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Abstract

In Cossey and Stonehewer [‘On the rarity of quasinormal subgroups’, Rend. Semin. Mat. Univ. Padova
125 (2011), 81–105] it is shown that for any odd prime p and integer n ≥ 3, there is a finite
p-group G of exponent pn containing a quasinormal subgroup H of exponent pn−1 such that the nontrivial
quasinormal subgroups of G lying in H can have exponent only p, pn−1 or, when n ≥ 4, pn−2. Thus
large sections of these groups are devoid of quasinormal subgroups. The authors ask in that paper if
there is a nontrivial subgroup-theoretic property X of finite p-groups such that (i) X is invariant under
subgroup lattice isomorphisms and (ii) every chain of X-subgroups of a finite p-group can be refined
to a composition series of X-subgroups. Failing this, can such a chain always be refined to a series of
X-subgroups in which the intervals between adjacent terms are restricted in some significant way? The
present work embarks upon this quest.
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1. Introduction

A subgroup Q of a group G is said to be quasinormal (sometimes permutable) if
〈Q, H〉 = QH for all subgroups H of G; that is, if QH = HQ. We write Q qn G. The
concept is due to Ore [3], and in [4] he proved that, in finite groups, quasinormal
subgroups are always subnormal. He also proved that they are modular. Recall that a
subgroup M of a group G is modular if

〈X, M〉 ∩ Y = 〈X, M ∩ Y〉 for all X ≤ Y (1.1)

and
〈X, M〉 ∩ Y = 〈X ∩ Y, M〉 for all X and Y with M ≤ Y. (1.2)

In fact a subgroup M of a finite group G is quasinormal if and only if M is modular
and subnormal in G (see [6, Theorem 5.1.1]). So in finite p-groups,

quasinormal subgroups and modular subgroups coincide.
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Also they are clearly invariant under subgroup lattice isomorphisms (that is,
projectivities).

It was explained in [1] why p-groups are so important in the theory of quasinormal
subgroups of finite groups. For, suppose that G is finite with Q qn G and Q core-free.
Then Q is nilpotent and each Sylow p-subgroup P of Q is quasinormal in G. Also if
S is a Sylow p-subgroup G, then P qn S and the complexities of the embedding of Q
in G are reduced to those of P in S . Therefore in what follows we shall be mainly
interested in finite p-groups. Our aim is to weaken the definition of quasinormality,
while retaining its invariance under projectivities in finite p-groups, so as to produce
a class of subgroups that are more involved with the structure of the group. We are
particularly interested in relating group and lattice properties. An obvious starting
point is to adopt just one of the definitions (1.1) and (1.2) of modularity.

D 1.1. We say that a subgroup M of a group G is semimodular if (1.1) holds
(see [6, Exercise 7, p. 49]). Write M sm G.

We should point out (and indeed the referee drew attention to the fact) that
semimodularity of lattices is a standard concept, namely X ∩ Y maximal in X implies Y
maximal in 〈X, Y〉 for all X and Y (see, for example, [7]). However, since we are
concerned with individual elements rather than whole lattices, we have taken the
liberty (following Schmidt in [6]) of using this terminology, which, while different
from the original, will hopefully seem appropriate in the context. (The same applies
in Definitions 1.4, 2.1 and 2.2 below.)

Given subgroups H ≤ K of a group, denote the lattice of subgroups between H
and K by [K/H]. Then for subgroups X, Y of a group G, define a map

ΦX,Y : [X/X ∩ Y]→ [〈X, Y〉/Y]

by
H 7→ 〈H, Y〉.

Similarly, define a map

ΨX,Y : [〈X, Y〉/Y]→ [X/X ∩ Y]

by
K 7→ X ∩ K.

In relation to semimodularity we have the following proposition.

P 1.2. Let M be a subgroup of G. Then:

(i) M sm G if and only if, for all X ≤G,

ΦX,MΨX,M = id[X/X∩M];

(ii) if M sm G, then, for all X ≤G,

ΨM,XΦM,X = id[〈X,M〉/X].
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Both of these results are left to the reader in [6, Exercise 7, p. 49], and we do the
same. However, when G is a finite p-group there is a striking corollary.

P 1.3. A semimodular subgroup of a finite p-group is quasinormal and
therefore modular.

P. Let G be a finite p-group with M sm G and let X ≤G. Then it follows from
Proposition 1.2 that the map

ΨM,X : [〈X, M〉/X]→ [M/X ∩ M]

is injective. Therefore |〈X, M〉 : X| ≤ |M : X ∩ M|. However,

|M : X ∩ M| = |M|/|X ∩ M| = |XM|/|X|,

that is, |〈X, M〉| ≤ |XM|. Hence 〈X, M〉 = XM and so M qn G. �

So (1.2) is a redundant requirement in the definition of modular subgroups in finite
p-groups. But of course we cannot remove the hypothesis that G is a finite p-group
in Proposition 1.3. For example, the subgroups of order two in the alternating group
A4 are semimodular, but not modular. As we stated above, however, our interest is in
p-groups.

We consider next the defining property (1.2).

D 1.4. We say that a subgroup M of a group G is weakly modular if (1.2)
holds. Write M wm G.

Corresponding to Proposition 1.2(i) we have the following proposition.

P 1.5. Let M ≤G. Then M wm G if and only if, for all X ≤G,

ΨX,MΦX,M = id[〈X,M〉/M]. (1.3)

P. Suppose that M wm G, X ≤G and M ≤ Y ≤ 〈X, M〉. Then Y = 〈X, M〉 ∩ Y =

〈X ∩ Y, M〉, by (1.2). Therefore ΨX,M : Y 7→ X∩Y and ΦX,M : X∩Y 7→ 〈X ∩ Y, M〉=Y .
Hence we have the necessary requirement.

Conversely, suppose that (1.3) holds and let M ≤ Y ≤G. Then X ∩ Y = X ∩
(〈X, M〉 ∩ Y). Therefore

ΨX,M : 〈X, M〉 ∩ Y 7→ X ∩ Y and ΦX,M : X ∩ Y 7→ 〈X ∩ Y, M〉.

Thus, by (1.3), 〈X, M〉 ∩ Y = 〈X ∩ Y, M〉 and so M wm G. �

Again we have a striking corollary.

P 1.6. A weakly modular subgroup of a finite p-group is quasinormal and
therefore modular.
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P. Let G be a finite p-group with M wm G and let X be a cyclic subgroup of G.
It is sufficient to show that 〈X, M〉 = XM. By Proposition 1.5, ΦX,M is a surjective map.
Therefore since [X/X ∩ M] is a chain, it follows that [〈X, M〉/M] is a chain and

|〈X, M〉 : M| ≤ |X : X ∩ M|.

Thus |XM| = |X||M|/|X ∩ M| implies that |〈X, M〉 : M| ≤ |XM|/|M| and hence |〈X, M〉| ≤
|XM|. Then 〈X, M〉 = XM, as claimed. �

It follows that either of the two conditions (1.1) and (1.2) for modularity is sufficient
in finite p-groups. However, as before, we cannot remove the hypothesis that G is a
finite p-group in Proposition 1.6. For example, a maximal subgroup of any group is
weakly modular.

So two possible lattice-invariant generalisations of the concept of quasinormality
in finite p-groups have failed. In the next section we consider a third which at least
produces a larger class of subgroups.

2. Upper semimodular subgroups

In [6, pp. 46, 47], Schmidt defines two generalisations of the concept of modular
lattice, namely upper semimodular and lower semimodular. Applied to individual
subgroups these are as follows. Let M be a subgroup of a group G.

D 2.1. We say that M is upper semimodular in G (and we write M usm G) if,
for all X ≤G,

X ∩ M maximal in M implies X maximal in 〈X, M〉. (2.1)

D 2.2. We say that M is lower semimodular in G if, for all X ≤G,

X maximal in 〈X, M〉 implies X ∩ M maximal in M.

It is easy to see that in all finite p-groups, every subgroup is lower semimodular.
However, an upper semimodular subgroup of a finite p-group is not always modular,
as we see in the following example.

E. Let p be an odd prime and let G be the group generated by elements a1, a2,
a3, b of order p such that

[ai, b] = ai+1, i = 1, 2 and [a3, b] = [ai, a j] = 1, all i, j.

Let M = 〈a1, a2〉. We claim that
M usm G. (2.2)

For, let X ≤G with |X ∩ M| = p and X 
 M. We show that |〈X, M〉 : X| = p. Clearly we
may assume that X 
 A = 〈a1, a2, a3〉. Therefore there is an element ab ∈ X with a ∈ A.
We distinguish two cases.

https://doi.org/10.1017/S0004972711003376 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003376


[5] Generalising quasinormal subgroups 5

(i) Suppose that X ∩ M = 〈a2〉. Then a3 ∈ X and so |X| ≥ p3. Hence |X| = p3 and
G = XM, that is, X is maximal in G.

(ii) Suppose that X ∩ M , 〈a2〉. Then there is an element a1ai
2 ∈ X, some i. Thus

a2ai
3 ∈ X and a3 ∈ X. So a2 ∈ X, a contradiction.

Hence (2.2) follows. However, M is not modular in G, since it is not quasinormal,
that is, M〈b〉 is not a subgroup.

Of course the property of being an upper semimodular subgroup is invariant under
projectivities, that is,

upper semimodularity is a lattice-invariant property.

These subgroups also satisfy another important property, as we now show. We shall
refer to them as usm subgroups.

P 2.3. The join of two usm subgroups of a finite p-group is a usm subgroup.

P. Let G be a finite p-group and M1, M2 usm G. Let M = 〈M1, M2〉 and suppose
that X ≤G with X ∩ M maximal in M. We write X ∩ M l M. So |M : X ∩ M| = p. We
show that

X l 〈X, M〉. (2.3)

Clearly M 
 X and so without loss of generality we may assume that M1 
 X. But
〈X, M1〉 = 〈X, X ∩ M, M1〉 = 〈X, M〉 and X l 〈X, M1〉 since X ∩ M1 l M1. So (2.3)
follows. �

We saw in the above example that usm subgroups of finite p-groups are not
quasinormal in general. In that example the subgroup is elementary abelian of rank
two. It could not have had order p for the following reason.

P 2.4. A usm subgroup of order p in a finite p-group is quasinormal.

P. Let G be a finite p-group with M usm G and |M| = p. Let X ≤G. Then

〈X, M〉 = XM. (2.4)

For we may assume that M
X. Thus M ∩ X =1 and so by hypothesis |〈X, M〉 : X|= p.
Hence X C 〈X, M〉 and (2.4) follows. �

In fact the above result is true even for cyclic usm subgroups. But in order to prove
this we need two elementary properties.

P 2.5. Let M be a usm subgroup of a group G.

(i) If M ≤ H ≤G, then M usm H.
(ii) If θ is a homomorphism of G, then Mθ usm Gθ.
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P. (i) This is clear.
(ii) Let N CG. Then it suffices to show that MN/N usm G/N. Let X/N ≤G/N such
that X ∩ MN l MN. We have

MN/N � M/(N ∩ M)

and under this isomorphism (X ∩ M)N/N = (X ∩ MN)/N corresponds to (X ∩ M)/
(N ∩ M). Therefore X ∩ M l M and so X l 〈X, M〉, by hypothesis, that is, X/N l
〈X/N, MN/N〉. Hence MN/N usm G/N. �

Now we can show that Proposition 2.4 is just the simplest case of a more general
result. We denote the subgroup generated by the elements of order p in a p-group G
by Ω1(G).

T 2.6. A cyclic usm subgroup of a finite p-group is quasinormal.

P. Let G be a finite p-group with M usm G and M cyclic. Suppose for a
contradiction that M is not quasinormal in G and let G be a counterexample of minimal
order. Then there is a cyclic subgroup X of G such that XM , MX. Also G = 〈X, M〉,
by Proposition 2.5(i) and choice of G.

Let N be a minimal normal subgroup of G. Then again by choice of G and
Proposition 2.5(ii), G = NXM. We claim that

N = Z1(G), (2.5)

the centre of G. For otherwise there exists an element xy ∈ Z1(G), xy , 1, x ∈ X,
y ∈ M. Then [x, y] = 1 and so 〈xy〉 ⊂ XM. But G = 〈xy〉XM, since G/〈xy〉 is not a
counterexample. Therefore G = X〈xy〉M = XM, contradiction. Thus (2.5) is true.

By [6, Theorem 5.2.13], G/N is metacyclic, being the product of two cyclic groups.
Therefore there are cyclic subgroups H, K of G such that

NH CG = NHK.

Let H = 〈h〉, K = 〈k〉. So we may assume that

hk = uh1+λp, (2.6)

where u ∈ N, λ an integer. Suppose that |H| = p. If also |K| = p, then |G| = p3. If p
is odd, G must have exponent p. But then |M| = p, contradicting Proposition 2.4. On
the other hand, if p = 2, then G � D8, the dihedral group of order eight, with M of
order four, again by Proposition 2.4. So M CG, a contradiction. Thus we must have
|K| ≥ p2. Then K p ≤ Z1(G), by (2.6), and so K p = N, by (2.5). Therefore again |G| = p3

and we easily obtain contradictions. Thus

|H| ≥ p2.

It follows from (2.6) that Ω1(H) ≤ Z1(G) and so Ω1(H) = N and G = HK, with
H CG and H and G/H cyclic. If p were odd, then all its subgroups would be

https://doi.org/10.1017/S0004972711003376 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003376


[7] Generalising quasinormal subgroups 7

quasinormal, by [6, Theorem 2.3.1]. So p = 2. We shall see in the next lemma that M,
not being quasinormal in G, cannot lie in the subgroup of G of index two which
contains H. But then we have G = HM. Also G/H4 has a quotient isomorphic to
D8 in which the image of M is noncentral of order two (again by [6, Theorem 2.3.1]).
However, this contradicts Propositions 2.4 and 2.5(ii) and completes the proof of the
theorem. �

L 2.7. Let G be a finite 2-group with H CG, H cyclic of order at least four, and
let G/H be cyclic and nontrivial. Let L/H be the subgroup of index two in G/H. Then
every subgroup of L is quasinormal in G.

P. Suppose that the lemma is false and let G be a counterexample of minimal
order. Let M ≤ L with M not quasinormal in G. Then H ∩ M = 1, otherwise M/H ∩ M
is quasinormal in G/H ∩ M, by choice of G, and thus M qn G, a contradiction.
Therefore M is cyclic. Let X be a cyclic subgroup of G such that

〈M, X〉 , MX. (2.7)

Again by [6, Theorem 2.3.1], we see that L is a modular group, that is, all its subgroups
are modular, therefore quasinormal (in L). Thus X 
 L and so G = HX. Also we must
have H ∩ X = 1, otherwise MX/H ∩ X is a subgroup by choice of G.

Let M = 〈hx〉, h ∈ H, x ∈ X2. Then h ∈ MX. Also h , 1. Now

(hx)2 = hh1+4λx2,

for some integer λ. Squaring this equation repeatedly, we see that some power h1x1

(h1 ∈ H, x1 ∈ X2) of hx has |h1| = 2. Thus 〈h1〉 ∈ MX ∩ Z1(G) and again, by choice
of G, MX/〈h1〉 is a subgroup of G/〈h1〉. This contradicts (2.7) and so the lemma
follows. �

The above results suggest that the concept of upper semimodularity might be a
useful lattice-invariant generalisation of quasinormality in finite p-groups, with a
view to understanding more about the connection between group and subgroup-lattice
structures. But it turns out that there are two properties of quasinormal subgroups,
one extremely useful and the other quite intriguing, neither of which is inherited by
usm subgroups. The first concerns the intersection of a quasinormal subgroup Q with
an arbitrary subgroup H in a group. The intersection Q ∩ H is always quasinormal
in H. However, this property is not possessed by usm subgroups. To see this, let G
be the group of the previous example. Then M = 〈a1, a2〉 usm G. Let H = 〈a2, a3, b〉,
so H ∩ M = 〈a2〉. Clearly 〈a2〉 is not quasinormal in H. Therefore 〈a2〉 is not a usm
subgroup of H, by Proposition 2.4.

In fact the same example illustrates the second property of quasinormal subgroups
referred to above. It was shown in [2] that for odd primes p, a quasinormal subgroup
of order p2 in a finite p-group G always contains a quasinormal subgroup (of G) of
order p. However, it is easy to see that in the example above, where M has order p2,
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there is no usm subgroup of G of order p lying in M. For, such a subgroup would
have to be quasinormal in G, by Proposition 2.4. Thus upper semimodularity is not a
candidate for the class X referred to at the beginning of this paper.

There is yet a third property of quasinormal subgroups that is not inherited by usm
subgroups. A subgroup M that permutes with all cyclic subgroups is quasinormal. But
again take G in our example, with p ≥ 5, and let M = 〈a1, a3〉. Since G has exponent p,
each nontrivial cyclic subgroup X of G with X ∩ M l M lies in M and so (2.1) holds.
But if M usm G, then modulo 〈a3〉, M would be quasinormal in G (by Propositions 2.4
and 2.5(ii)). Thus M would be quasinormal in G, which is not the case.

3. Joins as restricted products

We conclude this preliminary investigation by considering another concept
generalising quasinormality. By definition, H qn G if and only if 〈H, K〉 = HK for
all K ≤G. Of course when G is finite, for any two subgroups H and K of G, we always
have

〈H, K〉 = (HK)n

for some finite n. (Here for sets X, Y , XY = {xy | x ∈ X, y ∈ Y}.) In this connection there
is an interesting elementary result.

P 3.1. Let G be a finite p-group with subgroups H, K such that G = HKH.
Then G = HK.

P. We proceed by induction and assume the result is true for groups of order less
than |G|. Let h1kh2 be a central element of order p, with h1, h2 ∈ H, k ∈ K. Thus h1kh2

commutes with kh2 and so h1 commutes with kh2. Therefore h1kh2 = kh2h1. Similarly,
h2 commutes with h1k. Put h = h2h1. Then

hk = h2h1k = h1kh2 = kh2h1 = kh.

Thus N = 〈hk〉 ⊂ HK and N ≤ Z1(G). By induction,

G/N = HKN/N = HNK/N = HK/N

and hence G = HK as required. �

For our final generalisation of quasinormality, we shall use the fact that a subgroup
is quasinormal if and only if its join with every cyclic subgroup is just its product.

D 3.2. We call a subgroup H of a group G 4-quasinormal, and write H qn4 G,
if

〈H, K〉 = HKHK,

for all cyclic subgroups K of G.
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Clearly this concept can be generalised successively to n-quasinormal by increasing
the number of factors H, K. In this way, eventually every subgroup H of every finite
group will be included.

We shall restrict ourselves to finite p-groups. Given the complexity of these groups,
the difficulties of discovering the properties of even 4-quasinormal subgroups will
surely be considerable. However, we have been able to make a start when |H| = p
by establishing their lattice-invariance.

T 3.3. Let p be a prime and let G, Ḡ be lattice-isomorphic finite p-groups.
Suppose that H qn4 G and |H| = p. Denote the image of H in Ḡ by H̄. Then H̄ qn4 Ḡ.

P. We have to show that for every cyclic subgroup K̄ of Ḡ,

〈H̄, K̄〉 = H̄K̄H̄K̄.

Of course the pre-image K of K̄ is cyclic of the same order as K̄, say pn, n ≥ 1. Thus
we may assume that

G = 〈H, K〉 = HKHK (3.1)

and Ḡ = 〈H̄, K̄〉 having the same order as G. Let N = KG, the core of K in G.
Then (continuing to use bars to denote images) N̄ qn Ḡ and so H̄ normalises N̄.
Therefore N̄ C Ḡ and clearly N̄ = K̄Ḡ. Since 4-quasinormality is obviously preserved
by homomorphisms, we may assume that

KG = 1 and K̄Ḡ = 1. (3.2)

From (3.1), we see that |Ḡ| = |G| ≤ p2n+1. Let H̄ = 〈h〉, K̄ = 〈k〉. Then

the double cosets H̄kihK̄, 0 ≤ i ≤ pn − 1, are distinct. (3.3)

For suppose that H̄kihK̄ = H̄k jhK̄ with i , j, 0 ≤ i, j ≤ pn − 1. Then

kih = h1k jhk1, (3.4)

where h1 ∈ H̄, k1 ∈ K̄. Therefore ki = h1k jk1[k1, h−1]. It follows from (3.4) that k1 , 1.
So [k1, h−1] , 1, by (3.2), and hence h−1

1 ki− jk−1
1 ∈ Ḡ′ \ {1}. Since Ḡ = 〈h, k〉, we must

have h1 = 1, otherwise Ḡ = 〈h−1
1 ki− jk−1

1 , k〉 = 〈k〉, a contradiction. Thus, by (3.4),

kh−1

1 ∈ K̄.

But this contradicts (3.2). Therefore (3.3) follows.
Finally, for g ∈ Ḡ,

|H̄gK̄| = |H̄||K̄|/|H̄g ∩ K̄| = pn+1

(see [5, p. 90, Exercise 247]). Thus from (3.3) we see that |H̄K̄H̄K̄| ≥ p2n+1. Therefore
Ḡ = H̄K̄H̄K̄. �

An obvious question is whether Theorem 3.3 extends to arbitrary cyclic qn4-
subgroups or indeed to all qn4-subgroups, and we have made some progress in this
direction. Also, which other properties of quasinormal subgroups are inherited by, or
can be generalised to, qn4-subgroups? We make no conjectures, but hopefully more
results will appear in due course.
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