
n=1

|Rk(t, n)|qn =
1

1 − qkt

(
(qk; qk)t

(q; q)kt
− 1

)
.

Our aim is to generalise Theorem 1.2. The rest of the paper is organised as follows.
In Section 2, we present the main result accompanied by an analytic proof. A bijective
proof is given in Section 3.

2. The main result

Given integers k ≥ 2 and t ≥ 0, let Pk(t, n) be the set of partitions of n in which the
difference between the largest and smallest parts is at most t + 1, each part occurs at
most k − 1 times and the largest and smallest parts occur at most k − 1 times together if
the difference between them is exactly t + 1. Denote by Pk(t,m, n) the set of partitions
in Pk(t, n) with m parts.

Theorem 2.1. For |q| < 1 and |zq| < 1,

∞∑
n=1

∞∑
m=1

|Pk(t,m, n)|zmqn =
1

1 − qt+1

(
(zkqk; qk)t+1

(zq; q)t+1
− 1

)
.

Proof. The standard methods for producing partition generating functions reveal
directly that
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∞∑
n=1

∞∑
m=1

|Pk(t,m, n)|zmqn =

∞∑
n=1

∑
1≤i≤k−1
0≤ j<k−i

ziqin · z jq j(n+t+1) ·
(zkqk(n+1); qk)t

(zqn+1; q)t

=

∞∑
n=1

k−1∑
i=1

k−1∑
i+ j=1

zi+ jq(i+ j)n · q j(t+1) ·
(zkqk(n+1); qk)t

(zqn+1; q)t

=

∞∑
n=1

k−1∑
i=1

i−1∑
j=0

ziqin · q j(t+1) ·
(zkqk(n+1); qk)t

(zqn+1; q)t

=

∞∑
n=1

k−1∑
i=1

ziqin ·
1 − qi(t+1)

1 − qt+1 ·
(zkqk(n+1); qk)t

(zqn+1; q)t

=
1

1 − qt+1

∞∑
n=1

k−1∑
i=0

(ziqin − ziqi(n+t+1)) ·
(zkqk(n+1); qk)t

(zqn+1; q)t

=
1

1 − qt+1

∞∑
n=1

(
1 − zkqkn

1 − zqn −
1 − zkqk(n+t+1)

1 − zqn+t+1

)
(zkqk(n+1); qk)t

(zqn+1; q)t

=
1

1 − qt+1

∞∑
n=1

(
(zkqkn; qk)t+1

(zqn; q)t+1
−

(zkqk(n+1); qk)t+1

(zqn+1; q)t+1

)
=

1
1 − qt+1

(
(zkqk; qk)t+1

(zq; q)t+1
− 1

)
,

which completes the proof. �

Remark 2.2. We claim that P2(t, n) is the set of partitions of n into distinct parts with
bounded difference t between largest and smallest parts. Since the largest and smallest
parts appear at least twice together, the difference between them cannot be t + 1. In
addition, each part occurs at most once. Therefore, the claim holds. Taking z = 1 and
k = 2 in Theorem 2.1,

∞∑
n=1

|P2(t, n)|qn =
1

1 − qt+1

(
(q2; q2)t+1

(q; q)t+1
− 1

)
=

1
1 − qt+1 ((−q; q)t+1 − 1),

which is Theorem 1.2.

3. A bijective proof

In this section, we present a bijective proof of Theorem 2.1.
Denote by Bk(t,m, n) the set of bipartitions (µ; ν) of n where the nonempty partition

µ has exactly m parts, each being at most t + 1 and occurring fewer than k times, and ν
can only have t + 1 as a part. It is clear that

∞∑
n=1

∞∑
m=1

|Bk(t,m, n)|zmqn =
1

1 − qt+1

(
(zkqk; qk)t+1

(zq; q)t+1
− 1

)
.
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Theorem 3.1. There is a bijection ϕ between Pk(t,m, n) and Bk(t,m, n).

Proof. Given a partition µ = (µ1, µ2, . . . , µm) ∈ ∪n≥1Pk(t,m, n), we define an operation
ρ on µ by

ρ(µ) =

(µ2, µ3, . . . , µm, µ1 − (t + 1)) if µ1 > t + 1,

µ otherwise.

We claim that ρ(µ) ∈ ∪n≥1Pk(t,m, n). It is sufficient to consider the case where
µ1 > t + 1. Since µ ∈ ∪n≥1Pk(t, m, n), we have µ1 − µm ≤ t + 1, which means
that µm ≥ µ1 − (t + 1) > 0 and µ2 − (µ1 − (t + 1)) ≤ t + 1. Therefore, ρ(µ) is a partition
with bounded difference t + 1 between the largest and smallest parts and has the same
length as µ.

Let ml(µ) and ms(µ) be the numbers of appearances of the largest and smallest parts
of µ, respectively. If µ1 = µ2, then the difference between the largest and smallest parts
of ρ(µ) is exactly t + 1. Now

ml(ρ(µ)) + ms(ρ(µ)) =

ml(µ) + ms(µ) if µ1 − µm = t + 1,

ml(µ) otherwise.

So, ml(ρ(µ)) + ms(ρ(µ)) < k in this case. If µ1 > µ2, then the difference between the
largest and smallest parts of ρ(µ) is at most t. Thus,

ms(ρ(µ)) =

ms(µ) + 1 if µ1 − µm = t + 1,

1 otherwise.

This implies that ms(ρ(µ)) < k. Since the number of appearances of other parts remains
unchanged under ρ, we can conclude that ρ(µ) ∈ ∪n≥1Pk(t,m, n).

We now establish the bijection ϕ from Pk(t,m, n) to Bk(t,m, n). For λ ∈ Pk(t,m, n),
let r be the smallest nonnegative integer i such that the largest part of ρi(λ) is not
greater than t + 1, where ρ0(λ) = λ and ρi(λ) = ρ(ρi−1(λ)) for i ≥ 1. Then the partition
λ is mapped to the bipartition

ϕ(λ) = (ρr(λ); (t + 1, t + 1, . . . , t + 1)︸                      ︷︷                      ︸
r

).

It is easy to see that ϕ(λ) ∈ Bk(t,m, n).
We now show that ϕ is invertible. Given a bipartition (µ; ν) ∈ Bk(t,m, n), if ν is

the empty partition, then ϕ−1((µ; ν)) = µ. Otherwise, we remove a part t + 1 from ν,
add it to the smallest part of µ and shift the last part to the first position. Repeat this
transformation until the partition related to ν is completely emptied. �

Example 3.2. Let λ = (9, 9, 7, 7, 6, 6, 6, 3) ∈ P4(5, 8, 53); then

ρ(λ) = (9, 7, 7, 6, 6, 6, 3, 3),

ρ2(λ) = (7, 7, 6, 6, 6, 3, 3, 3),

ρ3(λ) = (7, 6, 6, 6, 3, 3, 3, 1),

ρ4(λ) = (6, 6, 6, 3, 3, 3, 1, 1).
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The largest part of ρ4(λ) is now not greater than t + 1 = 6. Thus,

ϕ(λ) = ((6, 6, 6, 3, 3, 3, 1, 1); (6, 6, 6, 6)) ∈ B4(5, 8, 53).
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