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Projectivity in Algebraic Cobordism

Jose Luis Gonzalez and Kalle Karu

Abstract. The algebraic cobordism group of a scheme is generated by cycles that are proper morphisms
from smooth quasiprojective varieties. We prove that over a field of characteristic zero the quasipro-
jectivity assumption can be omitted to get the same theory.

1 Introduction

The purpose of this article is to remove the quasiprojectivity assumption in the def-
inition of the algebraic cobordism theory of Levine and Morel [4]. Recall that the
cobordism group Ω∗(X) of a scheme X is generated by cycles of the form

[ f : Y → X, L1, . . . , Lr],

where Y is a smooth quasiprojective variety, f is a proper morphism, and L1, . . . , Lr

are line bundles on Y . We will construct a similar theory Ω̂∗(X) in which the varieties
Y are assumed to be smooth, but not necessarily quasiprojective, and we prove that
the natural morphism Ω∗(X)→ Ω̂∗(X) is an isomorphism.

Levine and Pandharipande [5] gave a different definition of an algebraic cobor-
dism theory ω∗(X) and proved it to be isomorphic to Ω∗(X). We show that in the
definition of ω∗(X) one can similarly remove the assumption that the varieties Y are
quasiprojective. Since the definition of ω∗(X) is simpler than Ω∗(X), we recall it here,
and we also explain the definition of the theory ω̂∗(X). The definitions of Ω∗(X) and
Ω̂∗(X) are given in Section 5.

We work in the category Schk of separated finite type schemes over a field k of
characteristic zero. For X in Schk, let M(X) be the set of isomorphism classes of
proper morphisms f : Y → X, where Y is a smooth quasiprojective variety in Schk

(notice that such f is projective). Let M+(X) be the free abelian group with basis
M(X). The elements of M+(X) are called cycles. The class of f : Y → X in M+(X)
is denoted by [ f : Y → X]. When Y → X is a morphism from a possibly reducible
smooth scheme Y in Schk, [Y → X] stands for the sum of cycles from the irreducible
components of Y .

A double point degeneration is a morphism π : Y → P1, with Y a smooth scheme of
pure dimension such that Y∞ = π−1(∞) is a smooth divisor on Y and Y0 = π−1(0)
is a union A∪B of smooth divisors intersecting transversely along D = A ∩ B. Define
PD = P(OY (A)|D⊕OD). We say that the double point degeneration is quasiprojective
if Y is quasiprojective.
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Let X ∈ Schk and let Y be a smooth variety. Let p1, p2 be the two projections of
X × P1. A double point relation is defined by a proper morphism π : Y → X × P1

such that p2 ◦ π : Y → P1 is a quasiprojective double point degeneration. Let

[Y∞ → X], [A→ X], [B→ X], [PD → X]

be the cycles obtained by composing with p1. The double point relation is

[Y∞ → X]− [A→ X]− [B→ X] + [PD → X] ∈M+(X).

Let R(X) be the subgroup of M+(X) generated by all the double point relations.
The cobordism group of X is defined to be

ω∗(X) = M+(X)/R(X).

The group M+(X) is graded so that [ f : Y → X] lies in degree dim Y . Since double
point relations are homogeneous, this grading gives a grading on ω∗(X). We write
ωn(X) for the degree n part of ω∗(X).

Now let M̂(X) be the set of isomorphism classes of proper morphisms Y → X,
where Y is a smooth variety in Schk, and let M̂+(X) be the free abelian group gener-

ated by M̂(X). Let R̂(X) be the subgroup of M̂+(X) generated by double point rela-
tions as above, defined by proper morphisms π : Y → X × P1, where Y is smooth,
but not necessarily quasiprojective. Define

ω̂∗(X) = M̂+(X)/R̂(X).

There is a natural homomorphism ψ : ω∗(X) → ω̂∗(X). The following theorem is
our main result.

Theorem 1.1 The homomorphism ψ : ω∗(X) → ω̂∗(X) is an isomorphism for all X
in Schk.

As a special case, consider X = Spec k. It was proved in [4, 5] that the vector
space ω∗(Spec k) ⊗ Q is generated by the classes of products of projective spaces.
In other words, for any smooth projective variety Y , the image of the class [Y →
Spec k] in ω∗(Spec k)⊗Q is equivalent, modulo double point relations, to a rational
linear combination of products of projective spaces. The isomorphism ω̂∗(Spec k) ∼=
ω∗(Spec k) proves the same result for an arbitrary smooth complete Y .

The algebraic cobordism theory ω∗(X) has a functorial push-forward homomor-
phism g∗ : ω∗(X) → ω∗(Z) for g : X → Z projective, and a functorial pull-back ho-
momorphism g∗ : ω∗(Z) → ω∗+d(X) for g : X → Z a smooth quasiprojective mor-
phism of relative dimension d. The two morphisms are defined on the cycle level.
The cobordism theory also has exterior products ω∗(X) × ω∗(W ) → ω∗(X ×W ),
defined by

[Y → X]× [Z →W ] = [Y × Z → X ×W ].

These homomorphisms are compatible with first Chern class operators (see Sec-
tion 2). In [4], a theory having projective push-forwards, smooth quasiprojective
pull-backs, exterior products, and first Chern class operators satisfying a set of com-
patibility conditions is called an oriented Borel–Moore functor with products. The
theory ω∗(X) is such a theory.
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In the proof of Theorem 1.1 we will need to use the push-forward homomor-
phisms g∗ : ω∗(X) → ω∗(Z) for g : X → Z proper, not necessarily projective. This
push-forward homomorphism is defined at the cycle level the same way as the pro-
jective push-forward. One can easily check that it is functorial.

In the theory ω̂∗(X), one can define push-forward along a proper morphism g,
pull-back along a smooth (not necessarily quasiprojective) morphism g, and exterior
products. These homomorphisms are defined at the cycle level, hence their functo-
riality and various compatibility conditions are easy to check. There is no straight-
forward way to define the first Chern class operators on ω̂∗(X). The isomorphism ψ
of Theorem 1.1 induces first Chern class operators on ω̂∗(X) from those on ω∗(X).
We will show below that these induced first Chern class operators on ω̂∗(X) satisfy
the expected properties, for example, the section axiom. It is then elementary to
check that the first Chern class operators are compatible with proper push-forwards,
smooth pull-backs, and exterior products. In summary, one can strengthen the no-
tion of the Borel–Moore functor with products by requiring the existence of proper
push-forward and smooth pull-back homomorphisms, with the same compatibility
conditions as in [4]. Then ω̂∗ is such a functor.

The exterior products turn ω∗(Spec k) into a graded ring and ω∗(X) into a graded
module over ω∗(Spec k). When X is a smooth quasiprojective variety, we denote by
1X the class [idX : X → X] ∈ ω∗(X). Similarly, ω̂∗(Spec k) is a ring and ω̂∗(X) is a
module over this ring. For a smooth variety X, we have the class

1X = [idX : X → X] ∈ ω̂∗(X).

The proof of Theorem 1.1 is very similar to the proof of the main result in [2]. The
main difference is that the theory ω̂∗(X) does not have first Chern class operators. In
the proof we need to be careful that first Chern class operators are applied in the
theory ω∗(X) only.

2 First Chern Classes and Divisor Classes

We recall here the formal group law, the first Chern class operators, and the divisor
classes in the theory ω∗(X). We will use the notation ω∗(X) for algebraic cobordism.
Since ω∗(X) ∼= Ω∗(X), the same holds for Ω∗(X).

2.1 Formal Group Law

A formal group law on a commutative ring R is a power series FR(u, v) ∈ RJu, vK
satisfying

(a) FR(u, 0) = FR(0, u) = u,
(b) FR(u, v) = FR(v, u),
(c) FR(FR(u, v),w) = FR(u, FR(v,w)).

Thus,

FR(u, v) = u + v +
∑

i, j>0
ai, ju

iv j ,
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where ai, j ∈ R satisfy ai, j = a j,i and some additional relations coming from property
(c). We think of FR as giving a formal addition

u +FR v = FR(u, v).

There exists a unique power series χ(u) ∈ RJuK such that FR(u, χ(u)) = 0. Denote
[−1]FR u = χ(u). Composing FR and χ, we can form linear combinations

[n1]FR u1 +FR [n2]FR u2 +FR · · · +FR [nr]FR ur ∈ RJu1, . . . , urK

for ni ∈ Z and ui variables.
There exists a universal formal group law FL, and its coefficient ring L is called

the Lazard ring. This ring can be constructed as the quotient of the polynomial ring
Z[Ai, j]i, j>0 by the relations imposed by the three axioms above. The images of the
variables Ai, j in the quotient ring are the coefficients ai, j of the formal group law FL.
The ring L is graded, with Ai, j having degree i + j − 1. The power series FL(u, v)
is then homogeneous of degree −1 if u and v both have degree −1. We sometimes
write L = L∗ to emphasize the grading on L.

It is shown in [4,5] that the ring ω∗(Spec k) is isomorphic to L. The formal group
law on L describes the first Chern class operators of tensor products of line bundles
(property (FGL) below).

2.2 First Chern Class Operators

Algebraic cobordism is endowed with first Chern class operators

c̃1(L) : ω∗(X)→ ω∗−1(X),

associated with a line bundle L on X. We list three properties satisfied by the first
Chern class operators c̃1(L) : ω∗(Y ) → ω∗−1(Y ) for Y a smooth quasiprojective
scheme and L a line bundle on Y :

(Dim) For L1, . . . , Lr line bundles on Y , r > dim Y ,

c̃1(L1) ◦ · · · ◦ c̃1(Lr)(1Y ) = 0.

(Sect) If L is a line bundle on Y and s ∈ H0(Y, L) is a section such that the zero
subscheme i : Z ↪→ Y of s is smooth, then c̃1(L)(1Y ) = i∗(1Z).

(FGL) For two line bundles L and M on Y ,

c̃1(L⊗M)(1Y ) = FL(̃c1(L), c̃1(M))(1Y ).

In the terminology of [4,5] the three properties imply thatω∗ is an oriented Borel–
Moore functor of geometric type.

The first Chern class operators of two line bundles commute: c̃1(L) ◦ c̃1(M) =
c̃1(M) ◦ c̃1(L), and they satisfy a set of compatibility relations with smooth quasipro-
jective pull-backs, projective push-forwards, and exterior products (see [4]). As an
example of these relations, for L a line bundle on X, we have

c̃1(L)[ f : Y → X] = f∗ c̃1( f ∗(L))(1Y ).

The property (Sect) implies that if L is a trivial line bundle on X, then the first Chern
class operator of L is zero.
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2.3 Divisor Classes

Recall that a divisor D on a smooth scheme Y ∈ Schk has strict normal crossings
(s.n.c.) if at every point p ∈ Y there exists a system of regular parameters y1, . . . , yn

such that D is defined by the equation ym1
1 · · · ymn

n = 0 near p for some integers
m1, . . . ,mn. We let |D| denote the support of D.

Let D =
∑r

i=1 niDi be a nonzero s.n.c. divisor on a smooth scheme Y , with Di

irreducible. Let us recall the construction by Levine and Morel [4] of the class [D→
|D|] ∈ ω∗(|D|). We do not need to assume that Y is quasiprojective; however, we
need each component of D to be quasiprojective.

Let

Fn1,...,nr (u1, . . . , ur) = [n1]FL u1 +FL [n2]FL u2 +FL · · · +FL [nr]FL ur ∈ LJu1, . . . , urK.

We decompose this power series as

Fn1,...,nr (u1, . . . , ur) =
∑

J
Fn1,...,nr

J (u1, . . . , ur)
∏
i∈ J

ui ,

where the sum runs over nonempty subsets J ⊂ {1, . . . , r}. The power series Fn1,...,nr
J

are such that ui does not divide any nonzero term in Fn1,...,nr
J if i /∈ J.

For i = 1, . . . , r, let Li = OY (Di). If J ⊂ {1, . . . , r}, let i J : D J = ∩i∈ JDi ↪→ |D|
and L J

i = Li |D J . The class [D→ |D|] is defined in [4] as

[D→ |D|] =
∑

J
i J
∗F

n1,...,nr
J

(̃
c1(L J

1), . . . , c̃1(L J
r )
)

(1D J ),

where the sum runs over nonempty subsets J ⊂ {1, . . . , r}.
We note that in the definition of divisor classes it is not necessary to assume that

Di are irreducible. We can let them be smooth but possibly reducible divisors, and
then the same formula holds.

When Y is quasiprojective, then the class [D→ |D|] pushed forward to Y becomes
equal to c̃1(O(D))(1Y ). This gives us a way to construct first Chern class operators in
the theory ω∗. If L is a line bundle on Y , write L = OY (A − B) for smooth divisors
A and B that intersect transversely. The divisor class [A − B → |A − B|], when
pushed forward to Y , then equals c̃1(L)(1Y ). The divisors A and B can be chosen
with the help of an ample line bundle, but such divisors may not exist when Y is not
quasiprojective.

2.4 Product of Divisor Classes

Let D and E be divisors on a smooth scheme W such that |D|∪ |E| has s.n.c. We recall
from [2] the construction of the class

[D • E→ |D| ∩ |E|] ∈ ω∗(|D| ∩ |E|)
such that when W is quasiprojective, the push-forward of this class to W is equal to

c̃1(OW (D)) ◦ c̃1(OW (E))(1W ).

To define the product class, it is enough to assume that one of the two divisors has all
its components quasiprojective. In the discussion below we will assume the quasipro-
jectivity of the components of E but not of the ambient space W .
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Let D =
∑

i niDi and E =
∑

i piDi , where Di , i = 1, . . . , r are irreducible divi-
sors. For i = 1, . . . , r, let Li = OW (Di). If J ⊂ {1, . . . , r} is such that n j 6= 0 and
pi 6= 0 for some i, j ∈ J, then let i J : D J = ∩i∈ JDi ↪→ |D| ∩ |E| and L J

i = Li |D J .
Let the class [D • E→ |D| ∩ |E|] be defined by the formula∑
I, J

[
iI∪ J
∗ Fn1,...,nr

J

(
c̃1(LI∪ J

1 ), . . . , c̃1(LI∪ J
r )
)

Fp1,...,pr

I

(
c̃1(LI∪ J

1 ), . . . , c̃1(LI∪ J
r )
) ∏

i∈I∩ J
c̃1(LI∪ J

i )(1DI∪ J )
]
.

Here the sum runs over pairs of nonempty subsets I and J of {1, . . . , r} such that
n j 6= 0 and pi 6= 0 for all j ∈ J and i ∈ I. As in the case of divisor classes, it is
enough to assume that the divisors Di are smooth but not necessarily irreducible.

The following properties of the product of divisor classes are proved in [2]:

(1) When D is a smooth reduced divisor that does not have common components
with E, then E′ = E||D| is an s.n.c. divisor on |D| and we have

[D • E→ |D| ∩ |E|] = [E′ → |E′|].
(2) The class [D • E→ |D| ∩ |E|], when pushed forward to |E|, becomes equal to

c̃1(OW (D)||E|)[E→ |E|].
(3) The formula for the product of divisor classes is symmetric, but not linear in

either argument. Indeed, if D = D′ + F, then the product class pushed forward
to E is

c̃1(OW (D′ + F)||E|)[E→ |E|] = c̃1(OW (D′)||E|)[E→ |E|]
+ c̃1(OW (F)||E|)[E→ |E|]
+
∑

i, j>0
ai, j c̃1(OW (D′)||E|)i c̃1(OW (F)||E|) j[E→ |E|].

Here ai, j are the coefficients of the formal group law. However, if

c̃1(OW (F)||E|)[E→ |E|] = 0,

then the last two summands vanish and the classes

[D • E→ |D| ∩ |E|] and [D′ • E→ |D| ∩ |E|]
become equal when pushed forward to |E|.

(4) As a special case of the previous argument, given f : W → P1 × P1, let D =
f ∗(P1 × {0}), E = f ∗({0} × P1). Assume that D and E satisfy the normal
crossing assumption and E has every component quasiprojective. Let D = D′+F,
where F contains the components of D that map to (0, 0) and D′ contains the
components that map onto P1×{0}. Then the class [F •E→ |F|∩ |E|] becomes
zero when pushed forward to |E|. Indeed, the product class becomes zero when
pushed forward to |F|, because E||F| is trivial, and the morphism to E factors:
|E| ∩ |F| → |F| → |E|. It follows that the classes

[D • E→ |D| ∩ |E|], [D′ • E→ |D| ∩ |E|]
are equal when pushed forward to E.
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3 Chow’s Lemmas

The classical Chow lemma states that every variety Y admits a proper birational mor-
phism f : Y ′ → Y from a quasiprojective variety Y ′. Since Y ′ is quasiprojective, the
morphism f is projective, and hence Y ′ is the blowup of Y along an ideal sheaf I on
Y .

Hironaka’s version of Chow’s lemma is as follows (see [3]). Suppose Y is a smooth
variety with D an s.n.c. divisor on Y . Then there exists a proper birational morphism
g : Ỹ → Y from a quasiprojective variety Ỹ , obtained by a sequence of blowups along
smooth centers that intersect the exceptional locus together with the inverse image of
D normally. One can construct such Ỹ as the principalization of the ideal sheaf I from
the classical Chow lemma. Then g : Ỹ → Y factors through f : Y ′ → Y . Since f and
g are projective, the morphism Ỹ → Y ′ is also projective, hence Ỹ is quasiprojective.

Recall that if Y is smooth and D is an s.n.c. divisor on Y , then a smooth subscheme
C ⊂ Y is said to intersect D normally if at every point p ∈ Y we can choose a regular
system of parameters y1, . . . , yr so that D is defined by yn1

1 · · · ynr
r = 0 for some

n1, . . . , nr ∈ Z and C is defined by vanishing of yi1 , . . . , yi j for some i1, . . . , i j . If D is
an s.n.c. divisor and C intersects it normally, then the blowup of Y along C is smooth
and the pull-back of D together with the exceptional divisor is again an s.n.c. divisor.

We refine Hironaka’s version of Chow’s lemma further as follows. Define an in-
variant ν(Y ) of a variety Y as the minimum dimension of a variety Z such that there
exists a projective morphism Y → Z. This is well defined, because IdY : Y → Y
is projective. We have that ν(Y ) = 0 if and only if Y is projective. Now con-
sider π : Y → Z with dim(Z) = ν(Y ). By the classical Chow lemma there exists
a quasiprojective Z′ that is a blowup of Z along an ideal sheaf I on Z. Let Ỹ → Y
be the principalization of the inverse image ideal sheaf π−1(I) · OY on Y . Then Ỹ is
quasiprojective by the same argument as before. Moreover, the centers of the blowups
in the principalization all lie over the co-support of I, hence the centers have their ν
invariant strictly smaller than ν(Y ).

Lemma 3.1 (Embedded Chow lemma) Let W be a smooth variety, D, E be effective
divisors on W such that D+E has s.n.c. Then there exists a birational morphism g : W̃ →
W , obtained by a sequence of blowups of smooth centers that lie over |D| and intersect
the pull-back of D + E together with the exceptional locus normally, such that every
component D̃i of the pull-back D̃ = g∗(D) is quasiprojective.

Proof Let Di be a component of D. Let D′ be the divisor D′ = (D + E − mDi)|Di ,
where m is the coefficient of Di in D + E. We apply the refined version of Chow’s
lemma to the variety Di and divisor D′|Di . This gives a quasiprojective variety D̃i

obtained by a sequence of blowups of Di along smooth centers. Let us now perform
the same sequence of blowups on W (blow up W along the same centers lying in Di

and in the strict transforms of Di), to get g : W̃ →W . Then D̃i is isomorphic to the
strict transform of Di in W̃ . Such blowups introduce new components to the divisor
g∗(D). However, the new exceptional divisors are projective bundles over the centers
of blowups, hence their ν-invariant is strictly smaller than ν(Di). By induction on ν
we can make all components quasiprojective.
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Recall the natural homomorphism ψ : ω(X)→ ω̂(X) from Theorem 1.1.

Lemma 3.2 The homomorphism ψ : ω(X)→ ω̂(X) is surjective.

Proof Let [Y → X] be a cycle in M̂(X). Consider a sequence of blowups along
smooth centers

Y = Y0 ←− Y1 ←− · · · ←− Yn

such that Yn is quasiprojective.
Each blowup Yi+1 → Yi along a center Ci gives a double point relation in ω̂(X).

Let W = Yi×P1, and let W̃ →W be the blowup along Ci×{0} ⊂W . Then W̃0 has
two components, Yi+1 and the exceptional divisor Ei , intersecting transversely along
Di . The double point relation in ω̂(X) is

[Yi → X] = [Yi+1 → X] + [Ei → X]− [PDi → X].

Combining these for all i, we get

[Y → X] = [Yn → X] +
∑

i

(
[Ei → X]− [PDi → X]

)
.

The class [Yn → X] lies in the image of ψ, because Yn is quasiprojective. Since Ei and
PDi are projective over the center Ci , their ν-invariant is strictly smaller than ν(Y )
and we may assume by induction on ν that the classes [Ei → X] and [PDi → X] also
lie in the image of ψ.

4 Proof of the Main Theorem

We will now prove Theorem 1.1. We follow the argument of the main result in [2],
which in turn was modeled after a proof in [4]. The proof that ψ is injective has two
steps:

(1) Define a distinguished lifting M̂+(X)
d
−→ ω∗(X), such that the composition

M+(X)−→M̂+(X)
d
−→ ω∗(X)

is the canonical homomorphism.
(2) Show that d maps R̂(X) to zero, hence it descends to d : ω̂∗(X) → ω∗(X), pro-

viding a left inverse to ψ and proving that ψ is injective.

Once we prove that ψ is injective, Lemma 3.2 implies that ψ is an isomorphism,
hence the left inverse d of ψ is in fact a two-sided inverse.

4.1 Distinguished Liftings

Let [Y → X] be a cycle in M̂(X). We construct a set of elements in ω∗(X) that we call
distinguished liftings of the cycle.

Let W be a smooth variety and let π : W → Y × P1 be a proper birational mor-
phism that is an isomorphism over Y×(P1r{0}). Assume that D = π∗(Y×{0}) is a
divisor of s.n.c. on W with every component quasiprojective. Given such W , the class
[D→ |D|] pushed forward to X is called a distinguished lifting of the cycle [Y → X].
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Note that, even though every component of D is quasiprojective, the scheme |D|
may fail to be quasiprojective and the map |D| → X may not be projective. Thus,
the push-forward homomorphism ω∗(|D|) → ω∗(X) is along a proper morphism.
It follows from the functoriality of the push-forward homomorphism that the dis-
tinguished liftings of [Y → X] are the distinguished liftings of 1Y pushed forward
to X.

Distinguished liftings always exist. For example, by Lemma 3.1 we can obtain a
variety W by a sequence of blowups of Y × P1 with centers lying over Y × {0}. An
arbitrary W as described above is obtained from Y × P1 by a sequence of blowups
and blowdowns along smooth centers lying over Y × {0} [1, 6].

Lemma 4.1 Any two distinguished liftings of a cycle [Y → X] ∈ M̂(X) are equal in
ω∗(X).

Proof Consider smooth varieties W1 and W2 defining two distinguished liftings as
images of [D1 → |D1|] and [D2 → |D2|] in ω∗(X). We will prove below that if the
birational map h : W1 99K W2 is a projective morphism, then the class [D1 → |D1|],
when pushed forward to |D2|, becomes equal to [D2 → |D2|]. This clearly proves the
lemma in the case where h is a projective morphism. (Notice that we need to use the
functoriality of the push-forward homomorphism along the composition |D1| →
|D2| → X. The morphisms here are proper, but not necessarily projective.) The
case of general h can be reduced to the case of projective h as follows. There exist
projective morphisms W ′1 → W1 and W ′2 → W2, both obtained by sequences of
blowups along smooth centers lying over Y ×{0} ∈ P1, such that the birational map
W ′1 99K W ′2 is a projective morphism. (See [1, Lemma 1.3.1] for a proof.) We can
then apply the case of projective h to each one of the three projective morphisms.

Now assume that h : W1 → W2 is a projective morphism. By the weak factoriza-
tion theorem [1,6], we can factor h into a sequence of blowups and blowdowns along
smooth centers. Moreover, the factorization can be chosen so that if Zi+1 → Zi is one
blowup of C ⊂ Zi in this factorization, then the birational map gi : Zi 99K W2 is a
projective morphism, g∗i (D2) is an s.n.c. divisor on Zi , the center C lies in the support
of the divisor g∗i (D2) and intersects it normally.

We can thus assume that h : W1 →W2 is the blowup of W2 along a smooth center
C ⊂W2 that lies in the support of D2 and intersects it normally.

Let V2 = W2 × P1. Let V1 be the blowup of V2 along C × {0} ⊂ V2. Let
f : V1 → P1 × P1 be the projection. Consider the divisors D = f ∗(P1 × {0}) and
E = f ∗({0} × P1). Then D + E is an s.n.c. divisor, and E has all its components
quasiprojective. Moreover, D = D′ + F, where F is the exceptional divisor of the
blowup, lying over (0, 0) ∈ P1 × P1, and D′ ∼= W1. Since D′ is smooth, having no
common component with E, and E|D′ = D1, we get

[D′ • E→ |D′| ∩ |E|] = [D1 → |D1|].

When pushed forward to |E|, this class becomes equal to c̃1(O(D))[E → |E|], which
itself is equal to [D2 → |D2|] pushed forward to |E| by a section s : |D2| → |E| of the
projection |E| → |D2| . The two classes are equal when pushed forward to |D2|.
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The previous lemma proves that distinguished liftings are unique. We extend the

liftings of generators [Y → X] linearly to a group homomorphism d : M̂+(X) →
ω∗(X). If Y is quasiprojective, then we can take the distinguished lifting of [Y → X] ∈
ω̂∗(X) to be [Y → X] ∈ ω∗(X), hence the composition

M+(X)−→M̂+(X)
d
−→ ω∗(X)

is the canonical projection.

4.2 Proof of Theorem 1.1

It remains to prove that the distinguished lifting d : M̂+(X) → ω∗(X) maps R̂(X)
to zero. Consider a double point degeneration f : W → P1, W → X. Let W∞ =
f−1(∞) be a smooth fiber and W0 = f−1(0) = A ∪ B. Recall that the double point
relation is

[W∞ → X]− [A→ X]− [B→ X] + [PA∩B → X],

where PA∩B = P(OA∩B(A) ⊕ OA∩B). Since R(X) is generated by the double point
relations, it suffices to prove that

d[W∞ → X]− d[A→ X]− d[B→ X] + d[PA∩B → X] = 0.

Let V = W × P1. We blow up V along smooth centers lying over W × {0} that
intersect the pull-back of W0×P1 + W∞×P1 + W ×{0} normally. Let the result be
Ṽ , such that the inverse image of W ×{0} has every component quasiprojective. Let

g : Ṽ →W × P1 → P1 × P1.

Define

E = g∗(P1 × {0}), D0 = g∗({0} × P1), D∞ = g∗({∞} × P1).

By construction, all components of E are quasiprojective. Let D′0, D′∞ be the sums of
components in D0, D∞ that do not map to (0, 0) or (∞, 0) in P1 × P1. Then D′∞ is
the blowup of W∞ × P1 along centers lying over W∞ × {0}. Since D′∞ is smooth
and has no component in common with E, it follows that [D′∞ • E→ |D′∞| ∩ |E|] is
the divisor class of E|D′

∞
, which gives the distinguished lifting of [W∞ → X].

Similarly, D′0 is the blowup of W0 × P1 = (A ∪ B) × P1 along centers lying over
W0 × {0}. The divisor D′0 is a union A′ ∪ B′ of two smooth divisors, the blowups of
A× P1 and B× P1. The intersection of these divisors is a blowup of (A∩ B)× P1. It
is proved in [2] that in this situation [D′0 •E→ |D′0|∩ |E|] gives the class d[A→ X] +
d[B→ X]− d[PA∩B → X].

When pushed forward to |E|, the classes

[D′∞ • E→ |D′∞| ∩ |E|] and [D′0 • E→ |D′0| ∩ |E|]

are equal to c̃1(O|E|(D∞))[E → |E|] and c̃1(O|E|(D0))[E → |E|]. Since D0 and D∞
are linearly equivalent divisors, the two classes become equal in ω∗(|E|), hence their
push-forwards are equal in ω∗(X).
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4.3 First Chern Class Operators on ω̂∗(X)

The isomorphism ψ : ω∗(X)→ ω̂∗(X) induces first Chern class operators on ω̂∗(X).
We will show below that the property (Sect) holds in ω̂∗(X) (recall the definitions of
properties (Dim), (Sect), and (FGL) in Section 2.2). The other two properties (Dim)
and (FGL) follow trivially from the same properties in ω∗(X).

Lemma 4.2 Let Y be a smooth variety, L a line bundle on Y , and i : Z → Y the closed
embedding of the subscheme defined by a transverse section of L. Then in ω̂∗(Y ),

c̃1(L)(1Y ) = [i : Z → Y ].

Proof We need to show that in ω∗(Y ),

c̃1(L)(d(1Y )) = d[i : Z → Y ].

To construct d(1Y ), let f : W → Y ×P1 be the blowup along smooth centers lying
over Y × {0} such that E = f ∗(Y × {0}) has all its components quasiprojective. Let
D = f ∗(Z × P1). We may also assume that E + D has s.n.c.

Write D = D′ + F, where D′ is the strict transform of Z × P1. Then the class
[E • F → |E| ∩ |F|] when pushed forward to |F| is equal to

c̃1(O(E))([F → |F|]) = 0

because O(E) is trivial on F. (Note that |F| ⊂ |E|, hence F also has all its components
quasiprojective and the divisor class [F → |F|] makes sense.) The push-forward of
the class [E • F → |E| ∩ |F|] to |E| factors through |F|, hence it is zero. This implies
that, when pushed forward to |E|, the classes

[E • D→ |E| ∩ |D|], [E • D′ → |E| ∩ |D′|]

become equal. The first class pushed forward to E is

c̃1(O(D))([E→ |E|]),

which further pushed forward to Y becomes equal to c̃1(L)(d(1Y )). Since D′ is
smooth and has no components in common with E, the second class is equal to
[E||D′| → |E||D′||], which becomes equal to d[i : Z → Y ] when pushed forward
to Y .

Recall that we defined the divisor class [D → |D|] ∈ ω∗(|D|) for D an s.n.c.
divisor on a smooth variety Y , assuming that all components of D are quasiprojective.
Given first Chern class operators on ω̂∗, the same formula for [D → |D|] ∈ ω̂∗(|D|)
makes sense even when the components of D are not quasiprojective. The previous
lemma then implies that the class [D→ |D|] pushed forward to Y becomes equal to
c̃1(OY (D))(1Y ) ∈ ω̂∗(Y ), with no assumptions about quasiprojectivity of Y or D.

5 The Theories Ω∗(X) and Ω̂∗(X)

We start by recalling the construction of the algebraic cobordism theory Ω∗(X) in
[4].
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Let Z∗(X) be the graded free abelian group generated by isomorphism classes of
cobordism cycles of the form

[ f : Y → X, L1, . . . , Lr],

where Y is a smooth quasiprojective variety, f is a proper morphism, and Li are line
bundles on Y . An isomorphism class means an isomorphism class of f together with
isomorphism classes of line bundles Li , possibly after a permutation. The degree
of the cycle above is dim Y − r. The groups Z∗(X) have a functorial push-forward
homomorphism g∗ : Z∗(X) → Z∗(Z) for g : X → Z proper, and a functorial pull-
back homomorphism g∗ : Z∗(Z)→ Z∗+d(X) for g : X → Z a smooth quasiprojective
morphism of relative dimension d. The first Chern class operators on Z∗(X) are
defined by

c̃1(L)[ f : Y → X, L1, . . . , Lr] = [ f : Y → X, L1, . . . , Lr, f ∗(L)]

for L a line bundle on X.
The cobordism groups Ω∗(X) are defined by imposing relations on Z∗(X).
The construction of Ω∗(X) is given in three steps, corresponding to properties

(Dim), (Sect), and (FGL).
(Step 1) Let 〈RDim

∗ 〉(X) be the subgroup of Z∗(X) generated by cobordism cycles
of the form

[ f : Y → X, π∗(L1), . . . , π∗(Lr),M1, . . . ,Ms],

where Z is a smooth quasiprojective variety, π : Y → Z is a smooth quasiprojective
morphism, L1, . . . , Lr are line bundles on Z, and r > dim Z. Define

Z∗(X) = Z∗(X)/〈RDim
∗ 〉(X).

(Step 2) Let 〈RSect
∗ 〉(X) be the subgroup of Z∗(X) generated by differences of

cobordism cycles of the form

[Y → X, L1, . . . , Lr]− [Z → X, i∗(L1), . . . , i∗(Lr−1)],

where i : Z → Y is the closed embedding of the zero locus of a transverse section of
Lr. Define

Ω∗(X) = Z∗(X)/〈RSect
∗ 〉(X).

(Step 3) Let 〈L∗RFGL
∗ 〉(X) be the L∗-submodule of L∗ ⊗ Ω∗(X) generated by ele-

ments of the form

[Y → X, L1, . . . , Lr, L⊗M]−
∑

i, j≥0
ai j[Y → X, L1, . . . , Lr, L, . . . , L︸ ︷︷ ︸

i times

,M, . . . ,M︸ ︷︷ ︸
j times

],

where ai j ∈ L∗ are the coefficients in the formal group law FL. Define

Ω∗(X) = L∗ ⊗ Ω∗(X)/〈L∗RFGL
∗ 〉(X).

There is a natural homomorphism ν : M+(X) → Z∗(X) mapping a cycle [Y →
X] ∈M+(X) to [Y → X] ∈ Z∗(X). It is proved in [5] that ν induces an isomorphism

ν : ω∗(X)→ Ω∗(X),

compatible with push-forward and pull-back homomorphisms, and first Chern class
operators.
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Let us now define the theory Ω̂∗(X). Let Ẑ∗(X) be the graded free abelian group
generated by the isomorphism classes of cobordism cycles

[ f : Y → X, L1, . . . , Lr],

where Y is a smooth variety, f is a proper morphism, and Li are line bundles on Y . We

construct Ω̂∗(X) by imposing relations on Ẑ∗(X). Compared to the construction of
Ω∗(X), only the first step needs to be changed to allow non-quasiprojective varieties
Z.

(Step 1) Let 〈R̂Dim
∗ 〉(X) be the subgroup of Ẑ∗(X) generated by cobordism cycles

of the form
[ f : Y → X, π∗(L1), . . . , π∗(Lr),M1, . . . ,Ms],

where Z is a smooth variety, π : Y → Z is a smooth morphism, L1, . . . , Lr are line
bundles on Z, and r > dim Z. Define

Ẑ∗(X) = Ẑ∗(X)/〈R̂Dim
∗ 〉(X).

(Step 2) Let 〈R̂Sect
∗ 〉(X) be the subgroup of Ẑ∗(X) generated by differences of

cobordism cycles of the form

[Y → X, L1, . . . , Lr]− [Z → X, i∗(L1), . . . , i∗(Lr−1)],

where i : Z → Y is the closed embedding of the zero locus of a transverse section of
Lr. Define

Ω̂∗(X) = Ẑ∗(X)/〈R̂Sect
∗ 〉(X).

(Step 3) Let 〈L∗R̂FGL
∗ 〉(X) be the L∗-submodule of L∗ ⊗ Ω̂∗(X) generated by ele-

ments of the form

[Y → X, L1, . . . , Lr, L⊗M]−
∑

i, j≥0
ai j[Y → X, L1, . . . , Lr, L, . . . , L︸ ︷︷ ︸

i times

,M, . . . ,M︸ ︷︷ ︸
j times

],

where ai j ∈ L∗ are the coefficients in the formal group law FL. Define

Ω̂∗(X) = L∗ ⊗ Ω̂∗(X)/〈L∗R̂FGL
∗ 〉(X).

There is again a natural homomorphism ν̂ : M̂+(X) → Ẑ∗(X). We claim that it
descends to a homomorphism

ν̂ : ω̂∗(X)→ Ω̂∗(X).

This follows if we can prove that the double point relations in R̂(X) map to zero in
Ω̂∗(X). This statement for R(X) and Ω∗(X) is proved in [5, Corollary 10]. The same
proof works word by word in our case.

There is also an obvious homomorphism φ : Ω∗(X)→ Ω̂∗(X), induced by the in-

clusion of cycles Z∗(X) ↪→ Ẑ∗(X). These homomorphisms give the following com-
mutative square:

ω∗(X)
ψ

−−−−→ ω̂∗(X)

ν

y y ν̂

Ω∗(X)
φ

−−−−→ Ω̂∗(X).
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The maps in this square are compatible with proper push-forward homomorphisms,
smooth quasiprojective pull-back homomorphisms, and first Chern class operators.

Theorem 5.1 The homomorphism φ : Ω∗(X) → Ω̂∗(X) is an isomorphism for all X
in Schk.

Proof We follow the same steps as in the proof of Theorem 1.1. We first show that
φ is surjective, and then construct a left inverse δ of φ, proving injectivity of φ.

To prove the surjectivity of φ by its compatibility with first Chern class operators,

it suffices to show that cobordism classes of the form [Y → X] ∈ Ẑ∗(X) lie in the
image of φ. These classes lie in the image of ν̂, hence they can be lifted to ω∗(X) and
thus come from Ω∗(X).

To prove injectivity of φ, we construct a distinguished lifting δ : Ẑ∗(X)→ Ω∗(X).

Recall that if [ f : Y → X] ∈ M̂(X), then we constructed its distinguished lifting

d[ f : Y → X] = f∗(d(1Y )) ∈ ω∗(X).

Define the distinguished lifting δ on generators

δ[ f : Y → X, L1, . . . , Lr] = f∗ c̃1(L1) ◦ · · · ◦ c̃1(Lr) ◦ ν ◦ d(1Y ).

Note that f is in general only proper, hence we need proper push-forward in Ω∗.
When Y is quasiprojective, then d(1Y ) = 1Y , hence the composition

Z∗(X)−→Ẑ∗(X)
δ
−→ Ω∗(X)

is the canonical homomorphism.
We need to show that δ descends to a homomorphism

δ : Ω̂∗(X)→ Ω∗(X).

We do this in three steps:
(Step 1) Let [ f : Y → X, g∗(L1), . . . , g∗(Lr),M1, . . . ,Ms] be a generator of

〈R̂Dim
∗ 〉(X), where g : Y → Z is a smooth morphism between smooth varieties and

r > dim Z. We need to show that δ maps such cycles to zero, hence it induces a

homomorphism δ : Ẑ∗(X)→ Ω∗(X).
It suffices to prove that

c̃1(g∗(L1)) ◦ · · · ◦ c̃1(g∗(Lr)) ◦ ν ◦ d(1Y ) = 0.

Let π : W → Y × P1, D = π∗(Y × {0}) define the distinguished lifting d(1Y ).
Similarly, let ρ : U → Z×P1, E = ρ∗(Z×{0}) define the distinguished lifting d(1Z).
We may choose π such that W → Y × P1 → Z × P1 factors through U . Then every
face D J of D maps to some face EI or E. To apply c̃1(Li) to ν ◦d(1Y ), we need to apply
to the classes 1D J ∈ Ω∗(D J) the first Chern class operator of the pullback of Li along

h : D J → |D| → |E| → Z.

Since this morphism factors through D J → EI , where EI is quasiprojective and
dim EI ≤ dim Z < r, it follows from the property (Dim) in Ω∗(D J) that

c̃1(h∗L1) ◦ · · · ◦ c̃1(h∗Lr)(1D J ) = 0.
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(Step 2) Consider a generator

[Y → X, L1, . . . , Lr]− [Z → X, i∗(L1), . . . , i∗(Lr−1)]

of 〈R̂Sect
∗ 〉(X). We need to prove that δ maps this element to zero. Lemma 4.2 proves

that
c̃1(Lr) ◦ d(1Y ) = d[Z → Y ],

hence the equality also holds after applying f∗ ◦ c̃1(L1), . . . , c̃1(Lr−1) ◦ ν.
(Step 3) We extend δ : Ω̂∗(X)→ Ω∗(X) L∗-linearly to a homomorphism

δ : L∗ ⊗ Ω̂∗(X)→ Ω∗(X).

We need to show that δ maps 〈L∗R̂FGL
∗ 〉(X) to zero. This is equivalent to the equality

c̃1(L⊗M) ◦ ν ◦ d(1Y ) =
∑
i, j

ai, j c̃1(L)i ◦ c̃1(M) j ◦ ν ◦ d(1Y )

for a smooth variety Y and line bundles L and M on Y . The equality holds for any
class α ∈ Ω∗(Y ) instead of ν ◦ d(1Y ) by the property (FGL) in the theory Ω∗.

We mentioned in the introduction that it is possible to strengthen the notion of
an oriented Borel–Moore functor with products by requiring push-forward homo-
morphisms along proper morphisms and pull-back homomorphisms along smooth
morphisms. Similarly, one can extend to this situation the notion of an oriented
Borel–Moore functor of geometric type [4]. The same argument as in [4] then shows
that Ω̂∗(X) is a strengthened oriented Borel–Moore functor of geometric type and,
moreover, that it is universal among all such functors.
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