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Abstract

A group G has all of its subgroups normal-by-finite if H/ coreG (//) is finite for all subgroups H of G.
These groups can be quite complicated in general, as is seen from the so-called Tarski groups. However,
the locally finite groups of this type are shown to be abelian-by-finite; and they are then boundedly
core-finite, that is to say, there is a bound depending on G only for the indices \H : coreo(//)|.

1991 Mathematics subject classification (Amer. Math. Soc): 20F24, 20F30.

1. Introduction

In [5] it was proved that if G is a group such that each of its subgroups has finite index
in its normal closure, then G is finite-by-abelian, and so the index of each subgroup in
its normal closure is bounded. In this paper we shall be concerned with a dual property.
We shall say that a group G is a CF-group (core-finite) if each of its subgroups is
normal-by-finite, that is, if H/ coreG(//) is finite for all subgroups H of G. That such
groups need not even be abelian-by-finite is indicated by the existence of so-called
Tarski groups, for instance the examples due to Rips and Ol'shanskii [7] of infinite
groups all of whose proper nontrivial subgroups have prime order. A suitable torsion-
free example is provided by the construction due to Adian (unpublished) of a group
with infinite cyclic centre and with central factor group a Tarski group. Although such
examples may seem at first sight a little extravagant in the context of our discussion,
nevertheless we shall see later (in Section 4) that any periodic CF-group which is not
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[2] Groups with all subgroups normal-by-finite 385

abelian-by-finite has a finitely generated infinite section in which every subgroup is
either finite or of finite index.

Before stating our main result we note that the class of CF-groups is an extension
of the class of Dedekind groups, groups in which all subgroups are normal. We recall
that a non-abelian Dedekind group is called hamiltonian and that such a group has an
abelian (periodic) subgroup of index 2. A complete description of such groups, due
to Dedekind and Baer, is given as 5.3.7 of [9]. It is not surprising to find that such
groups will turn up during our considerations (see the proof of Lemma 3.1).

For any subgroup H of a group G, denote by o(H) the index of coreG H in H.
We shall say that a CF-group is BCF(boundedly core-finite) if there is an integer

n such that / / / coreG(//) has order at most n for all H < G. Our main result is as
follows.

THEOREM. Every locally finite CF-group is abelian-by-finite and BCF.

We shall present the proof of this theorem in two main parts. In Section 2 we shall
prove that every locally finite, abelian-by-finite CF-group is BCF and in Section 3
that every countable locally finite CF-group is abelian-by-finite. The theorem is then
deduced as follows. Suppose that G is a locally finite CF-group and that G is not
BCF. Assume to begin with that o(F) < n, for some fixed integer n and for all
finite subgroups F of G. Let H be an arbitrary subgroup of G and let {Hk : A. e A}
be the set of all finite subgroups of G. If C* denotes the core of Hk in G, then
I Hx : Cx I < n, for all k, and it follows easily that every finite subgroup of H/ coreG H
has order at most n. Hence a(H) < n and G is BCF, a contradiction. Thus there
exist finite subgroups Hu H2,... of G such that a (Hi) < a{H2) < ••• Suppose
that coreG //, = f]"L\ Hf", and form the subgroup G* generated by all //, and all g,;.
Then G* is countable and coreG. (H,) = coreG (//,). So G* is not BCF. But by Section
3, G* is abelian-by-finite and so by Section 2 is BCF, a contradiction.

We remark here that 'abelian-by-finite' cannot, of course, be replaced by 'finite-
by-abelian' in the statement of the theorem - a group A of type Cp~ extended by
an inverting two-cycle provides an appropriate example. We note also that CF-
groups form a countably recognizable class (see [6]). Thus, if G is a group in which
every countable subgroup is CF, then G is CF. We omit the proof (which is quite
straightforward).

We thank the referee and Peter Neumann for some very helpful suggestions.

2. Abelian-by-finite CF-groups

In this section we shall prove that every locally finite, abelian-by-finite CF-group
is BCF. Throughout Section 2, G will be such a group, and we denote by A an abelian
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normal subgroup of finite index in G. Suppose that, for each prime p, there exists an
integer np such that a(H) < np for all p-subgroups H of A. Then, for almost all p,
every /7-subgroup of A is normal in G; and it follows easily that G is BCF. From now
on, therefore, we shall assume that A is a p-group.

DEFINITION. A subgroup H of G is G-hamiltonian if every (cyclic) subgroup of H
is normal in G. H is almost G-hamiltonian if there is a G-hamiltonian subgroup of
finite index in H.

LEMMA 2.1. Every residually finite subgroup B of A is almost G-hamiltonian.

PROOF. Let B be as stated and assume that the result is false for B. Since G is
CF, we may assume that B is normal in G. There exists b\ in B such that {b\) is not
normal in G; since b\ has only finitely many conjugates, it is contained in a finite,
G-invariant subgroup Bx of B. Since B is residually finite, there exists a subgroup N\
of finite index in B such that Nx fl By = 1; by the CF-property, we may suppose that
N{ is G-invariant. Since N{ is not G-hamiltonian, there exists b2 in N{ such that (b2)
is not G-invariant, and once again the normal closure B2 of (b2) in G is finite. But
B2 < N and there exists a G-invariant subgroup N2 of B such that N2 PI (Bt, B2) = 1.
Now choose &3 in iV2 with properties like those of bx, b2; and continue in this way to
produce a direct product of finite G-invariant subgroups Bu B2,... of A such that
each Bi contains a subgroup (6,-) which is not normal in G. Writing H = {bub2,...},
we obtain the contradiction that cr(H) is infinite, thus completing the proof of the
lemma.

It is clearly the case that every divisible subgroup of A is G-hamiltonian. Indeed,
with a little work, we can show considerably more, namely that the finite residual of
any abelian subgroup of a periodic CF-group G is G-hamiltonian. This fact is not
required here and we postpone consideration of it until Section 4.

Our next result turns out to play a decisive role (and does not require that G be a
CF-group).

LEMMA 2.2. Suppose that B is a G-hamiltonian subgroup of A and let b, c be
elements of B with \b\ = pm > p" = \c\, n > 1. Suppose further that g e G and

bs = bxf cg = CM(X, ^ 6 N ) . Then k = fi mod p".

PROOF. Since b is an element of maximal order in (b, c), we have {b, c) = (b) x {a),
for some a of order p\ say. If a8 = a( for some e 6 N, we have (ba)s = bkae. On
the other hand, (ba)s = bkak for some k, so that € = \{modps). Therefore as = ak.
It follows that cs = cx, so that X = /x mod p".

https://doi.org/10.1017/S1446788700037289 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037289


[4] Groups with all subgroups normal-by-finite 387

LEMMA 2.3. Suppose that there exists an integer k such that <r({x)) < pk for all
x e A. Then G is BCF.

PROOF. Let B be a basic subgroup of A. Thus B is a direct product of cyclic
subgroups which is pure in A, and A/B is divisible. Suppose that D is any subgroup
of A such that DB/B has finite rank r, say. For each finite subgroup F of DB, there
exist xu ..., xr e A such that F = (F (~) B)(x{) • • • (xr). By Lemma 2.1, B has a
G-hamiltonian subgroup of finite index p', say. Thus cr(F) < /?'+r*. Since F was
arbitrary (finite), this shows that cr(H) is bounded, for all H < DB.

Now suppose that Fi is a finite subgroup of A with cr(Fi) = «!, say. Then
Fj < DiB, for some Dj such that DXB/B is divisible of finite rank n , say. Write
A/B = DiB/B x EXB/B, where F^B/B is possibly trivial. If o{K) is bounded
for all AT < E\B, then we may argue (almost) as above to obtain a bound for all
subgroups H of A. Otherwise there exists a finite subgroup F2 of EXB such that
CT(F2) = n2 > ri\. Assuming that G is not BCF, it is clear that we may construct
finite subgroups Fu F2,... of A which generate their direct product modulo B and
which are such that a(Fi+1) > CT(F,), for all i. Set H = (Fu F2,...). Since HB/B
is a direct product of cyclic groups and B is pure in HB, a result of Kulikov (see
Theorem 28.2 of [2]) applies to show that B is a direct factor of HB so that HB, and
therefore H, is a direct product of cyclic groups and hence, by Lemma 2.1, almost
G-hamiltonian. This contradicts the choice of the F, and so completes the proof of
the lemma.

As an easy consequence of Lemma 2.3 we have

COROLLARY 2.4. IfN is a G-invariant subgroup of A such that N has finite expo-
nent and G/N is BCF, then G is BCF.

PROOF. Suppose that Np' = land that (with the obvious notation) a(HN/N) < pk

for all H < A. Let a be any element of A. Then (apt+')G = (apt+'), and Lemma 2.3
applies.

Our next result, whose proof utilises Lemma 2.2, will allow us to focus attention
on the case where A is reduced.

LEMMA 2.5. Suppose that C = Cp<» is a subgroup of A and that B is any subgroup
of A such that o{H) < pk for all H < B,for some fixed k. Suppose further that
the group E generated by B and C is their direct product. Then, for some fixed I,

< p' for all H < E.
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PROOF. Write C = (cu c2,... : cp = 1, c?+1 = c,, / = 1, 2 , . . . ) and let F be a
finite subgroup of E. Since C is G-hamiltonian and F = (FDB){x), for some x e E,
it suffices to prove that, for some t,cr((x)) < p' for all x e E. Replacing E by Epk,
we may assume that B is G-hamiltonian.

Write B = D x R, where D is divisible and R is reduced. If R has finite exponent
pm, then xp" e C x D for all x e £, and hence (xpm) < G. Thus we may assume
that R has infinite exponent. We claim that E is then G-hamiltonian, and thus the
statement of the lemma holds. All we need do in order to establish the claim is to
prove the following:

(*)If c e C , 6 e B, \c\ = \b\ andcg = c \ thenb8 = bk.

In order to prove (*) we may replace B by any subgroup of B of infinite exponent.
Since any basic subgroup of R has infinite exponent, we may then assume that B =
(foi)x(&2)x- • •,where \bt\ — /?'for each/. We may further assume that c = c,•, b = b,-.,
for some /. Suppose that cg = cx for some g e G and write H = (c\b], c2b2,...).
Then, using the defining relations for C, we obtain H D B = {b^b%, b^b^,...).
Furthermore, it is easy to see that (bj)f)H = 1 for j = 1,2,... Using bars to denote
factor groups modulo H D B, we have E = C x B, where C = B = CP~. Thus E is
G-hamiltonian and \c\ = \b\ = p', and so, by Lemma 2.2, b* = bk, that is, bs = bxh
for some h e H n B. But (b) is normal in G and (b) D / / = 1 and so A = 1, as
required.

Most of the remainder of the proof is occupied with establishing the next assertion.

LEMMA 2.6. If A is reduced then G is BCF.

PROOF. Assume that A is reduced and let B be a basic subgroup of A. If A has finite
exponent, then Lemma 2.1 applies. Otherwise B has infinite exponent. Suppose first
that there exists an infinite sequence C\, C2, • •., of subgroups of A with the following
properties:

(i) each C, contains B and Ct/B is divisible of finite rank;
(ii) the subgroups C, generate their direct product modulo B;

(iii) there exist finite subgroups F, of C,, / = 1, 2 , . . . , such that

Then, as in the proof of Lemma 2.3, we may consider the subgroup (B, F\, F2,...)
and obtain a contradiction. It follows that there exists an integer k and subgroups C
and D of A with the following properties.

(iv) B < C n D and C/B is divisible of finite rank;
(v) A/B = C/B x D/B, (where, possibly, C or D is equal to B);
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(vi) a(H) < pk, for all H < D.

Let R = R(C) be the finite residual of C and let Co be a G-invariant subgroup of
finite index in C. Then R(C0) = R(C) < R(A) = f£ l i Ap", and hence /? D B = 1
and R is finite (since C/fi has finite rank and A is reduced).

By Corollary 2.4, it is enough to show that G/R is BCF, so we may assume that
G is residually finite, and hence almost G-hamiltonian, by Lemma 2.1. Then there
exists an integer t such that a(H) < p' for all H < C. Let n = max(7, k) and write
X = Ap", Y = C", Z = Dp". Then Y n Z > Bp", which has infinite exponent, while
Y and Z are G-hamiltonian. Let x be an arbitrary element of X and write x = yz for
some y G Y, z e Z. If | j | > |z|, choose 6 G Bp" such that |fe| = \y\ and suppose
that >>« = yk for some g e G, X e N. By Lemma 2.2, bs = bk, and then z8 = zl

and xg = xx. A similar argument applies if \y\ < \z\. We have thus shown that X is
G-hamiltonian and hence that (ap"> < G for all a e A. Lemma 2.3 gives the desired
result.

2.7 THE FINAL STEP. With the usual hypotheses, suppose now that A = D x R,
where D is divisible and R is reduced. We may assume that R is normal in G. If
D has finite rank, then Lemmas 2.6 and 2.5 (and an easy induction) give the result.
Suppose then that D has infinite rank and, for a contradiction, that G is not BCF.
Given any nx e N then, as we saw in the introduction, there exists a finite subgroup F\
of A such that (J(,F\) > ri\. We have Fx < R x D\, for some finite rank direct factor
D\ of D. Write D = D\ x. B\. Then there exists a finite subgroup F2 of R x B! such
that CT(F2) > «2 > «i- Continuing this process, we obtain a sequence Fx, F2,... of
finite subgroups such that H — (R, Fu F2,...) is reduced and cr(Fj) < cr(F,+1) for
all /. Again applying Lemma 2.6 (to a suitable subgroup of G), we obtain our final
contradiction.

3. Proof of the Theorem

Let G be a countable locally finite CF-group. Our aim is to prove that G is
abelian-by-finite. We first reduce to the case where G is a p -group.

LEMMA 3.1. If every p-subgroup of G is abelian-by-finite (for all primes p) then
G is abelian-by-finite.

PROOF. Let G be as stated and let G be any infinite image of G. Then G contains
an infinite abelian subgroup (Hall and Kulatilaka, [3]) and hence an infinite normal
abelian subgroup. It follows easily that G is hyperabelian-by-finite and thus we may
assume that G is hyperabelian and hence locally soluble. Let it be the set of primes
p such that G has an element of order p.
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Suppose first that n = [pu ..., pk}, a finite set. For each / = 1 , . . . , k, let P,be a
maximal p,-subgroup of G. By hypothesis, there is a G-invariant abelian subgroup
At of finite index />,. Then A = A{ x • • • x Ak is abelian and G/A is finitely generated
and hence finite. Thus we may assume that n = [pu p2,...} is infinite. For each
pair {p, q] of primes in n we shall say that p ~ q if and only if all p-elements of G
commute with all <?-elements of G.

Let £2 be any infinite subset of n and write Q. = £2,U£22, where both S2X and £22 are
infinite. Thus £22 Q &\ = x — ^ i • Since G is countable and locally (finite soluble) we
may apply a result of Schenkman to deduce that there exists an £2i -subgroup S and an
£2',-subgroup T of G such that G = ST. (The above (unpublished) result constitutes
a rather straightforward generalisation of the corresponding result of P. Hall for finite
soluble groups.) By the CF-property, there exists G-invariant subgroups S*, T* of
finite index in S, T respectively. Hence there are (distinct) primes p, q in £2,, Q2

respectively such that p ~ q. Then every infinite set £2 contains distinct primes p, q
with p ~ q. Applying Ramsey's Theorem [11], we deduce that Q contains an infinite
subset A such that p ~ q for all distinct p, q e A.

Now suppose that there is an infinite subset E = {quq2,...} of n such that a
maximal q,-subgroup Q, (say) fails to be normal in G, for each i. We may assume
<7, ~ qj for all / # ; . Let Q = {Q,; : / = 1, 2 , . . . ) = Dr Q, and let 0* be a
G-invariant subgroup of finite index in Q. Then <2* contains all but finitely many
of the Qi, which are therefore normal in G, a contradiction. Hence, for almost all
Pi en, the maximal />,-subgroups Pi are normal in G. Indeed, by the CF-property
again, it is easy to see that almost all of the Pt are G-hamiltonian and hence almost
all are abelian. Let P = (P,•. : P,. < G and P, abelian). As before, there is a subgroup
H of G such that G = PH, where n{P) n n{H) = 0. Since n(H) is finite, H is
abelian-by-finite. This concludes the proof of the lemma.

From now on we assume that G is a p-group. Our next reduction is to the case
where G is soluble.

LEMMA 3.2. Let A be a normal subgroup ofG and let X be the subgroup consisting
of all elements of A which have only finitely many conjugates in G. If A is a direct
product of cyclic subgroups, then A/X is finite.

PROOF. Let A, X be as stated and suppose, for a contradiction, that A/X is infinite.
We distinguish two cases.

(i) A/X has finite rank. Using the CF-property, we may as well assume that
A/X = Cpoo. Since every subgroup of A is also a direct product of cycles (Kulikov, see
[2]) we may choose elements aua2,... of A such that A = {X,aua2,...} and such
that (au a2,...) = (ai) x (a2) x • • •. Further, we may suppose that |a,X| < |a1+]X|,
for all i. Partition the set of all a, into infinitely many, disjoint infinite subsets 5; and
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let Aj be the subgroup generated by S,-. Then each Aj has a G -invariant subgroup
Bj of finite index. If every Bj fails to be G-hamiltonian then, for each j , we may
choose bj e Bj, gj e G such that {bj) ^ {bj)8'. Set B = {b}• : j = 1, 2 , . . . >. Since
the Bj generate their direct product, we see that B has infinite index over its core, a
contradiction. Thus some Bj is G-hamiltonian and hence contained in X. However,
Bj has finite index in Aj and {Aj, X) = A. This gives a contradiction.

(ii) A/X has infinite rank. We may assume that A/X has exponent p, and choose
elements ax,a2,... of A such that {aua2,...) = {at) x {a2) x • • • and such that A /X
is the direct product of the {atX). Now let Aj, Bj be defined as in (i). An identical
argument shows that some Bj is contained in X, resulting in the contradiction that
\{Aj, X) : X\ is finite. The lemma is thus proved.

The above lemma shows that certain abelian subgroups are "almost" contained in
the FC-centre of G. If every element of G has finitely many conjugates then of course
G is said to be an FC-group. The following result is true for any CF-group G: it is a
special case of Theorem 7.20 of Tomkinson [10].

LEMMA 3.3. IfG is an FC-group (and CF), then G is centre-by-finite.

We are now able to prove the following.

LEMMA 3.4. If every soluble section ofG is abelian-by-finite then G is abelian-by-
finite.

PROOF. Let N be the subgroup generated by all normal abelian subgroups of G
and suppose that N is abelian-by-finite. If G/N is infinite then it contains an infinite
normal abelian subgroup B/N, by [3] and the CF-property. But B is soluble and so,
by hypothesis, abelian-by-finite. This contradicts the definition of N. We may thus
assume that A' = G. In particular, G is then a Fitting group (that is, the normal closure
of every element is nilpotent).

Let A be any normal abelian subgroup of G and let B be a G-invariant subgroup
of finite index in a basic subgroup of A. Let F be the FC-centre of G. By Lemma
3.2, BF/F is finite and so AF/F is divisible-by-finite. By the CF-property, every
Cpc-type subgroup of G/F is normal and hence, because G is a Fitting group, central
in G/F. Let Z/F be the centre of G/F. Since G is generated by abelian normal
subgroups, we see that G/Z is a product of finite normal subgroups and hence, by
Lemma 3.3, G/Z is soluble. But F is also soluble, giving G soluble and hence
abelian-by-finite, as claimed.

Thus we need consider only the case where G is soluble. An easy induction allows
us to assume that G is metabelian. We shall therefore suppose for the remainder of
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this section that G is a metabelian p-group. We proceed to dispose of some special
cases.

LEMMA 3.5. Suppose that G is a Fitting group and that G' has infinite exponent.
Then G is abelian-by-finite.

PROOF. Since G' has infinite exponent, it has a homomorphic image isomorphic to
Cpoc. By the CF-property, there exists a normal subgroup M of G contained in G'
such that G'/M = C/M x F/M, where C/M = Cp=« and F/M is finite. Replacing
M by FG, if necessary, we may assume that F/M = 1.

Write H = G/M and let N be a normal subgroup of H maximal subject to
intersecting H' trivially. If H/N has infinite rank then, by a result of Kargapolov
(see [8]), it has an abelian subgroup L = K/N of infinite rank. So L is a countable
abelian p-group of infinite rank. We show that L can be written as a direct product
of infinitely many non-trivial groups and therefore of infinitely many infinite groups.
If the divisible part of L has infinite rank, this is easy. So we may assume that L is
reduced of infinite rank. If L has finite exponent, L is a direct sum of cycles, which
is enough for us. Hence we may assume that L has infinite exponent.

By Theorem 5.2 of [1], L has a direct factor which is a direct sum of cycles and is
of infinite exponent. Thus, in either case, we have L = K/N = Kx/N x K2/N x • • •,
where each Kt/N is infinite. By the CF-property we may assume that each Kt is
normal in H. But Kt D H' is non-trivial for all i, and we have a contradiction. Thus
H/N has finite rank and is therefore (divisible abelian)-by-finite and hence centre-
by-finite, since H is a Fitting group. This gives H centre-by-finite and H' finite, a
contradiction.

LEMMA 3.6. If G is nilpotent then G is abelian-by-finite.

PROOF. By the previous lemma we may assume that G' has finite exponent. An
easy induction allows us to assume that this exponent is p. We may also suppose that
G has nilpotency class 2, so that Gp is central in G. Suppose for a contradiction that G
is not abelian-by-finite. Let Z, F denote the centre and FC-centre of G, respectively.
Then, by Lemma 3.3, \G : F\ is infinite.

We claim that, given any integer k > 2, there exist elements X\,..., xk of G such
that, for each / = 1,... ,k — 1, x1+x £ F{xu ..., Xi) and such that the elements
[xh xj],\ < i < j < k, are linearly independent (over 1P).

Consider first the case k = 2. Choose xx e G\F and note that F(xi) and CcUi)
each has infinite index in G. Since no group is the union of two proper subgroups,
G ^ F{xi) U CG(xi) and so we may choose x2 £ F{xi) U CG{x\).

Assume that, for some k > 2, elements xu .. .,xk have been chosen so as to satisfy
the conditions stated in the claim. Let X = (xlt ... ,xt). Suppose that g e F (1 X
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and write g = x"' • • • x"rz for some non-negative integers «,, some r < k and z & Z.
Then x"r e F(x\, . . . , xr_i) and so p divides nr. It follows easily that F D X < Z.

Suppose next that, for all x e G\FX, [x, X] has rank less than k, modulo X'. For
each such x, the map 6X : X/XHZ ->• Z/X ' , defined by ^ ( j ( X n Z ) ) = [x,y]X',for
ally e X, is a homomorphism with non-trivial kernel. ThusG = FXU\^J x,z C*(y),
where C*(y) = {x e G : [x, y] e X'}. Applying [4], we deduce that C*(y) has finite
index in G for some y e X\Z. If follows that y e F n X and thus that y e Z, a
contradiction. Thus, for some element xk+x of G\FX, [xk+l, X] has rank at least £
modulo X', which means that the set {[X,,JC;] : 1 < / < j < k +1} is independent. By
induction, therefore, the claim is established. We may thus construct an infinite subset
S = {xu x2,...} of G such that {[x,, xy] : i < j} is independent. Let us call any
such (infinite) subset S of G an L-set. Clearly any L-set of G generates a subgroup
which is not abelian-by-finite. For each element g and each subgroup H of G, let
g, H denote gG' and HG'/G' respectively.

Our aim now is to construct an L-set T such that (T) is the direct product of all
the (t) such that t e T. Let 5 be defined and suppose that Uk = {xu ..., xk) is
such that (Uk) is the direct product of the (JC,), (/ = 1 , . . . , it). If there is an L-set T
which contains Uk and is such that, for some t e T\Uk, (t) n (Uk) — 1, then we may
write xk+i = t, Uk+\ = Uk U {?}, thus extending our direct product by an appropriate
cyclic factor. But, assuming that there is no such L-set, we may assume (relabelling
if necessary) that, for all i,j > k, JR~) n (Uk) = JX~) H {Uk}. Further, if qt = pn is
the order of x, mod (Uk), we may assume that xf = xj for all i, j > k. Among all
L-sets 5 satisfying these further properties, choose one containing an element x g Uk

such that x has minimal order pr, say. Now choose y e S\(Uk U {x}). If \y\ = ps,
then s > r. Also, xp'' = yp (by the manner in which S was constructed and
since each of these elements has order p). But now we have (x(y~l)pS r)pr ' = 1
and, since replacing the pair [x, y} by x(y~l)p'" still leaves us with an L-set, we
have a contradiction to the choice of S. Thus we may certainly extend our set Uk

to an appropriate set Uk+U and by induction we may construct an L-set S such that
(5) = Dr(jc). Again write S = {xux2,...} and, for each /, let«, = pSi be the order

jreS

of xh We may as well assume that«, < n,-+1 for all /. We shall say that an element a
of {S)' involves [xk,x/](k < I) if [xk, x:] appears (nontrivially) in the expression for
a as a reduced word in the basis elements [*,-, *,-](/ < j). Set Q = {[xitXj] : i < j } ,
and write G' = {Q) x N (for some N).

Now write x"' = <T,ZI, say, where ax e (Q), zx e N. Let Xt be a (finite) subset of
S satisfying the following:

(i) Xi = {xi,..., xk]} for some kx.
(ii) If <j\ involves [xitXj], then i < j <k\.
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(iii) There exists wx e Xi\{jC]} such that no (nontrivial) [w\,Xj] or [xjy wx] is
involved in ox •

Write yx = xi, mx = nx, Q.x — {[JC,-, JC,-] : i < j < kx}, Ax = (Qx) and Bx = (Sl\), so
G' = Ax x Bx x N. Since infinitely many of the x"', i > kx, are congruent modfliiV,
we may assume that they all are.

We need to simplify our notation a little for the next step. Write y2 = xkl+x,
m2 = nkl+x, v = xkl+2, I = nkl+2. So we have y™2 = v' mod BXN, which gives
{y2v-"m2)mi e BXN. (This is immediate if m2 > 2, for then (gh)m2 = gm*hmi for
all g,h € G. For m2 = 2 we obtain (gh)2 = g2h2[g, h], but [y2, v] e Bu by the
definition of Bx.) Replacing the pair {v, y2} by y2v~l/r"2 if necessary, we may assume
that y™2 6 BXN. Now write y™2 = CT2Z2, where o2 e Bx, z2 e N, and let X2 be a
(finite) subset of 5 satisfying the following.

(i) ^ i Q X2 = [xx,..., xkl} for some k2.
(ii) If CT2 involves [x,, x7], then i < j < k2.

(iii) There exists w2 e X2\(XX U {y2}) such that no (nontrivial) [w2, Xj] or [xj, w2]
is involved in a2.

W r i t e fi2 = {[Xi,Xj] :i<j< k2], A2 = (J22) a n d B2 = (£22>; so G' = A2xB2x N.

Continuing in the obvious manner (and with the obvious notation) we obtain
infinite subsets [wx, w2,...} and {yx, y2,...}. Let H = (yx, y 2 , . . . ) , C = coreG H.
Certainly HZ/Z is infinite, and so C < Z. Choose c e C\Z and write c =
y"1 . . . y"'z, w h e r e ii < • • • < i,,0 < ctj < p f o r a l l j , a n d z e Z. L e t r — ix,a — ax.

Then [uv,c] = [uv, yAa[wr, y], for some y e 5\Xr; indeed we have [wr,y] €
(S2̂ .) = Br, while [wr, yr] e >4r. This means that [yr, ior] is involved in [wr, c]. Now
[wr,c] e H n G', which by construction is just KH', where /f = (y™' : i > 1). It
follows that [yr, u;r] is involved either in some [y,, y;] (/ < y) or in some yf'. The
first possibility is ruled out by linear independence and the fact that wr e S\H. For
; > r we have yf' e Br, while [yr, wr] e Ar. For / < r we have yf' e A,, while
[yr, u;r] € Bi (since yr, iyr ^ -X r̂-i)- This leaves only the possibility that [yr, wr]
is involved in y™r. Since wr was chosen so as to avoid this possibility, we obtain a
contradiction that completes the proof of the lemma.

LEMMA 3.7. IfG' has finite exponent, then G is abelian-by-finite.

PROOF. AS before we may assume that (G')p = 1. For each / = 1 ,2 , . . . , set
Z, = Zj(G) and X, = Z, D G'. Then X2 = Xx x Yx for some Yx, while Yx contains
a G-invariant subgroup Wx of finite index (in Yx). Now [Wi, G] < W\ D Z] = 1
and so Ŵ  < Xx. Hence Wx = 1 and 1̂  is finite. Similarly, X3 = Xx x Yx x Y2

for some Y2 which must be finite. Indeed we see that Xj/Xx is finite, for all i. Let
A/Xx = Z(G/XX) and B = A n G'. Thus fi < X2 and B/Xi is finite. If G/Xx is
abelian-by-finite then the result follows from Lemma 3.6. By Lemma 3.3, therefore,
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may be assumed infinite. Hence, by the previous remarks, we may factor by
Xi, if necessary, and thus assume that each Xt is finite. Using the CF-property, we
easily construct a subgroup V of finite index in G' such that V = V\ x V2 x • • •. where
each Vj is infinite and normal in G (using, of course, the fact that every subgroup of
G' is a direct factor). By the residual finiteness of V and the CF-property, we see that
each Vj has a G -invariant series of subgroups of finite index with trivial intersection.
Choose k so that V, ^ Z(G) = 1, for all j > k. For each j , there exists Nj of finite
index in V, and normal in G such that [V,, G] ^ Nj. Write N — Vx x • • • x Vk x M,
where M = (Nj : j > K) and let G = G/N. Certainly G' lies in the hypercentre
of G. But the argument at the beginning of the proof remains valid for the group G
and so Z\ (G) ^ G' has finite index in Z2(G) ^ G'. From the structure of V and the
fact that it has finite index in G' we deduce that almost all of the V, are central in G,
contradicting the choice of the subgroups Nj. This completes the proof of the lemma.

Our final requirement is as follows.

LEMMA 3.8. Suppose that A is an abelian subgroup of G which is G-hamiltonian
and has infinite exponent. The the centralizer of A has index at most 2 in G.

PROOF. Assume first of all that p is odd and let a be an element of A of order
p", n > 1. The Sylow p-subgroup of Aut(a) is generated by the map 9 : a —> al+p,
which has order p"+l. For n > 2 define x = 0p" \ Then ax = a11, where /i =
1 mod p"~l. Now suppose that g has order at most p modulo CG(A) and choose b of
order p"+1 in A. Write bg —bk,Xe H. Then, as above, A. = 1 mod p". By Lemma
2.2, a* = ak and thus A < Z(G).

The argument for p = 2 is similar, except that we need to note that, for a of order
2"(n > 2), the Sylow 2-subgroup of Aut{a) is isomorphic to Z2 x Z2»-2, the generator
of 22, of course, inverting the elements of (a). The details are omitted.

3.9 CONCLUSION OF THE PROOF. Let R be the finite residual of G'. Then R is
G-hamiltonian (see Lemma 4.1). If R has finite exponent pk, then R < Zk(G).
Otherwise \G : CG(R)\ < 2, by Lemma 3.8. Using 3.6, we may thus assume that G'
is residually finite. Now let H be the Fitting subgroup of G.

By Lemmas 3.5 and 3.7 we may assume that \G : H\ is infinite and G' has infinite
exponent. Let g, h be arbitrary elements of G\H. We shall show that gh~l e H
and thus obtain the contradiction that \G : H\ < 2. Write / = {g,h). By Lemma
2.1 there is a subgroup of A of finite index in G' such that A is /-hamiltonian. Then
C = Cj(A) has index at most 2 in / , by Lemma 3.8. Since [G', C] is finite, we see
that CG' is nilpotent and thus contained i n / / . B u t | / G ' : CG' | < 2andsog/z"1 e H.
This contradiction completes the proof of the theorem.
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4. Concluding remarks

There are some further observations that may be made concerning G-hamiltonian
subgroups. The first thing that we need to do is to establish the following result, a
special case of which was used in 3.9.

LEMMA 4.1. Suppose that G is a periodic CF-group and that A is an abelian
subgroup of G. Then the finite residual B of A is G-hamiltonian.

PROOF. We may clearly assume that A is a p-group and, by the CF-property, that
A is normal in G. For each ordinal a > 0 we define a characteristic subgroup Aa of A
as follows. Set Ao = A, Ax = B and, in general, let Aa+X denote the finite residual of
Aa. If a is a limit ordinal, define Aa — f^\p<a A p. Now let b be an arbitrary non-trivial
element of B. We wish to show that {b} < G. Since the series {Aa} terminates in
a divisible subgroup (possibly trivial) we may assume that b e Aa\Aa+], for some
ordinal a. Without loss of generality we suppose a = 1, that is b £ R(B) (the finite
residual of B). Since R(B) = f ^ l , B"\ we may further assume that b $ Bp.

Now, given any k0 > 1, there exists ai e A \ Ap such that af ' = b and kx > k0.
Then there exists Bx of finite index in A such that B < Bx and Bx/B ~ {ax)B/B = 1.
Now choose a2 e BX\BP such that AP 2 = b, where k2 > kx, and continue in the
obvious manner to obtain an infinite subgroup C = (ax, a2,...} such that each a, has
order exactly pki modulo (ft) (where kx < k2 < • • •) and the {a} generate their direct
product modulo (ft). By the CF-property, there exists a G -invariant subgroup D of
finite index in C and so R(C) = f | ^ i Cpi is normal in G. But R(C) = (b) and the
lemma is proved.

In view of Lemma 2.5 it is reasonable to ask whether the direct product of two
G-hamiltonian subgroups A and C is (almost) G-hamiltonian, at least in the case
where G is a CF-group. That this is not so may be seen by considering the group
G = (A,C,x), where A is an infinite elementary abelian p-group, C is of type Cp=c
and x is of order 2 acting on C x A via c —> c"1, a —> a, for all c e C, a e A.

Routine calculations show that G is BCFbut does not contain a G-hamiltonian
subgroup of finite index. (Thus, for instance, the claim introduced during the proof of
Lemma 2.5 requires the hypothesis of infinite exponent.)

An easy example of a CF-group which is not BCFis the group G = (C, g), where
C = Cpoo, cs = c"1 for all c e C and g has infinite order. Note that G is of rank 2,
metabelian and abelian-by-finite.

Before continuing we present the following elementary results.

LEMMA 4.2. In any group G the subgroup generated by all infinite cyclic normal
subgroups is abelian.
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PROOF. Suppose that x and y have infinite order and generate normal subgroups
of G. If [x, y] ^ 1, then [x, y] — x~2 and [y, x] = y~2, giving [x, y] central and
x2 = y'2. Thus 1 = [x, y2] = [x, y]2, giving x4 = 1, a contradiction.

LEMMA 4.3. Suppose that G is a CF-group and that A is the subgroup of G
generated by all normal infinite cyclic subgroups. Then, for each g & G, either
ag = a for all a e A or ag = a'1 for all a e A. Therefore \G : CC(A)\ < 2.

PROOF. It suffices to consider elements of A having infinite order. Suppose, for a
contradiction, that ag — aandb8 = b~l, where a, b have infinite order. If (a)r\(b) = 1
then (ab) is infinite and (ab)g = (ab)±l, a contradiction. Suppose then that a1 = Z?M,
where X, ju are non-zero. Then ak — (ax)g = 6~M and so a21 = 1, a contradiction.

COROLLARY 4.4. Every finitely generated soluble CF-group G is abelian-by-finite
and BCF.

PROOF. By Lemma 4.2 such a group G is certainly abelian-by-finite and, in partic-
ular, has finite rank. The result follows from Lemma 4.3, since every cyclic subgroup
of G has bounded index over its core.

Now suppose that G is an arbitrary CF-group and let A be defined as in Lemma 4.3.
Let B/A denote the locally finite radical of G/A. Thus B/A is abelian-by-finite. If
B / G then G/B contains a finitely generated infinite periodic subgroup Go, and Go

in turn has an infinite homomorphic image Gi such that every subgroup of G\ is either
finite or has finite index in G\. Thus any CF-group which is not metabelian-by-finite
involves a rather complicated finitely generated group. Indeed, one sees that in the
absence of such a section, a CF-group is almost nilpotent of class (at most) two. There
thus appears some motivation for further investigation of CF-groups.
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