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EXISTENCE OF POSITIVE GLOBAL SOLUTIONS OF 
MIXED SUBLINEAR-SUPERLINEAR PROBLEMS 

W. ALLEGRETTO AND Y. X. HUANG 

1. Introduction. Consider the elliptic quasilinear problem: 

(1) /0(H) = f(X, U, Vw) 

in R", n è 3, where 

/<>(«) = - S A W 
We are interested in establishing sufficient conditions on / for the 
existence of positive solutions u(x) with specified behaviour at oo. Of 
special interest to us are criteria which guarantee that u(x) decays at least 
as fast as \x\~a for some a ^ 0, given below, in the case /(JC, u, Vw) 
contains terms of type 

p(x)uy + q(x)u8 with 0 < y < 1 < 8. 

That is: / i s of mixed sublinear- super linear type. Our main result is 
Theorem 3 below which explicitly states sufficient conditions for the 
existence of such solutions. 

The variational prototype of this problem is the equation: 

(1*) -Aw = p(x)uy 

where p:Rn —> R is continuous. The existence of positive solutions for (1*) 
has been established by many authors under various conditions. For 
example, the critical case (y = (n + 2)/(n — 2) ) is studied by Ni, [24], 
and Ding and Ni, [6]; the singular case (y < 0) by Kusano and Swanson, 
[20]; the sublinear case (0 < y < 1) by Fukagai, [8], and Kusano and 
Swanson, [21]; the superlinear case (1 < y < (n -h 2)/(n — 2) ) by 
Fukagai et al, [9]; Gidas and Spruck, [11]; and Joseph and Lundgren, [15]. 
See also the mini-survey paper, [27], by Swanson. Even though bifurcation 
methods, [6], and variational methods, [25], [26], are also used, radial 
arguments (i.e., ordinary differential equations) and sub- and super-
solutions play an important role in these investigations and the statements 
of the theorems obtained. More specifically, Ni, [24], proved the existence 
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MIXED SUBLINEAR-SUPERLINEAR PROBLEMS 1223 

of infinitely many bounded positive solutions for / = p(x)uy (y â 1) if 
\p(x)\ ^ c/\x\l, I > 2. If 

/bo 
\p(x) | ^ <p( \x\ ) and J Q r<p(r)Jr < oo, 

similar results have been established by Kawano [16] and Kusano and 
Oharu [18] for 

f = p(x)u\\og(\ + u))8 

with y and S satisfying one of the following: (i) y > 1 and ô ^ O ; (ii) y = 1 
and 8 ^ 0 ; (iii) y < 1, y ¥= 0 and 8 arbitrary. Fukagai [8] showed the 
existence of entire positive solution with specific behavior at oo for 
/ = p(x)uy, 0 < y < 1, p(x) as above. Kusano and Trench [22] proved the 
existence of decaying positive solution for the following mixed sublinear-
superlinear equation: 

-Aw + <p( |JC| )ux + ^( |JC| V 1 = 0 

in R" with 0 < X < 1 < //,, while the case of nonradial cp and \p was given 
as an open problem in their paper. There are considerably fewer results 
along these lines in the literature dealing with the quasilinear case. We 
mention, however, that Furusho, [10], recently obtained criteria for the 
existence of positive solutions for mixed problems under integrability 
conditions for radial majorants of the coefficients. The case where <p, \p 
may not admit such radial majorants was left open, and is the case on 
which we focus in this paper. Earlier, in [21], Kusano and Swanson proved 
the existence of decaying positive entire solution for / depending on u and 
Vw sublinearly. Usami [28] established the existence of bounded positive 
solutions which are bounded away from zero, and Kusano and Oharu [19] 
further gave the existence of infinitely many such solutions, both for / 
depending on u and Vw either sublinearly or superlinearly. Again, radial 
ideas and strong sub- and supersolution methods were extensively used. 

Our method originates from the procedures employed in [1], and 
consists of a combination of a-priori estimates and of sub-supersolution 
arguments. Since we do not use radial arguments nor variational 
techniques, it is possible for us to deal with some problems which are not 
amenable to such procedures. Another feature of our method is that 
relevant constants can be estimated. This is the key step in answering the 
open question mentioned at the end of the paper by Kusano and Trench, 
[22], for the cases not covered by [10]. 

Our procedure is as follows: Our methods begin with Theorem 2 which 
shows, under suitable conditions, the existence of a weak supersolution to 
(1). Theorem 2 can be viewed as a nonlinear perturbation result about 
positive constant solutions of a linear elliptic equation. As we illustrate 
below, see e.g. Example 4, in some cases the existence of positive solutions 
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to (1) follows immediately from Theorem 2. However, an immediate con
sequence of the maximum principle shows that 

-Aw =f(x, u, Vu) ^ 0 

cannot have positive solutions which decay to zero at infinity. Since the 
existence conditions in Theorem 2 only require / to be small in some 
norm, they are not sufficient for the existence of a decaying solution by 
the above observation. Consequently, simple spectral estimates are intro
duced in the proof of Theorem 3 to construct a nonnegative nontrivial 
weak subsolution of small L°° norm. This spectral procedure is motivated 
by the nature of the previous results to which we wish to refer, and only 
requires a local structure condition on / at a point of R" X R X R". The 
final part of the proof of Theorem 3 follows from the recall of a global 
weak sub- and supersolution method. This procedure, with a long history, 
has been extended to unbounded domains by several authors. See, e.g., the 
articles by Hess, [13], Boccardo et al, [3], Donato and Giachetti, [7], 
Fukagai, [8], Noussair and Swanson, [25], and the references therein. We 
wish to consider classical solutions but, as is apparent below, it is 
convenient for us to allow weak sub- and supersolutions which belong 
only to local Sobolev Spaces. Theorem 5.3 of [7] gives a result very close to 
the one we need, and for convenience, we explicitly state the modified 
result which we require in this paper. We conclude the paper by giving 
several examples which explicitly show the connection of our results to 
some earlier work, and by obtaining estimates for the critical constants 
which appear in our existence criteria. 

The key steps in our arguments involve a-priori L^c estimates for u 
and |VM|. Such estimates are a well-known important part of existence 
results for a bounded domain £2, see e.g. [4] and [5]. The proof of Theorem 
2, however, follows the more classical method of estimates based on the 
linear part of (1) rather than estimates which also involve the nonlinear 
structure of (1) as in [4], [5]. Our estimates are thus not as sharp, but they 
do imply that the constants involved can be estimated with a reasonable 
amount of effort. In any case, if £2 = R" then the absence of a finite 
boundary makes calculations easier, since only interior estimates need be 
used. Our procedure, however, requires that —2 D^a-D-u) satisfy an 
explicit Hardy inequality. Alternatively put, — 2 D^a^D-u) needs to be 
subcritical or satisfy the A-property or admit a Green's function (see e.g. 
[2] for clarification of these ideas). In particular, these restrictions mean 
that we can consider —A only for n ^ 3. The restrictions on (a • ) are more 
complicated since the structure of linear critical operators is not well 
known. In any case, this is only a difficulty in R" and not in any proper 
subdomain of R". We again refer the interested reader to [2] for proofs and 
discussion of these ideas. In practice, we obtain the needed explicit Hardy 
inequality either directly or from Sobolev's inequalities. Heuristically, this 
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can be viewed as a bound on Green's function. In cases where Green's func
tion can be found, such estimates may be obtained more easily directly. 

In conclusion, we remark that some of these results were recently 
presented at the Canadian Mathematics Society 1987 Winter Meeting 
in Vancouver. 

2. Preliminaries. We briefly recall for convenience some of the defini
tions and notations of [1]. For any given function 0 < t <E C°°(Rn) we 
denote by Lq

t(D) the associated weighted Lq space in the domain D with 
norm 

IWI£?(D, = X t M " -
For any x e R" we define 

Bt(x) = {y\ \y - x\< /} and 

N(<p, q, i, D) = sup [ \M\L^B{x))l 

- > 
By 1 we denote the vector (1, . . . , 1) and vector inequalities are under
stood componentwise. A function v e H^c(R

n) is a weak supersolution 
of (1), if 

fRn 2 a^DjV * jRn /(*, v, Vv)* 
for any <p e C™(Rn), <p = 0. A weak subsolution is defined accordingly. 
For convenience, we always assume that 

°u = aji e c£\Rtt) with | 0 7 g (a,..) S *,/ 

for some positive constants £0, £j. While the differentiability assumption 
can be relaxed to e.g. at- e L°° for some results, it is sometimes needed in 
our methods as we indicate below. 

Finally, assume/(x, w, £) satisfies the Nagumo condition: for (x, u, £) e 
R " X R X R " w e have: 

(2) \f(x,u,Q\ ^ b(\u\)[h(x) + k.é2] 

with b: R + —> R + nondecreasing, 

* e CC(R+), kx e R+, A G O l " ) . 
We state: 

THEOREM 1. Let f satisfy (2) a«d 6e locally Holder continuous with 
exponent /x G (0, 1). Suppose w, v e i/1(£°(Rw) form a weak sub-
super solution pair with w = v and w = 0 = v near oo. 77z£« (1) has a 
solution u G C (R") wz//z w ^ w ^ v. 

This is contained in Theorem 5.3 of [7] except for the regularity of u 
which can easily be established by bootstrap arguments. We remark that 
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assumption (2) is only needed when sub-supersolution arguments are 
used, but for simplicity is assumed everywhere. Similarly, / need not be 
Holder continuous if we wish to deal with generalized solutions. 

Let X be a smooth positive function with 

0 < A"1 e Ln/2(Rn) 

and set t = (1 + |x|2). The specific choices of X will depend on the 
problem considered, as we indicate below. Let q denote a positive number, 
n < q, fixed in the sequel. Consider the space S c Lfoc(R") equipped 
with norm 

\\s\\s = N(s, q, 2, R") 

and observe that {£, || ||^} is a Banach Space. We form J£\ = L2 n S 
with norm 

and ô 2 = l \ H S with norm 

\w\y2 = ^iiwii^RH) + iii/ii5 

where e is a positive constant, explicitly chosen below. Observe that 
since t~] <£ Ln/2(Rn) it is possible to find a function u e C°° n L ^ R " ) 
such that w G Lj(Rw) and yet w S Lx(Rw) for any X such that 
0 < X~l e Ln/2(Rn). We thank A. Meir for showing us an elegant proof of 
a more general version of this result (which is to appear elsewhere). 
Conversely, it is possible to select X and u e C°° n L°°(R") such that u e 
I>x(Rn) and yet u £ L2(Rn). These remarks show that JZ\ and J^ are 
different spaces. Consider the tensor product: 

P = { (Wl5 U2) | Mj G ^ , M2 G ^ } 

and define on P the equivalence relation — given by: (w1? w2) ~ (w3> w4) 
if and only if ux + u2 = u3 + u4 a.e. Let 3tif be the quotient space 
JF = PI~ and define o n ^ 7 the norm || | | ^ given by: 

II [ ("h "2> 1 II*" = i n f ( NLsj + IWL^I 0l> vl) ~ (wl> w2) }• 

We now define a map / : J ? -> L1
2
oc(R'1) bY 

/ ( [ (w j , w2)D = "l + w2 
and observe that / is well defined and one to one by construction. Clearly 
/ is linear and furthermore the range of / has the following order 
property: L e t / e Range(7) and \g\ ^ \f\ then g G Range(/). Indeed, if 
/ = J( [ (f\> fi) 1 ) w e need only observe 

g = / ( [ ( g i , g 2 ) ] ) 
with 

«i = sl/il/( l/il + l/2l ), & = sl/2l'( Wl + l/2l ) 
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where \f\ 4- \f2\ * 0 while g, = g2 = 0 if \f\ + \f2\ = 0. We now define 
on Range(7) a norm M( ) given by: 

M(f) = \\j-\f)\y. 
We note that if |g| ê | / | then Af(g) Ê A/(/) while if / = fx + f2 with 
fx e j2|, ^ e ^ 2 then 

by definition. 
Finally, we observe that if the problem (1) is semihnear, then the 

procedures we will introduce may be simplified and the constants 
changed. In particular, we only require q > nil if no gradient estimates 
are desired. 

3. Results. We henceforth assume that / satisfies the conditions of 
Theorem 1. 

We introduce a positive function z such that: 

(i) z G C1 n Hi2
c(R

n); (ii) /0(z) ^ 0; (hi) z, Vz e L°°(R"); 

(iv) z -> 0 as r -» oo; (v) |/0<p - 2 2 $T^-> <P] = 8 ( _ Ay, <p) 

for a fixed 8 > 0 and any <p e C^°, where 

A = 2 ^-—(lnz) 
7 ^ OX: 

OO is assumed in LÎ 
We now set the constant e in the definition of || | |« to be 

e = [(« - 2)/2]7'1/2||A-1|ll^(R») 

where T7 is the optimum embedding constant: 
tW,2 _^ r2n/(n-2) 

THEOREM 2. Le/ 

|/(x, fe^Vzi zr) | 
(3) i7^, a, b) = sup 

satisfy M(F(x, a, b)) < oo for any positive constants a, b. Then there exists 
a positive constant Ex, independent off such that if for some positive con
stants a, b, o with o < 1 we have 

E{M(F(x, a, b) ) - b ^ 0 

E{M(F(x, a,b)) - ( 1 ~ °\ ^ 0 
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then (1) has a positive weak super solution v e H\£°(Rn) such that v ~ z 
at oo. Furthermore if |ft| < c/(\ + |JC| ) a«J F = J( [Fb F2] ) w/7/z: 

lim m\LWx)) = lim l|F2lli (B^)) = 0 
|*|—»00 H |x|—>00 H 

then viz —> c, for some positive constant c, as \x | —> oo. 

Proof Observe that setting u = uz in (1) reduces (1) to 

/0(w) - 2 2 p/A-w + ——w = . 
J J z z 

Since /0z = 0, it suffices to show the existence of a solution u (bounded 
above and below by positive constants) of 

/ A A / / A X o V / ? n * f(x> ûz,ûV z + zV u) 
Lu = L(u) — 2 z> PiD:U = 

(5) J J z 
= T(X, û, Vu). 

Assume {tm}, {<pm} denote a sequence of positive numbers and C™(Rn) 
functions respectively such that 

tm T +oo, /, > 3, 0 fk <pm ^ 1, <pm e C^°( |*| < /„ - 2), <pm = 1 

in ( |A: I = tm — 3). For any chosen ra, set 

@ = C\\x\ fk tm) n C\\x\ â / m - 2) 

and norm 38 with 

||fi||^ = max | | |w | | c o ( | x | ^ 0 ; _ - ? _ ^ | |Vt/| |co ( | j c |^^_2) ), 

where a, b, o satisfy (4). Clearly {38, || \\@} forms a Banach space and 
38 <-• Range(/) (by defining u = 0 outside ( |x| ^ /m) ) with continuous 
embedding. Furthermore, we observe that if /j~ denotes the Dirichlet 
inverse in ( |JC| < tm) then 

/ p ^ R a n g e / - * ^ 

(see [1], [12], [23] ) and there exists a constant Ex independent of m such 
that for g e Range(/): 

\N(l^X(g))\\c\MStm-2)^ElM(g). 

Let AT denote the ball in 38 with center at a{\ + a)/2 and radius 
«(1 — a)/2, and define T on K by: 

«(1 + or) i 
T(w) = + lx (T(X, U, <pm V u) ). 
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Note that since u G K then 

|T(.X, W, <pm V u) | ^ F(x, a, b), 

whence r(x, u, <pm V u) G Range(7) and: 

M(T(JC, M . V M ) ) ^ M 0 F ( X , A, Z>) ). 

Our estimates thus imply that T:K —» # by (4) and, furthermore, T is 
a compact continuous map by the coerciveness of lx. By the Schauder 
Fixed Point Theorem, we conclude the existence of um G K such that 
T(um) = um. Equivalently, 

/ fl(l + o)\ 
h\um ~ j J = r(*' Wm' *m "m) 

with ao ^ um ^ a, |<pm V wm| ^ b. Since <pm = 1 in |JC| < tm — 2, a 
diagonal argument , whose details may be found in [1] and elsewhere, 
shows the existence of a function ù with the desired propert ies . We need 
only notice that {um} uniformly locally bounded in C 1 implies that {um} 
is in C +a(BR) for some a > 0 ( [23, p . 203] ). There only remains to show 
that ù = v/z —> c as |JC | —> oo for some constant c. This follows from the 
observation that 

r(x, «m , 
<pm

 v wm) G Range / 
by construction, whence r = gx + g2 with g; G J% i = 1, 2 uniformly 
bounded in m. Choose a > 0 and a function /z G C1 such that 
A(JC) = |jc|"a for |x| > 2, |A(*) | < D(a) for |x| < 2 and \Djh/h\ < C(a% 
C(a) -> 0 as a -» 0, h(0) = 1. Select x0 G Rn and define 

A0(x) = h(x - x0)9 /?/ = Djh0/h0. 

We note that <o = Umh0 with ww = wm — a(\ + a ) / 2 satisfies for some 
T = gi + #2 G Ranged) 

L = - 2 A ( ^ ( ^ " #co)) + 2 ayftDjV 

- 2 ^A*£/<o - 2 2 y8y(Z)co - <o£/) 

= rh0. 

Consequently, we obta in 

( L , cc) = (/}<o, co) - ( 2 ayftpfa, <o) - 2 ( 2 /$*co, <o). 

Observe that (/jco, co) i^ 8( — Aco, to) while 

m ^ ^ and 1/3,-1 ^ £ — 
7 (1 + IJC - JCQI ) J (1 + 1*1) 

imply (see Lemma 6 below) 
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( 2 fl^jS/w, co) + 2| ( 2 j8//co, co) | ^ ^( -Aco, <o) 

by choosing a small enough. We conclude that: 

8 A 
(/co, to) > - ( — Aco, co). 

i.e., / satisfies the same structure as lx and once again by [12, p. 194], and a 
simple limit argument on m, we obtain 

ô(*o) - a ( 1
2

+ q ) l ^ *o[ I^AoHai + H ^ o i y 

with ^o independent of x0. But, by assumption, 

H^oll^(52(x0)) = c(a)\\Fi\\LHB2(x0)) "> 0 as Uol -* °° 

for / = 1,2 while a simple decomposition of R" shows: 

ll^l*olli?(R») = H^llli?(|x|>(W/2)) + 7—T2Sll̂ lHi?(R-) 

for some constant C. From this we conclude that 

I W*olbi """> ° as W ~* °°-
An analogous result applies to H^olLs? a n d w e observe that 

HF^olls; + \\F2h0\y2 -»• 0, 

whence 

U(XQ) —> a(\ + a)/2 as |x0| —» oo. 

This concludes the proof. 

Since explicit bounds on Ex are important for some of the examples we 
consider, we sketch for a- = 8- in a latter section the lengthy but straight
forward calculation which leads to an explicit estimate. Of course, such 
estimates also show the existence of Ex but, as mentioned above, such ex
istence is well known. We remark that (4) indicates that no estimate on Ex 

is needed if, for example, 

lim M ( F ( W ) ) - 0. 

Next we consider the existence of a weak subsolution. We emphasize, as 
mentioned earlier, that this argument is not needed if /0(z) = 0 since in 
this case v as given by Theorem 2 is actually a solution. We observe that 
the limit result v/z —> c in Theorem 2 appears to be new under the condi
tions we consider. 
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Suppose there exists a neighbourhood Q of zero in R" X R + X R" 
in which: 

(6) f(x, u, | ) ^ hx(x) + p(x)uy + q(x)\if 

where: 0 < y < l ; « ^ 0 ; hx(x) S 0; q(x) â 0; p(x) è 0; /zb /?, q e C; 
and /zjC*) + /?(.x) > e0 > 0. Note that this is a local estimate on / 
and nothing new is postulated outside Q. Observe also that (6) ensures 
that / is not globally nonpositive, a situation explicitly forbidden by the 
maximum principle as mentioned in the introduction. Finally, we as
sume globally that: 

(7) f(x, u, T) ^ g(x, u, T) 

for some g e Cl(Rn X R X R"), g(x, 0, 0) ^ 0. 
Conditions (6), (7) permit an elementary construction of a subsolution 

and we obtain: 

THEOREM 3. Assume that f satisfies the above postulated regularity 
conditions and that the estimates (2), (4), (6), (7) hold. Then equation (1) has 
a classical positive solution u such that u = Cz at oo. 

Proof. Let B€(0) c c Q] where Ql is the projection of Q on its first n 
components and let ux be a positive eigenfunction of the Dirichlet 
problem: l0(ux) = Xux in B€(0). Since y < 1 we choose ex small enough and 
ensure that 

lo(€\u\) = Ax> eiwi> v ( € i w i ) ) 

and exux ^ v in B€(0) by (6). Finally, we extend ux to R" by setting ux = 0 
in R" — B€(0) and observe w = exux ^ v globally. We note that it is an 
immediate consequence of the Divergence Theorem, the positivity of ux in 
B€(0) and (7) that w is a subsolution of (1) in R". Since Theorem 1 and 
Theorem 2 then show the existence of a nonnegative solution u e C2, 
to conclude the proof we need only show that u is positive. Assume 
u(x0) = 0, whence JC0 is a minimum of w^and Vw(x0) = 0. Since 
f(x, u, Vw) ^ g(x, w, Vw) and g e C1, g(x, 0, 0) ^ 0 we observe that for 
x near x0: 

n d 
g(x, ii, Vw) ^ J 0 - [ g ( x , ta(x), / V u(x) ) ]A 

= 2 ^i(x)Dtu + ôOOw 

for some ^- G L°°, / = 0, . . . , n. We conclude: 

n 

/0(») - 2 *i(x)DiU - ^„(x)« â 0 
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and u ^ 0 near JC0. But then, by e.g. [12, p. 194], 

iMiz/(*2R(*o)) = c if,u = ° 
for some R, p. We conclude that u = 0 near x0 and that S = {x \u(x) = 0} 
is both open and closed. Since w ^ v, we must have S = 0. Theorem 3 
is proved. 

We observe that, apart from the various regularity and growth con
ditions specified in (2), (6), (7), to apply Theorem 3 to the partial dif
ferential equation (1) we need only choose the function \ , estimate Ex and 
verify that the algebraic system (4) has a solution for some a, b, a. To 
illustrate these results we give the following examples in which we always 
assume for simplicity that p(x), q(x), h(x), g(x) ^ 0, nontrivial and in 
C°°(R"), while atj = 8tj. We let a, /? denote any constants such that: 

0 ^ a < (Vn2 + (n - 2)2 - w)/2, 

0 < fi = [ (n - 2)2/4] - an - a2. 

Observe that the upper bound on a is monotonically increasing in n and, 
for n large, is asymptotic to (n — 2)/(2 + 2\/2)- We then explicitly choose 
the function z given by: 

z = 

\x\ ^ 1 

1 + - ~-\x\z, 0= i \x\ ^ 1. 
2 2 

Observe that: 

z G C^R") n H^2
c(R

n); - A z ^ 0; 

div(Vz/z) ^ [4>8 - (/i - 2)2] /4 |JC|2 ; z, Vz e L°°(R"); 

z —> 0 as r —> oo if a > 0, whence z satisfies all the needed conditions. We 
heuristically observe that if (at) ¥= / , then direct substitution shows that 
such a z can still be chosen (possibly with different a, /?) if (ay) and its 
derivatives behave suitably. We were unable to adapt our procedure, 
however, to the case of more general (al,-), e.g. to at- e L°°. 

We begin by assuming in the next three examples that the functions in 
Range / which arise are all of type J( [ (v1? 0) ] ). In such a case, 

M(J[(vl90)])^ \\vx\\^ 

whence explicit criteria can be obtained by replacing M( ) by 11 | \g in the 
conditions which follow. Despite this simplification, each example is an 
improvement /extension of earlier results as we explicitly indicate. We ob
serve, however, that an examination of our references shows that sharper 
estimates are known, but only for some radially symmetric problems of 
related type. 
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Example 1. Consider 

— Aw = q(x)u 4- p(x)uy 

in R", « S 3, with 0 < y < 1 < 5. Let 

P = M(pzy-1), Q M(qz8'1) and 

_ p(8-\)/(8-y)n(\-y)/(8-y) 
1\ = F 

LIS 

(8-\)/(8-y) 

4-
l \ ( l -Y) / («-Y)l 

U - y 

Then if Ex • 77 < 1/2, the problem has a positive solution w e C (R") such 
that 0 < w ̂  cz; c is a constant. This is a case left open in [22]. 

Example 2. Consider 

-Aw =p(x)uy + tf(x)wô 4- /*(x)|Vw|y + g(x)|Vw|ô 

in R", n ^ 3 , with 0 < y < 1 < S ̂  2. Let 

# ! = 2yM(/z|Vz|yz_1), 7/2 = 2yM(hzy~\ 

Gx = 28M(g\Vz\8z~]), G2 = 28M(gz8~ll and 

m = (P + ^ + H2f-
l)/(8~y\Q + G, 4- G2f~

y)/(B~y) 

X 
Y \ ( ô - i ) / ( ô - Y ) /g M + 

n ( i - Y ) / ( « - y ) ] 

Then if 77 < l/2E]9 the same conclusion holds. This is an extension of the 
results in [22], [21] and [8]. 

Example 3. Consider 

-Aw = p(x)uy 4- ^(x)wô|Vw|^ 

in R", n ^ 3, 0 < y < 1 < 8 4- /x, 0 ^ /x ^ 2. 
Let 

X 

2MM(4|Vz|/izô~1), Ô2 = 2/iM(?z/1+ô~1) and 

8 + /A - 1\(1-YV(*+M-Y)I 

a = p(« + M-lV(« + M-Y)(g 4. g )(l-Y)/(ô + /x-Y) 

L\ô + /x 

1 r V 2̂̂  

(8 + / i - l ) / (« + /i-Y) 

1 y) 

Then if a < l/2El9 the same conclusion holds. We note that Kusano 
and Oharu [19] considered some other combinations of y, 8 and JU, and 
obtained the existence of infinitely many positive solutions which are 
bounded and bounded away from zero, cf [19, p. 131]. By the same ideas 
we could also consider 
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- A M = p{x)u\\ + |Vw|X) + q(x)uS(l + |V«|") 

in R", « g 3, with 0 < y < 1 < S, 0 ^ A, /* ^ 2. In fact, let 

F, = 2xM(/>|Vz|¥ i~ l), P2 = 2XM(pzX+s~{), 

if there exists a positive solution a of 

P«y~] + (P, + j y ^ * " 1 + Qas~] + {Qx + Ô2)«6+M"* < r^r , 
2£, 

then the same conclusion holds. 

We conclude the examples by illustrating the advantages obtained by 
our method. 

Example 4. Again consider the semilinear problem: 

— Aw = q(x)u + p(x)uy 

in R3 with 0 < y < 1 < 5. Assume that, for some a, 

0 < z8~lq(x) <= L* n L\R3% £ > 3/2 and 

p(x)zy~l e L?(R3) n L°°(R3). 

Here we select X"1 = z q(x) and observe that X _ l is admissible since 
the problem is semilinear and £ > n/2. Furthermore, note that 

F(x, a) = q(x)z8~]a8~l + p(x)zy~Xay~X = J( [ (v„ v2) ] ) 

with 

v, = p(x)zy~Xay~\ v2 = q(x)z8-la8~-]. 

We can now formally repeat the calculations of Example 1 and, since we 
do not assume that z8~lq(x) e L2

n actually obtain a new criterion. To 
explicitly illustrate this remark, suppose a = 0 (i.e., z = 1) and p = 0. In 
such a case the calculation of Ex is irrelevant. Then, as earlier noted, the 
supersolution of Theorem 2 is actually a solution and we conclude that if 
q(x) e l} n L^R3) then —Au = q(x)u has infinitely many bounded 
positive solutions which tend to positive constants at oo. This is an im
provement over a result given in [1], where it was assumed that 

\x\q(x) €= L°° H L\R3) 

and no conclusion was obtained about the convergence of the solutions 
at oo. 

Finally, we observe that our procedures can also deal with the case: 

i'0(u) = - 2 DMjDju) + ™2u = /(*> w> V w ) 

where m2 is a positive constant. Indeed, one need now only choose z such 
that /Q(Z) i^ 0, and follow an identical procedure. Observe that such a 
z need not be radial. 
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4. Estimates. As we have seen in the examples of the previous section, 
explicit bounds on Ex play a critical role in the formulation of concrete 
results from Theorems 2, 3. 

Bounds on Ex are obtained in this section by following the ideas of [1], 
[12], [23] where the existence of Ex is shown. We are interested in reduc
ing the calculations involved to a reasonable length and thus find it 
convenient to blend some of the procedures of [1], [12], [23]. In what 
follows we shall assume that vectors and matrices are normed by the 
standard Hilbert Space norm: if v = (v0,. . . , vm)T then |v|2 = 27"Lo v?> 
etc. Furthermore, we assume atj- = S-. The more general case is handled 
identically. 

LEMMA 4. Let u = (w0, . . . , um) be a solution of the system 

-au - 2 2 bjti + Cu = 2 A U ) + g 
j-\ J i-i 

in a ball B2(x0). Suppose: u e Ca n H ' (B2(x0) ); the scalars bj, the vector 
g and the (m + 1) X (m + 1) matrix C belong to Lq/2(B2(x0) ) while the 
vectors ft are in Lq(B2(x0) ) for some q > n. Then: 

I"IL-(B,(*O)) = KC u\ wLhHxo)) + _s n I 2 I 2 I I ^ W „ ) > 
(=1 

+ II 1*1 HL^(B 2 (* 0 » 

where: K0 = Kl[n(B2)
in + 1]; with 

Kx = [4H23/2(i/i-")]n/2 • [2(n/(n - 2 ) )3/2<<?/<?-">]l'«'<-2)/4]) 

H = T\A + £(/?,)) + (2T2E(^){ || \C\ | | L ^ W 

E(S) = 

*o)) 

+ ll2^ll^W) + 2})^-), 
3 16 

2 Mfi + 2)' 

T = optimum embedding constant 

n\ \x/n( n \1 / 2 

n\fin \2 iy/ïr\2T(\ 4- n/2)l \n - 2 

Pi = 4/(/i - 2). 

Proof. We follow the procedures of [12] with a test function motivated 
by arguments in [23]. Specifically, set 

q> = UVH7] 

where v = ( \u\ + k) and fc ̂  0, )8 > 0, TJ G Cg°(52(x0) ) to be chosen 
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below. Observe that <p is a suitable test function (see, e.g., [12, p. 151] ). 
We find: 

(8) J 2 (Dju, D^) - 2 2 bj(DJu, *> + (Cu, ?> 

J 

where ( , > denotes the R m + inner product. Note that, a.e., 

U(DJu9u))/\u\ \u\ > 0 
Dv = 

J 0 0 

whence l^v|2 ^ |£>w|2 a.e. We expand (8) using the definition of <p and 
apply Cauchy's and Holder's Inequalities repeatedly in an analogous 
manner to the arguments of [12, p. 195-196], and find: 

fv .n-^ /^ , i«Kivviw-y) 
J 2J \DjU\ VPT} + 

*I'»W$ \f,\2 (3 + P) , lg| 
+ ^ + |C| 

V 

+ il* + W t + !)]} 
We set: 

b = l^jfi. + i + |c| + 2 bf 
V V J 

w = v(^+2)/2 

and conclude: 

(9) 

where: 

/ IVH-IV 
08 + 2)3 

COS) / Art |Vi,|2 

COS) + 
16 

2 0OS + 2) 

Inequality (9) has the same structure as the first of inequalities (8.53) of 
[12, p. 196] with (/? + 2)3 replacing (0 + l)2. We can thus follow directly 
the steps on [12, p. 196-197] and obtain: 

(10) sup [v] ^ tf,l|v||L2(B2(;Co)) 
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where: 

„_^L_: r - ' ( "! )'"(—)'" 
9 - « / i \ M 2 r ( l + w/2)/ \n - 2/ 

x = n/{n - 2); >8! - 4/(/i - 2) and: 

/ / = r2(4 + £08, ) ) + (2T2E(PO\\b\\L^(B2(Xo)))
l+(J; 

K = [4^23/2^1+a>f /2 • [2x
3/2<1+a>p)( ,I~2> /4]. 

Finally, the choice 

* = 2 II lIl'll^Wo» + " ' S ' ^'2(B2(Xo)) 
J 

yields 

sup |u| îâ KMZ2(xo))V2 + 1] 

+ 2 II l^l2lll*W.)) + II I*' H^ / 2(^ 

l"l WL\BI(XO)) 

•o)) 

with \\b\\L<,'2{BÂXo)) majorized by 

W\C\\\L«\B2(XO)) + U2b]\\L<,n(Hxo)) + 2 

in H. Setting 

K0 = KMB2(x0))
l/1 + 1] 

gives the result. 

We remark that our choice of test function in Lemma 4 appears to lead 
to more restrictive LP norm results than those obtained by the choice made 
in [12] for the scalar case. Since we are only interested in the L2 norm on 
the right hand side of (10), our approach suffices for our purposes. 

COROLLARY 5. Let v0 e Hl,2( \x\ < tm) be a solution of 

hvo = g = g\ + ft 

where g e Lq{ \x\ < tm), q > n and /0 is as given in Theorem 2. Assume 

(/lV, cp) > fi(-Av, v ) for all <p e C™(Rn). 

Then : 

sup |v0| ^ ExM(g) 

sup ||Vv0|| ^ ^ M ( g ) 

w/Y/z : 
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Ex = K0 • maxf 2 [(^B2))
UnT + 1]; n 4- ^B2)

v\ 
\8(n - 2) J 

0«d //i£ notation of Lemma 4 z's used for the constant K0; with the (n + 1) X 
x C = (cy) give 

0 (/ = 0 

(n + 1) matrix C = (cfy) g/vew /3y: 

c* taos,) i />o 

OIK/ tfie Lq/\B2(x0) ) norms in H replaced by the sup of such norms over all 
x0 e R". 

/V00/. Let v, = (vl5 Vvx)
T, v2 = (v2, Vv2)7 where ^(v,) = g,-, i = 1, 2 and 

set v = (v0, Vv0)r. We consider /^Vj) = gx first and, we observe: 

/,(v,) + cv^g+ 2 A-(2). 
1 = 1 

where: g = (g, 0, . . . , 0) ; f = get (with et denoting the vector with 1 in 
the i{ position and all other entries zero); C = (ct) as given in the 
statement of this corollary. 

Let B2(x0) C { \x\ < tm). We apply Lemma 4 and conclude: 

(11) IVJCJCQ) =i Jf0 

n 
.2| | l /2 

+ 2 II Wfll^Wo)) + II 1*1 WV'HBM o)) 
/ = 1 

^ U II |V,| \\L\Bl(Xo)) + (» + /W"«) llslltf^))]-
But —Av, — 2 2 PjDjVi = g,, whence: 

Hvillz.2(a2(x0)) = [KB2)]
Un\\y\\\L2"'<''-1\B2(x0)) 

^[piB2)]
U"\\Vl\\L2^-2)(M<tm) 

^MB2)]
]/nT\\\VV]\\\L2{M<lm) 

where T denotes the embedding constant introduced earlier. We note that, 
following [1], the inequality 

8 ( - A v , v ) ^ ( / l V ,v) 

implies: 

(12) I I I V v J I I ^ ^ ^ ^ - A - ^ l l g . l l ^ , 

Substituting these estimates into (11) yields: 
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(13) IvjKxo) ^ K.—^—U^B^^T + \]\\gx\\ût{K) 
o(n — 2) ' "' 

+ K0(n + KB2)
Uq)\\gi\\L<>mXo)y 

We immediately conclude that 

\vx\(x0) ^ ExM(gx) if B2(x0) c ( |*| < tm) 

and, by coerciveness (see [1] ), 

\vx(x)\ ^ExM(gx) if* e ( |* | <tm). 

If we consider next ix(v2) = g2 we observe that inequality (11) is still valid, 
but inequality (12) is replaced by the following arguments: If g e L^(R") 
for some A, 0 < À - 1 e Ln/2(Rn) then Sobolev's Inequality yields: 

= r | |X~ 1 | | L «/2 ( R « ) | | v 2 | | Z 2_ l ( R n ) | | g 2 | | L 2 ( R « ) /ô . 

Whence: 

(12') || |Vv2| II
2 ^ r i iA- ' i i^R^i^ i i i^ / s 2 . 

Substituting (12') into (11) yields 

(14) |?2|(*o) ^ ^>[[K52)l'^r + I^WX-'WL^WEMST) 

+ K0(n + tiB2)
U«)\\g2\\LHB2(Xo)y 

Since v0 = vx + v2, by adding (13) and (14) and noting that the constant 
Ex is independent of the specific decomposition g = gx + g2, we obtain 
the desired estimates. 

We illustrate our estimate with the following example: Suppose n = 3, 
q = 4, g2 = 0. Observe that: 

1̂ 1 ^ 2«2 + a(l + 28iy) ((/ > 0). 

A computer programme gives the following bounds: If a — 0 then \IEX ^ 
1.625 X 10~5, while if a = .05 then \IEX » 2.069 X 10"7. The maximum 
allowable a in this case is a ^ .08113. 

We conclude this section with a proof of the following estimate used in 
Theorem 2. 

LEMMA 6. Let x0 e R", <? G C£°(R"). 77ie/i //^re ex/s/s a constant K > 0, 
independent of x0 such that 
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(-A<p, v) â K / „ <p-dx. 
JR"(1 + M)(l + \x-Xo\)

v 

Proof. Let S2 = R" - Bt,(x0) - Bt.(0) for £* > 0, small. 
Note that Picone's identity shows for v > 0: 

12 <»,,? * fa s D,(1)D, 

J à® y dn Jtl v 

Choose 

v = |jc|a|jc - x0f with a = - ( " ~ 2 \ £ = - € , 

€ > 0 to be determined later. 
Direct substitution yields: 

- A v In - 2\2 1 e(n - 2 - e) 

v " I 2 / W 1 |x - x0\
2 

' |x| |x - x0| 1*1 |x - x0\ 

Since 

//i - 2\2 1 

\ 2 / |JC|2 

Since 

//i - 2\2 1 

\ 2 / |JC|2 

+ c(/i - 2 - c) ^ /* - 2\ 1 Vc(/i - 2 - 6 ) 

|x - x0|2 \ 2 / |x | \x - x0\ 

we conclude in fl: 

V \ 

- 9 \ 1 

V \ 2 / |JC 1 |JC — x0| 

Choosing e such that 0 < e < 1/2, we have, for some K > 0 

- ^ £ K ! . 

Observe also that 

\f ^-ds \Jdn v $n € * 

whence letting €* —> 0 gives the result. 
Note that the same procedures also give a direct proof of the Hardy 

inequality: 
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K } I 2 / J*n (\ + \x\2y 

used in the paper. 

5. Concluding remarks. We conclude with the following remarks. It is 
unreasonable to expect that our methods yield comparable results to those 
obtained by radial or variational arguments in cases where such arguments 
are applicable. We mention explicitly two shortcomings of our approach: 
First, we only know that u ^ C | x p a at oo and we cannot guarantee 
u ~ \x\~a. Second, the maximum allowable a is less than n — 2, the value 
of a often used in results which hinge on radial comparison. We have 
observed that different choices of z greatly influence the resulting 
allowable values of a. Possibly, "better" choices of z could be made 
to allow an increase in possible a. It is not clear how this is to be done or 
what constitutes an optimum choice for z. Analogously, for a given z, the 
optimum value of Ex is not known. 

Finally, we observe heuristically that our methods are immediately 
applicable to problems where R" is replaced by a domain £2. Indeed, one 
need only assume / = 0 if x e R" — fi. We construct a positive 
supersolution in R" which is clearly also a supersolution in Œ. Since the 
subsolution is constructed locally, we repeat exactly the steps above and 
find a solution u e H^Q), u > 0 in fi, u = 0 on dfi. Of course, one can 
obtain different estimates on Ex and replace M(f) by other norms by 
taking into account special properties of 12. This will clearly happen if, for 
example 12 is sufficiently "thin" at oo so that Poincaré Inequality-
eigenvalue arguments can be used in place of e.g. Hardy's Inequality. Note 
that arguments based on radial comparison for such a problem would 
appear to need the construction of a supersolution in some radially 
symmetric domain Ù D 12. It is not difficult to construct examples where 12 
is "thin" at oo and yet Ù = Rn. 
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