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ZL-amenability Constants of Finite Groups
with Two Character Degrees

Mahmood Alaghmandan, Yemon Choi, and Ebrahim Samei

Abstract. We calculate the exact amenability constant of the centre of ¢! (G) when G is a finite group
and is either dihedral, extraspecial, or Frobenius with abelian complement and kernel. This is done
using a formula that applies to all finite groups with two character degrees. In passing, we answer in
the negative a question raised in work of the third author with Azimifard and Spronk.

1 Introduction

Let G be a compact group. While its group algebra L'(G) is always amenable as a
Banach algebra, the centre of L'(G) need not be amenable.! The third author of this
paper, together with A. Azimifard and N. Spronk [1], examined this phenomenon in
various cases and showed that if G is an infinite product of non-abelian finite groups,
given the product topology, then the centre of L' (G) fails to be amenable. (Theorem
1.10, op cit.) The proof works by examining the so-called amenability constant of
the centre of L'(G) in the case where G is finite, and observing that this constant is
nothing but the ¢!-norm of a certain central idempotent in the complex group ring
of G x G°P. It then follows from results of D. Rider that the infimum of the possible
amenability constants as G varies over all finite, non-abelian groups is strictly greater
than 1; however, the lower bound provided by Rider’s theorem seems far from best
possible.

Motivated by this and other questions in [1], we investigate the amenability con-
stant of the centre of L'(G) in the case where G is a finite group with two character
degrees (that is, nonabelian finite groups where all irreducible non-linear characters
have the same degree). For this special class of groups, we obtain an exact formula
for the amenability constant that is easily computed for various natural classes of
such groups, including dihedral groups, extraspecial p-groups, and certain Frobe-
nius groups. It will be seen that in some cases interesting patterns emerge, which
remain to be fully explored.

Notation and terminology Given a group G (with its discrete topology) we denote
its £'-group algebra by £'(G) and denote the centre of £!(G) by Z¢'(G). In this paper
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1Tt is not clear where credit belongs for this observation, but it is mentioned in [9] as a personal com-
munication from B. E. Johnson.
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we are only concerned with finite groups. We assume the reader has a basic knowl-
edge of finite group theory. For all other terminology and definitions pertaining to
character theory, the book [6] will suffice, as should many other choices. See also
Chapters 3 and 4 of Gorenstein’s book [3].

Given a finite group G, we shall define the amenability constant of Z¢'(G) in Sec-
tion 2.1. This constant will be denoted throughout by AMz(G), and to save cumber-
some repetition in verbal descriptions, we will refer to AMz(G) as the ZL-amenability
constant of G. Although this is, to our knowledge, not standard terminology, it em-
phasizes that AMz(G) can be computed from the character table of G without any
reference to Banach algebras and the general theory of amenability. Indeed, one can
take equation (2.2) below as the definition of AMz(G) when G is finite.

2 A Formula for the Amenability Constant
2.1 General Background

We start with some general remarks on amenability constants. This material is not
original. It is well known to specialists and is either folklore or can be extracted
from parts of [1]. Nevertheless we include these remarks to provide context for the
formulas that will follow. We will not discuss amenability for general Banach algebras
here and instead focus on the finite-dimensional setting.

If A is a finite-dimensional Banach algebra with identity, then A is amenable if and
only if there exists some M € A ® A satisfyinga- M = M - aand 7(M) = 14. Such
an M is called a diagonal element for the algebra A. (Thus far we have not used the
norm on A. Indeed, the characterization of amenability that we have given for finite-
dimensional algebras is equivalent to separability in the sense of ring-theory; what we
call a diagonal element is usually called a separability idempotent in that context.)

Example 2.1 Let H be a finite group. Then it is straightforward to check that

N = |I‘I|_1 Zéh ® (Sh—l
heH

is a diagonal element for the algebra ¢!(H), and that |[N|| = 1 as an element of the
projective tensor product ¢! (H) ® ¢'(H) = (' (H x H).

If A is a finite-dimensional, semisimple, and commutative Banach algebra, then
it is isomorphic as an algebra to C" for some n. Since C" has a unique diagonal
element, so does A. More precisely, if the minimal idempotents of A are e, ..., e,,
then the unique diagonal element for A is just M = Z';: 1 €j @ ej. In this setting the
amenability constant of A is the norm of M as an element of the projective tensor
product A ® A.

Now let G be a finite group. By basic results from representation theory, the centre
of CG is commutative and semisimple, and its minimal idempotents are the functions
of the form |G| ~'d, x, where x is an irreducible character on G. (See also [6, Corol-
lary 15.4] for an alternative approach to this result.) Therefore, letting Irr(G) denote
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the set of irreducible characters on G, the unique diagonal element of Z¢'(G) is

d d
(2.1) M := g Xy 2.
XEIrr(G) |G| ‘G|

We remark that this observation is also made in the proof of [1, Theorem 1.8]. 2

Let Conj(G) denote the set of conjugacy classes in G, and let x(C) denote the
value taken by a character x on any (hence every) element of a conjugacy class C €
Conj(G). Then, as shown in the proof of [1, Theorem 1.8], we find that

) A =M= S| S d@xex®| (clipl

G[?
C,DeConj(G) x€lrr(G)

Equation (2.2) is difficult to work with if one wants to calculate the exact ZL-amena-
bility constant of G, as it seems to require knowledge of the full character table of G.
When G has two character degrees, things simplify greatly.

2.2 The Case of Two Character Degrees

Following standard terminology, we say that a character on a finite group is linear if
it is actually a homomorphism G — T (i.e., the trace of a 1-dimensional representa-
tion) and non-linear otherwise.

Definition 2.2 We say that a finite group G has two character degrees if (i) G is
non-abelian, (ii) every non-linear irreducible character has the same degree.

Remark 2.3 Groups with two character degrees were studied in an unrelated con-
text by Isaacs and Passman [5]. (In the terminology of that paper, the groups we
consider have a.c. m for some integer m > 1.) It is known that such groups must be
metabelian [4, Corollary 12.6], and they seem a natural class of examples to consider
when looking for large non-abelian groups with small ZL-amenability constants. We
shall see some evidence to support this approach in Examples 3.6 and 3.13.

Given a finite group G, we denote by G’ its derived subgroup (also called its com-
mutator subgroup). This can be constructed as the normal subgroup generated by all
commutators in G, or characterized as the smallest normal subgroup N for which the
quotient G/N is abelian.

Theorem 2.4 Let G be a finite group wth two character degrees, and let m be the degree
of any (hence every) non-linear irreducible group character of G. Then

1
(2.3) AMZ(G):1+2(m2—1)(1—W 3 |c\2).
CeConj(G)

2The reader should be aware that in [1, Section 1.5], G is equipped with the normalized counting
measure. Here we have chosen to equip G with counting measure, since this ensures that Z¢'(G) has an
identity element of norm 1.
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The advantage of (2.3) over (2.2) is that, once we know that every non-linear
character of G has dimension m, we only need two other pieces of information: the
order of the derived subgroup (see Remark 2.5) and the size of each conjugacy class.
In particular, we do not need the full character table of G.

Remark 2.5 Given an arbitrary finite group G, let L denote the set of linear char-
acters on G. Then L is in bijection, in a natural way, with the set of characters on the
abelian group G,, := G/G’ (see for instance, [6, Theorem 17.11]; and consequently
IL| = |é;)| = |Ga| = |G| / |G’|). We shall use this fact in the proof of Theorem 2.4.
For some of our examples, it will be more convenient to count the number of linear
characters than to work out the derived subgroup.

Before proving Theorem 2.4, we isolate one of the steps as a separate lemma.

Lemma 2.6 Let G be an arbitrary finite group, and let L = {x € Irr(G): d,, = 1}.
Then

(24) = Y (el Y xex®)] = 1.

G? .
C,DEConj(G) X€EL

Proof Let Gy, denote the quotient group G/G’ and let q : G — G,y be the quotient
homomorphism. The left-hand side of (2.4) is the norm, in 704G x G), of the
idempotent

~ 1
XEL

Since each y is constant on cosets of the derived subgroup, M factors through the
quotient map q ® q : Z0'(G x G) — Z* (G X Gap) = £'(Gap X Ggp). For each
x,y € G, put B

M(q(x),q(y)) = |G'[’"M(x, y).

Then M is a well-defined element of Z¢' (G, X Gap), and a little thought shows that
|IM|| = ||[M]]. On the other hand, since x € L if and only if y = ¢ o q for some
¢ € Gy (see Remark 2.5),

1 _
M = [Enp Z bR .

PEGap

Comparing this with (2.1), we see that M is the unique diagonal element for the
Banach algebra Z¢' (G,,) = ¢'(Gyp,). On the other hand, by Example 2.1, £(Gy,) has
a diagonal element of norm 1. It follows that M has norm 1, which completes the
proof. ]

Proof of Theorem 2.4 To ease notation, we write Conj instead of Conj(G) through-
out this proof. Let

1
AMag = 1o doleP Y &x©F

CeConj XEIrr(G)
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and

AMoff=i2 > ] \D\\ > &x(©)xD),

G
| | (C,D)eConj*: C#£D X€EIrr(G)

so that, by (2.2), AMz(G) = AMgjag + AMfz.
Let L = {x € Irr(G): d,, = 1}. Using Schur column orthogonality and the fact
that |x(-)|> = 1 for every x € L, we get

(25 |GPAMaw = Y ICF( Y2 mOF = Y0~ DIXC)P)

Ce&Conj x€EIrr(G) XEL
G
> \C|2(m2| |—(m2—1)|L|)
. C|
CeConj
=m?|GP — (m* = 1) || Y [CP.
CeConj
Similarly,
(2.6)
GPAMyg = > [C] |D|\ > mx(COXD) = > (m* — DX(C)x(D)
(C,D): C#D x€lrr(G) X€EL
DI ERINENG)
(C,D): C#D x€L

(by Schur column orthogonality)

= (= 1) Y [C] D] [ S XCXD)| - (2 = 1> [CP L)

(C,D) X€EL c

(since |x(-)|* = 1 forall y € L)
= (m’ = D|GP = (m* = 1) Y _|CP |1,
C
with the last equation following from Lemma 2.6. Combining (2.5) and (2.6), using

the equality |L| = |G| /|G|, and rearranging terms, we obtain the desired formula.
|

2.3 Motivation: Lower Bounds on ZL-amenability Constants

As mentioned in the introduction, it is observed in [1, §1.5] that
2.7) inf{AM7(G): G finite and non-abelian} > 1.

(See the proof of Theorem 1.10, op. cit.) The proof relies on the following hard result
of D. Rider.
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Theorem 2.7 (Rider; see [8, Lemma 5.2]) Let G be a compact group, A a Haar mea-
sure on it, and 1) a finite linear combination of irreducible group characters on G. Sup-
pose that 1 * 1) = 1 as elements of L(G, \) and that fG [(x)|dA(x) > 1. Then
Jo 1t ()] dX(x) > 301/300.

Remark 2.8 Rider’s result is stated for the case where A(G) = 1. However, if we let
1= MG)7I\ then v x 1) = ¢ in L}(G, \) if and only if \(G)¢) * A(G)y) = A(G)%) in
LY(G, ). So by rescaling, our formulation reduces to the one given by Rider.

Question  Can we get an improved bound on the infimum on the left-hand side of
(2.7) beyond the lower bound 301/300 provided by Rider’s theorem?

Remark 2.9 To put this question in context, we note that the smallest explicitly
known value of AMy(G) for a non-abelian group G is 7/4 (see Remark 3.15 in the
next section). Rider remarks that his estimates are not intended to be best possible,
but it seems unlikely that his techniques can get near 11/10, let alone 7/4, without
substantial new input. Of course, his results concern much more general central
idempotents, whereas our concern is with the very particular idempotent described
in (2.1).

It seems difficult to attack this problem directly using (2.2). One might hope that
for groups with two character degrees one can use (2.3) to obtain a lower bound on
the ZL-amenability constants that is strictly greater than 1. While we were unable
to do this in full generality, we can do better for particular classes of groups; these
calculations are the topic of the next section.

Another question raised in [1, §1.5] is the following:

Question  Given a finite non-abelian group G, can we get a lower bound on

AMz(G) in terms of max__z dx?

If this were the case, one could obtain further results on (non-)amenability of
the centre of L'(G) for certain profinite groups G. Unfortunately, as we shall
see below (Remark 3.8), there exists a sequence of finite groups (G;) such that
sup, max .5 dr = +00, yet sup; AMz(G;) = 5. Therefore this question has a nega-
tive answer.

3 ZL-amenability Constants of Particular Groups

Using Theorem 2.4, we can find the ZL-amenability constants for several well-known
families of finite groups.

3.1 Dihedral Groups

Let us fix some notation: D, denotes the dihedral group of order 2n, whose standard
presentation is

D,=(rnt|r"=t"=1,tr=r"'t).
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The character table of D,, is well known and can be found in standard sources, for
instance, see [6, pp. 182-183]. We note, nevertheless, that we only need to know the
number of linear characters and the cardinalities of the conjugacy classes, both of
which can be determined by straightforward ad hoc arguments that we leave to the
reader. As usual, we must treat the cases of odd and even # separately.

The case of even n. Suppose n = 2v for some integer v > 2. Then D, has four
linear characters (so that its derived subgroup has order n/2), and all other characters
have degree 2. Also, D, has two conjugacy classes of size 1 (namely {1} and {r"}),
two of size n/2 (namely [¢] and [r]), and v — 1 of size 2 (the remaining rotations,
paired up). Thus,

2 1
> \C|2=2-12+2(§) +(g—1)-22=§(n2+4n—4),
CeConj(D,,)

and so, by our general formula (2.3),

24d4n—4
(3.1) AMy(Dy,) = 14 2(22 — 1)(1 _ L)
2n?
n —4n+4 21 2
:1+67:1+3<177) .
2n? n

The case of odd n.  Suppose n = 2v + 1, where v is an integer > 1. Then D,, has two
linear characters (so that its derived subgroup has order ), and all other characters
have degree 2. Also, its conjugacy classes are as follows: the trivial conjugacy class of
the identity; the conjugacy class consisting of all involutions, which has size n; and
(n — 1)/2 conjugacy classes of size 2 (each consisting of a rotation and its inverse).
Thus,

n—1
Yoo CP =1+ . 2 =n+2m—1,
CeConj(Day+1)

and so, by our general formula (2.3),

Z4on—1
(32) AMy(Dir) = 14202~ 1) (1- T2 1)
n
n*—2n+1 1\2
:1+67:1+3(1—7> .
2n? n

In fact, when #n is odd, D, fits into a family of more general examples, for which
one can simplify (2.3) even further. These groups are the topic of the next subsection.

3.2 Frobenius Groups with Abelian Complement and Kernel

Frobenius groups admit various characterizations or equivalent definitions. The fol-
lowing one is convenient for our purposes.
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Definition 3.1 (cf. [7, Theorem 8.2]) A finite group G is a Frobenius group if it
has a finite, proper, non-trivial subgroup H that is malnormal, i.e., that satisfies H N
gHg ' = {e} forallg € G\ H. We say that H is a Frobenius complement in G.

Given a Frobenius complement H < G, let K := (G\ U, 8H ¢ ) U{e}. Clearly
K is a conjugation-invariant susbet of G. By a deep result of Frobenius, K is actually
a subgroup of G, called the Frobenius kernel of G, and G is the semidirect product
K x H. (See Passman’s book, in particular the proof of [7, Theorem 17.1], for further
details.)

Remark 3.2 A priori, K depends on the particular choice of Frobenius comple-
ment H. However, it turns out that if G has a Frobenius complement H and K is the
corresponding Frobenius kernel, then K is equal to the Fitting subgroup of G; more-
over, all proper, non-trivial, malnormal subgroups of G are conjugate in G ([7, Cor-
ollary 17.5]). These highly non-obvious results are sometimes summarized in the
slogan “a finite group can be Frobenius in at most one way”.

For sake of brevity, we write “let G = K x H be Frobenius” as an abbreviation
for “let G be a finite Frobenius group, with Frobenius complement H and Frobenius
kernel K.

Proposition 3.3 Let G = K x H be Frobenius. Suppose H is an abelian group of
order h and K is an abelian group of order k. Then h divides k — 1. Moreover:

(i) G has trivial centre, (k — 1)/h conjugacy classes of size h, and h — 1 conjugacy
classes of size k;
(ii) G has exactly h linear characters, the remaining characters each having degree h.

The proposition is an assembly of several standard facts about Frobenius groups.
However, as it is difficult to locate a reference that states what we need concisely, we
give a proof in Appendix A.

Theorem 3.4 Let G be a Frobenius group whose complement and kernel are both
abelian; let h and k be the orders of the complement and kernel, respectively. Then

(3.3) AMZ(G):1+2-h2h_l(l—h;1>(1—%).

Proof By Proposition 3.3,

-1
> \C|2=1+kTh2+(h—1)k2=1+h(k—1)+(h—1)k27
CeConj(G)

and substituting the remaining information from Proposition 3.3 into the general
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formula (2.3) yields

AMz(G) -1 1+h(k—1)+(h— 1k
;=== i )
R =1 —1—hk+h+k
h k2
W —1 h h—1
)
Factoring and rearranging this gives the formula (3.3), as required. ]

Example 3.5 (Dihedral groups of odd order, revisited) Let n be an odd integer
with n > 3. Using the standard presentation of D, as given earlier, we see that the
subgroup generated by the “reflection” ¢ is malnormal, while the Frobenius kernel
turns out to be the subgroup generated by the “rotation” r. Puttingh = 2 and k = n
in (3.3) gives

1N 2
AMZ(D,,):1+3(1—7> :
n
just as we had before.

Example 3.6 (Affine groups of finite fields) Let I, be a finite field of order g, where
q is a prime power > 3. The affine group of IF;, which we shall denote by Aff(F,), is
the set

{(8%):ack bek,}

equipped with the group structure it inherits from the usual matrix product and
inversion. It is a metabelian group; more precisely, it is isomorphic to the semidirect
product Iy x IF<.

It is straightforward to check that the subgroup of Aff(IF;) corresponding to the
multiplicative group of IF; is a proper, non-trivial, malnormal subgroup; the Frobe-
nius kernel turns out to be the normal subgroup of Aff(IF;) corresponding to the
additive group of k. Both are abelian, so we can apply Theorem 3.4, which yields

B (g—1)?% -1 q-2 1
AM(ARCE) = 1+2. S (1- ; )(175)
29—¢q° 2 q-—1
-1 g9 q
—2
14417258

q q

=1+2-

Remark 3.7 One can also compute AMz(Aff(F,)) more directly from the character
table of Aff(q), which is simple and well known and can be found in standard sources.
In fact, the exact computation for these examples, which arose in other research of
the authors related to [9], provided some of the motivation for Theorem 2.4.
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Remark 3.8 For all odd primes p, 2 < AM(Aff(p)) < 5, while Aff(p) has an
irreducible representation of dimension p — 1. This shows that the amenability
constant of Z¢'(G) cannot be bounded from below by an increasing function of
max{d, : x € Irr(G)}. (For context, see the remarks made at the end of Section 2.)

Example 3.9 (a’x + b groups) Let g be an odd prime power > 5, and let d =
(q — 1)/2. Consider the following subgroup of Aff(F,), sometimes referred to as the
a*x + b group over F:

Gy={(9):ack bek,}.

Recalling that " is cyclic, pick a generator z, and let H be the subgroup of Aff(IF;)

generated by ( 202 9). One can check that H is malnormal, and so G, is Frobenius.
The Frobenius kernel K turns out to be the normal subgroup corresponding to the
additive group of IF;. So both K and H are abelian; the former has order g, while the
latter has order d, so using (3.3) we get

M) =12 L (1o ) (1)

q2—2q—3q+3q—1
29-1) 29 q

=1+2-

which simplifies to

q+1 9
(3.4) AMz(Gy) =1+ 1= (1= ?)

As a consistency check, when q = 5, equation (3.4) gives AMz(Gs) = 73/25. On

the other hand, it is straightforward to check that Gs is isomorphic to the dihedral
group of order 10, and using our earlier formulas we have AMz(Ds) = 73/25.

Remark 3.10 Even though G, is a (index 2) subgroup of Aff([F,), it may have a
larger ZL-amenability constant. Indeed, it is clear from the formulas obtained in
Examples 3.6 and 3.9 that

1
lim AMy(Aff;) =5, while lim qil AMz(G,) = -.
q—0o0 q—o0 2

Example 3.9 shows that within the class of groups with two character degrees, we
can obtain arbitrarily large ZL-amenability constants. It is natural to ask how small
such constants can be. For Frobenius groups with abelian complement and kernel,
we can obtain a complete answer.

Theorem 3.11 Let G be a Frobenius group with abelian complement and kernel. Then
AMy(G) > 7/3, with equality if and only if G is the dihedral group of order 6.
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Proof Let h be the order of the Frobenius complement of G, and k the order of its
Frobenius kernel. Note that G is isomorphic to D5 if and only if h = 2 and k = 3.
To reduce notational clutter, let F(k, k) denote %(AMZ(G) — 1). By Theorem 3.4,

-1 h—1 1
Rl = = (1= =) (1= 1)
and it suffices to prove that F(k, h) > 2/3 with equality if and only if (h, k) = (2, 3)
(subject to h and k arising from a Frobenius group of the specified form).
Note that for fixed h, F( -, h) is a strictly increasing function. As observed above,
h divides k — 1, so in particular k > h + 1; hence, F(k, h) > F(h+ 1, h), with equality
ifand only if h = k — 1. Direct calculation gives

h2—1. 2 h _2(h—1)_2<1_ 2)
h h+1 h+1  h+1 h+1/’

and so F(h + 1,h) > 2/3, with equality if and only if h = 2. This completes the
proof. ]

F(h+1,h) =

If we consider more general groups with two character degrees, then there is an
infinite family of such groups whose ZL-amenability constants are less than 2. This
will be seen in the next and final subsection of the paper.

3.3 Extra-special p-groups

Definition 3.12 Fix a prime p. A finite group G is p-extraspecial if it has order
p?™*! for some integer n and has the following properties:

(i)  The centre Z(G) and the derived subgroup G’ both have order p.
(ii) The quotient G/Z(G) is abelian, and each non-identity element in the quotient
has order p.

Such groups do exist (for instance, the dihedral group of order 8 is 2-extraspecial),

and their character tables and conjugacy classes turn out to be uniquely determined
by these conditions. In particular, each non-linear irreducible group character of
G is supported on Z(G) and has degree p". This follows from, e.g., [3, Chapter 5,
Theorem 5.5], as pointed out to the second author by D. E Holt. Alternatively, a
short argument using some basic character theory is described by I. M. Isaacs in the
appendix to [2].
Example 3.13 Let G be an extraspecial group of order p?**!, where p is a prime.
We know every non-linear character has degree p”, and we know G’ has order p. To
apply Theorem 2.4, we also need to know the sizes of the conjugacy classes. By some
elementary group theory (see e.g., the appendix of [2]), the conjugacy classes of G are
either elements of the centre or the non-trivial cosets of the derived subgroup. Thus
there are p conjugacy classes of size 1 and p*" — 1 conjugacy classes of size p, and no
others. Therefore,

Z |C‘2:p'12+(p2n_l).p2:p2n+2_p2+p’

CeConj(G)
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and so Theorem 2.4 gives

p2n+2 _ pz +p
P2n+2 )

(- L) (),

Remark 3.14 1f Gis an extraspecial group of order 22"*!, then AMz(G) = 2—272".
Thus we have an infinite family of finite groups G for which 1 < AMz(G) < 2.

AMZ(G) = 1+ 2(p*" — 1)(1 —

Remark 3.15 Within the class of extra-special p-groups, the ZL-amenability con-
stant is minimized when we take p = 2 and n = 1. This example is nothing but the
dihedral group of order 8, whose amenability constant is 7/4. This is the smallest
ZL-amenability constant we have found for any non-abelian group.

Note added in proof After this paper was accepted for publication, the second au-
thor (YC) has since shown that the ZL-amenability constant of any finite non-abelian
group is at least 7/4. Details will appear in a forthcoming work.

3.4 Summary Information

We summarize the findings of this section in Table 1.

Ref. G |G| IL| c.d. AMz(G) — 1 min.
Ex. 3.6 Aff(F,), qlq—1)| g—1 [g—1 4(1—2q71) 4/3
q>3
Ex.3.9 |ax’+bofF aq-1) 1g-1Dlg—1] i(g+1)(1—9q72) |48/25
9 2 2 2
qg=>>5
Eq. (3.2) D, 2n 2 2 3(1 —n1)? 4/3
nodd > 3
Eq. (3.1) D,, 2n 4 2 3(1 — (2n)~1H)? 3/4
neven > 4

Ex. 3.13 | p-extraspecial | p*"*! p*" p" 20 —p™ (1 —p~hH| 3/4

Table I: Summary table for some groups with two character degrees

e “Ref” gives the number of the relevant theorem, example, or equation.

e “L” is the set of linear characters.

e “c.d” stands for the character degree of the non-linear characters.

* “min” denotes the minimum value of AMz(G) — 1 within the specified family of
groups.
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A Properties of Frobenius Groups

In this appendix we collect the facts about Frobenius groups that are needed to prove
Proposition 3.3. Since we are interested only in the special case where both comple-
ment and kernel are abelian, it will sometimes be easier to give short proofs than to
cite general results and then specialize. On the other hand, in some places we shall
merely give appropriate references to the literature.

Throughout, G = K x H is Frobenius, and k and h denote the orders of K and
H respectively. By considering the permutation action of G on cosets of H, it fol-
lows easily from the malnormal property that /1 divides k — 1. (This does not need
Frobenius’s result that K is a group.)

Proof of Proposition 3.3() Throughout this proof x® denotes the conjugacy class
of x in G, and Cg(x) denotes the centralizer of x in G. We repeatedly use the fact
that each element of G can be written either as xb, where x € K and b € H, or as
ay, where a € H and y € K. (This is immediate from the decomposition of G as a
semidirect product of H and K.)

The first step is to identify the conjugacy classes of K inside G. Let x € K \ {e}.
By the malnormal property, Cg(x) N H = {e}. Since K is abelian and G = HK, it
follows that Cg(x) = K. Therefore |x°| = |G|/|K]| = h.

For the second step, recall that by definition, G\ K = (|J e &H, ¢7") \{e}. Since

H is abelian and G = KH, we obtain G\ K = (U cxxHx™") \ {e}. Now, by the
malnormality of H inside G, and the fact that H N K = {e}, we see that

xHx 'NnyHy ' = {e} whenever x, y € K and x # y.

Thus, the function H \ {e} — Conj(G), a + aC, is injective, and |a®| = k for each
a € H\{e}. This gives us the required partition of G\ K into h— 1 disjoint conjugacy
classes, each of size k. |

To prove the second part of Proposition 3.3, we appeal to some general results on
the character theory of Frobenius groups.
Proposition  Let G = K x H be Frobenius. The following belong to Irr(G):

e the characters arising by composing irreducible characters of H with the quotient map
G — G/K 2 H;
e the characters arising by inducing an irreducible character of K up to G.

Moreover, every irreducible character of G arises in this way.
Proof See, for example, [4, Theorem 6.34]. |

In the special case where H and K are abelian, it follows immediately that G has
two character degrees. The irreducible characters of G that arise by inducing ir-
reducible characters from K all have degree |G:K| = h; the remaining characters
are all linear, arising from the irreducible characters of H, and there are precisely
|H| = |H| = h of them. This completes the proof of Proposition 3.3(ii). [
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