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We study the dynamics of an initially flat interface between two immiscible fluids, with
a vortex situated on it. We show how surface tension causes vorticity generation at a
general curved interface. This creates a velocity jump across the interface which increases
quadratically in time, and causes the Kelvin—Helmholtz instability. Surface tension thus
acts as a destabiliser by vorticity creation, winning over its own tendency to stabilise by
smoothing out interfacial perturbations to reduce surface energy. We further show that this
instability is manifested within the vortex core at times larger than ~(kWe)'/* for a Weber
number We and perturbation wavenumber k, destroying the flow structure. The vorticity
peels off into small-scale structures away from the interface. Using energy balance we
provide the growth of total interface length in time. A density difference between the fluids
produces additional instabilities outside the vortex core due to centrifugal effects. We
demonstrate the importance of this mechanism in two-dimensional turbulence simulations
with a prescribed initial interface.

Key words: multiphase flow

1. Introduction

The interaction between a vortex and an interface may be considered a building block
in the turbulent flow of immiscible fluids. We study this building block and show that
it is prone to a Kelvin—Helmholtz (KH) instability created by surface tension. We will
distinguish our flow from KH instabilities at immiscible interfaces across which a velocity
jump is externally imposed. This latter class of problems has been well studied, and
we begin by discussing a few studies. The effect of surface tension on the primary KH
roll-up process was studied using two-dimensional numerical simulations by Fakhari &
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Lee (2013). The main finding was that surface tension has a stabilising effect on the flow.
Hou, Lowengrub & Shelley (1997) showed that KH roll ups form only if surface tension is
low, and the range of unstable scales diminishes with increase in surface tension. Rangel
& Sirignano (1988) showed for a KH instability that non-zero surface tension results
in an increase of the stable regime. Tauber, Unverdi & Tryggvason (2002) investigated
KH instability in density matched fluids at large Reynolds numbers. They find that the
nonlinear roll-up at low surface tension is similar to that at zero surface tension and
high surface tension results in a nearly flat interface with no roll up. Consistently across
these studies, surface tension thus acts as a stabiliser, by effecting a reduction in interface
length and thus suppressing KH roll-up. For a review on the stabilising effects of surface
tension on the Rayleigh-Taylor and Richtmyer—Meshkov instability we refer the reader
to Zhou (2017a,b). In fact, in a vast variety of flow situations, surface tension suppresses
large wavenumber perturbations, thereby decreasing interface area. Hwang, Moin & Hack
(2021) showed that surface tension and the KH instability are not the only mechanisms
for destabilising a jet flow. They show that viscosity and density contrasts between the jet
and outer fluids are important players that can drive interface distortions by non-modal
mechanisms. This work provides incentive for studying, in three dimensions, non-modal
effects on the present instability.

It has long been known that the same quality of bringing about a reduction in surface
area can make surface tension a destabilising agent, but in other contexts. Famously,
surface tension can destabilise liquid jets and break them up into droplets by the
so-called Plateau—Rayleigh instability (Rayleigh 1878). Again, this happens because of
the propensity of higher surface tension to effect a reduction in surface area in a circular
flow geometry. In a planar geometry, Biancofiore et al. (2017) studied two parallel
interfaces separating three immiscible density matched fluids with linear shear profiles
in a Taylor-Caulfield configuration. This system, which is stable without surface tension,
is shown to display an instability when there is a phase lock between counter-propagating
capillary waves. Thus, wave interactions cause surface tension to act as destabiliser. By a
similar mechanism, surface tension at the interface in planar jets and wakes at high enough
levels of shear can produce global instabilities (Tammisola, Lundell & Soderberg 2012).

Surface tension has occasionally been reported as giving rise to small-scale structures.
Zhang et al. (2001) again studied the effect of surface tension on the KH instability. At
high surface tension, they showed the generation of small-scale vortices in the late stages
of evolution, giving rise to a positive contribution of surface tension to flow enstrophy
despite a negative contribution to kinetic energy. The recent study of Tavares et al. (2020)
shows evidence, in Rayleigh—Taylor turbulence, of a greater preponderance of smaller
scales in immiscible flows with surface tension as compared with miscible flows. Vorticity
generation due to interface curvature in immiscible fluids has been studied earlier by Brgns
et al. (2014) and Rossi & Fuster (2021).

We propose here a new mechanism for the destabilising action of surface tension.
First, the mechanism is made explicit, theoretically and in simulations, in a model flow
consisting of a Lamb—Oseen vortex placed on an initially straight interface. Thereafter, its
signature is demonstrated in two-dimensional turbulence simulations. Two-dimensional
turbulence primarily consists of concentrated patches of vorticity, each of which attain
profiles close to that of Lamb—Oseen. This is discussed further in §4.4 and direct
evidence for the relevance of Lamb—Oseen vorticity profiles is shown in Appendix C. A
Lamb-Oseen vortex is thus a quintessential building block of two-dimensional turbulence.
Further, the vortex is placed with its centre at an initially straight interface between two
immiscible fluids. Thus the dynamics due to a single Lamb—Oseen vortex placed at an
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interface between two fluids is studied in the absence of gravity. This geometry bears
similarity to Dixit & Govindarajan (2010), but that study was at zero surface tension.
We show analytically how vorticity is produced by surface tension at the interface, and
how this makes the flow unstable. Our direct numerical simulations (DNS) confirm
our analytical predictions, and show the differences in evolution of vorticity and the
interface due to surface tension and density contrast. In two-dimensional (2-D) turbulence
simulations on immiscible fluids, we show the strong effect of this mechanism on the
energy spectrum.

2. Problem description

Two immiscible fluids of constant densities pg and p; lie on either side of an initially flat
interface in a 2-D system. The fluids are incompressible and the continuity and momentum
equations they each satisfy are

Dp
o =0, V.u=0, (2.1a,b)
Du 2

PEZ—VP-i-/LV u+F;, (2.2)

where P is the pressure, u = {u,, up} are the radial and azimuthal velocities, respectively,
F, =oké(x — x,)n, (2.3)

is the surface tension force density, o is the surface tension, « is the curvature, x = {r, 6},
the subscript s stands for a location on the interface, §(-) is the Dirac delta function, n
is the unit normal to the interface at x; and p is the viscosity. In this study, both fluids
have the same viscosity. The density, p is defined as poc + p1(1 — ¢) where ¢ = {0, 1}
is the indicator function. The interface passes through the origin. A Lamb—Oseen vortex
of circulation I" and core radius r. is placed with its centre at the origin at time = 0,
as shown in figure 1(a,b). When surface tension is zero, and the two fluids have identical
densities, each fluid particle moves strictly in a circular path, with an azimuthal velocity
given by

r
U=l —exp(=9)l, (2.4)
r

where for ease of algebra we have defined g = (r/r.)%. The total angle, 8, swept out up to
time ¢ by the interface at ry, is a linearly increasing function of time given by

I't
27r?

N

05 = [1 — exp{—gs}]. (2.5)

For rg > r., (2.4) reduces to U = I"/(27try) for a point vortex, and an initially flat interface
will wind up into an ever-tightening spiral (Dixit & Govindarajan 2010), given by r?@s =
I't. Thus, away from the vortex core, at every instance of time, the interface describes a
different Lituus spiral, which is one among the Archimedean class of spirals, as seen at a
typical time in figure 1(c).

The relevant non-dimensional numbers are the Weber number (We), which is a ratio of
the inertial force to the surface tension force, and the Atwood number (At), which is a

936 A45-3


https://doi.org/10.1017/jfm.2022.97

https://doi.org/10.1017/jfm.2022.97 Published online by Cambridge University Press

R. Ramadugu, P. Perlekar and R. Govindarajan

(@) 4 () 4 100 (c) 4
80
2 2 2
60
0 0 0
40
2 ) 2
20
4 20 2 4 4 2 o0 2 400 4 2 0 2 a4

Figure 1. (@) The initial density field with an equal volume of two fluids shown in black and white. (b) The
initial vorticity field, (Lamb—Oseen vortex with core radius(r.) = 0.1). (¢) The fluid field at a later time, when
the two fluids have the same density and surface tension is vanishingly small.

measure of the density contrast between the two fluids,

6U?r, A oUcre
We = M, At = 7’0, Re = P ch’ (2.6a—c)
o Po + p1 2

where Ap = pg — p1, p = (po + p1)/2, U. = I'[1 — exp(—1)]/(27tr.), is the azimuthal
velocity of the fluid. The inertial time scale T, = 2wr?/ I is representative of the wind up
of the spiral, while we may expect surface tension effects to become significant beyond the
time scale Ty = /pr2 /o. For large We and in the absence of instabilities, we may neglect
the effect of surface tension on the interface shape up to a non-dimensional time of

T, = 1% W'l (2.7)
C
and up to this time, the base velocity given by the Lamb—Oseen vortex will dictate the
interface shape. We note that this is an order of magnitude estimate, and the relative
importance of inertia and surface tension will depend on the radial location as well as
the local curvature.

3. Vorticity generation on the interface and the KH instability

An important aspect of this dynamics is the creation of vorticity at the interface by the
surface tension and by the density contrast (baroclinic torque). This may be seen with
(2.2) rewritten in the vorticity formulation as

D2 1

1 1 1
—— =-VxF,——VpxF;——VpxVP+V x |:V . {u(Vu+VuT)}} ,
Dt »p P P P

D2, /Dt D$£2,/Dt
3.1)

where 2 = V x u is the vorticity, here pointing in the out-of-plane direction. £2 has
contributions from the surface tension, 2, and the baroclinic term, £2,. Vp x F, does
not contribute to the vorticity as F, and V p both act in the same direction. An examination
of (3.1) and (2.3) makes it clear that no vorticity will be generated by a perfectly flat
interface or a perfectly circular one. The generation of vorticity due to surface tension
requires an interface whose curvature varies along its length. But when the shape of
the interface deviates from these geometries, vorticity may be generated by both density
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gradients and surface tension. We investigate surface tension as a generator of vorticity,
and to simplify the algebra, our analytical derivation is carried out for the inviscid case.

Integrating the first term in (3.1) at a given radial location, we obtain a time-dependent
vorticity at the interface as follows. Consider f(r, 8) = r — ry(6) which vanishes on the
interface, with a normal n = Vf/|Vf]|, and curvature, k = —V - n. We have

V X F, — —189F0 - 289 rf, + 2rs(89rs)2 — rfaggrs
P 2+ (o) 72
rs2 + 2(39}’5)2 — Is0gors
[r2 + (3grs)2]?
o 5 |:rs3 + 2rg(8grs)? — rfaggrs

r [r2 4 (3prs)2T?

6(ro — res)]

9[8(rf — rbs)]

i| 8(rd — rby), 3.2)

which on the interface given by (2.5), upon integrating in time and after considerable
simplification (refer to Appendix A for details of the derivation) leads to

Te exp(q)[1 —exp(—1)] 2 ) 1
— 2, = 8 1—-—
U, 4Wey3 @ +v) x?

—2[4q" + 11¢° + 18¢° + 10g + 5 + (24" — 13¢° — 10g — 10) exp(g) + 5 exp(29)]

1 5 r r
l——)—ylogxié|—6——6],
X rC rL‘

_ AU (ie - ies) , (3.3)

UL' T c rL

where y = [q+ 1 —exp(@)], x = 1 + {2,y /[gexp(q)1}?, t, = t/T,. Due to the action
of surface tension, a velocity jump and a corresponding vorticity are thus created at the
interface. We denote the velocity components parallel to the interface on either side by
U and U + AU, with the jump AU across the interface given by (3.3). It follows that
the interface must be subject to the KH instability. The contribution of the baroclinic
term to the vorticity when there is a density contrast between the two fluids is given in
Appendix A.2. For the complete problem, an analytical dispersion relation is not possible
to write down, but approximate estimates of the instability growth rates may be written
down in the two limiting regimes.

3.1. Vorticity generation and the instability in the core region

Well within the core, we have r < r¢, so ¢ < 1. Taylor expanding in this limit, after some
algebra and retaining the first surviving term in the expansion, (3.3) reduces to

~ ——t 3.4

where D = 4.5[1 — exp(—1)]. The vorticity produced, and thus the jump in velocity, are
quadratic in time and proportional to the surface tension. In this limit, the interface can be
closely approximated by a straight line rotating at a constant rate. We may then write the
relevant dispersion relation (Chandrasekhar 1981), in the case where there is no density
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contrast (At = 0), in non-dimensional form as

w AU |:er 1{AU}2:|1/2
s - , (3.5)

KU, 20. |2we 4| U

where the real and imaginary parts of w, respectively, give the frequency and growth rate
of a perturbation of wavenumber k. Substituting (3.4) in (3.5) we get

D k 1(p)2, "
@ =—t5:|:|: e ——{—} tij| . (3.6)

kU. 2We 2We 4 | We

Note that while we derive this expression under the inviscid approximation, since
there are no singular effects of viscosity in this problem, it is applicable in viscous
flow at high Reynolds numbers. Since viscosity multiplies the highest derivative in the
Navier—Stokes equation, in certain high Reynolds number flows this term can provide a
singular perturbation to the problem, and qualitatively change the nature of the solution.
These effects, however, typically occur at walls. In the absence of walls, as in the
present case, we may expect that high Reynolds number viscous results will agree well
with inviscid results. The first term within the square bracket stands for the standard
stabilising action of surface tension, increasing with wavenumber. The second term, on
the other hand, indicates the destabilising effect of surface tension. As seen from (3.6), the
destabilising term is quadratic in the surface tension ox 1/We?, while the stabilising term
is only linear in this quantity.

Moreover, it is evident from (3.6) that the destabilising action of surface tension must
win over its stabilising action at some time for any Weber number. In other words, the
interface within the core becomes KH unstable when

2kr.We 174
th > T . (3.7)

In figure 2 we plot the growth rate of perturbations given by the imaginary part of
w in (3.6) as a function of the wavenumber kr.. It is seen that the higher the surface
tension, the faster the instability grows. But at any given time, for any finite We, there is
a cutoff wavenumber beyond which flow is stable. Equation (3.6) shows that the cutoff
wavenumber depends only on We and f,. We observe that at #, = 1, the lowest surface
tension (We = 10 040) is stable for all wavenumbers. However, with time, the vorticity on
the interface increases in all cases, destabilising longer wavelengths even at higher We, as
seen in figure 2(b) at t,, = 5.

3.2. Vorticity generation and the instability in the region outside the core
Well outside the vortex core (refer Appendix A for details), ¢ > 1, using (3.3) we have
AU 40[1 — exp(—1)]72 thAt

— + . 3.8
U, q*We [1 —exp(—1)]>g3/2 G:8)

The first term on the right-hand side of (3.8) corresponds to the contribution of surface
tension to the velocity jump, which is negative. The second term on the right-hand side
is the contribution due to the density contrast, it is negative when the inner fluid is
heavier than the outer fluid and positive otherwise. The surface tension contribution to the
vorticity on the interface decrease as r—* and the buoyancy contribution to the vorticity
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Figure 2. Non-dimensional growth rate of perturbations ( r.Im(w)/U.) on the interface vs the wavenumber
kre; (a) t, = 1 and (b) 1, = 5. Here, r. = 0.1 and A7 = 0. As We decreases, the growth rate increases, showing
the destabilising effect of surface tension.

decreases as r—3. To estimate the instability, by following a procedure analogous to Dixit
& Govindarajan (2010), we approximate the interface as a circle of radius r and perturb it
at an azimuthal wavenumber m, to get (refer to Appendix B for details)

wre

1 1 —Ar\ (AUN _yp
i =070+ (5) (3)s

~ (1—AH [1—A2 AU\?
L2
! [{ 2m +( 4 )KU)
(1—ADQ [ AU\  A10> m 17
mql/? U, mq — 2q'/*We ’

(3.9)

where Q = [1 — exp(—¢q)]/[1 — exp(—1)]. On examining this expression in the light of
(3.8), we see that, at Ar = 0, the largest destabilising term is O(q_z) smaller than the
stabilising term, so instability is not expected. When At > 0, however, the spiralling
interface can be unstable, as found by Dixit & Govindarajan (2010), but now surface
tension stabilises the flow at high azimuthal wavenumber. Thus, the instability within a
vortex core is driven by surface tension and that outside by density differences.

4. Direct numerical simulations
4.1. Simulation details

We conduct DNS using an open-source volume of fluid code Basilisk to solve (2.1a,b) and
(2.2). The surface tension force given by (2.3) is modelled as a continuum surface force in
the cells containing the interface. Curvature is calculated using a heights function method.
The details of the formulation are given in Popinet (2018). We place a Lamb—Oseen
vortex at the interface in the centre of the domain, as shown in figure 1(a,b) and allow
it to evolve with time. Since our computational domain, of length L = Smr,, is much
larger than our vortex, the far-field boundary conditions do not affect the results. We use
free-slip conditions on all sides, and have checked that periodic boundary conditions give
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practically indistinguishable answers. Note that our simulations include centrifugal effects
of density contrast when Az £#0. All simulations shown here are viscous, i.e. u #=0.
We discretise the domain with 20482 collocation points, and vary the Weber number
(We) : 10 040, 100.4, 33.3 and 12. The units of I, r., p, n and o are arbitrary in the
simulations, and care is taken to define non-dimensional numbers as done in the theory for
purposes of comparison. We restrict our simulations to times over which the sum of the
interfacial and kinetic energies remains constant.

4.2. Vorticity generation and the resulting instabilities

Up to atime £, ~ We!/? we expect the vorticity generated on the interface in the numerical
simulations to closely follow (3.3). This is shown to be the case in figure 3(a), where ¢, = 1
and #, = 2 for We = 12. To calculate the velocity jump across the interface at the point
rg, we numerically integrate the vorticity along the normal. We have checked that AU
is insensitive to grid resolution. As predicted, AU ~ tﬁ. Interestingly, the velocity jump
changes sign, going from negative to positive below r.. There is one more sign change
at large r (not shown here), and the velocity jump in the distant spiral arms is negative
again, although very small. There is a small deviation of the simulated data points from
(3.3). This is to be expected since surface tension and viscous effects are neglected in the
derivation of (2.5). Viscous effects in the simulation will bring about a small reduction
in the velocity jump as compared with theory. Secondly, from (2.7) we expect surface

tension to affect the basic interface shape significantly after a time ~We!/2. Figures 3(b)
and 3(c) show the perturbation vorticity at two times, calculated by subtracting the initial
vorticity from the instantaneous field. In an inviscid flow, by Kelvin’s circulation theorem,
the vorticity created would move with the interface for eternity. Viscous flow is quite
different in this aspect and this difference is an important feature of viscous multiphase
flow. In our case, because the Reynolds number is high, the vorticity stays attached to
the interface for quite a while. However, later, we observe, especially in the high surface
tension cases such as in figure 3(c), a peeling off of vortices from the interface. This
is because the new vorticity tends to roll up, as is normal for any shear layer. To stay
attached, the interface would need to roll up along with the vorticity, causing a large
increase in its length. This is resisted by the interface, which becomes shorter locally
and the vorticity peels off. It is seen that at the larger time, instability has set in, which
is consistent with the prediction of instability when ¢, > 2.08 for kr, = 21 by (3.4). The
instability becomes visible in the simulations to the naked eye at around #, = 5 (see movies
in the supplementary material available at https://doi.org/10.1017/jfm.2022.97). For the
case where surface tension (We = 10040) is much lower, the time above which instability
can occur, from (3.4), is 11.19 and for We = 12 it is 2.08, but because the growth rate is
minuscule as predicted by equation (3.5) and shown in figure 2, an instability does not
become visible during the time of our simulation. Note that in simulations p 7= 0 whereas
we do the stability analysis for the inviscid case. The viscosity in the numerical simulations
reduces instability growth rate somewhat.

The perturbation vorticity for We = 10 040 and 12 is plotted in figure 4. In figure 4(a),
where At = 0, we find, in accordance with our expectations from the discussion in §§ 3 and
4.2, that a minuscule amount of vorticity is generated on the interface but no instability
happens. Further, at r ~ r,, this vorticity is positive. However, for We = 12, with At = 0,
strong negative vorticity is generated within the core, and significant positive vorticity
occurs in the vicinity of r ~ r.. As time progresses, vorticity on the interface within the
core causes a KH instability, and into a breakdown into small patches of negative vorticity
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Figure 3. Vorticity generation with We = 12, At = 0, Re = 10114. (a) Velocity jump measured across the
interface, as a function of interface location within the vortex core. Symbols: DNS, line: (3.3). The perturbation
vorticity from the DNS is shown for time #, = 1 in () and for #, = 15 in (c¢). The instability is well developed
by t, = 15. All lengths are scaled by ..

05 0 05 10

within the core. At even later times, as is evident from figure 4(b) positive and negative
perturbation vorticities are interspersed, and dynamics in the core region appears to be
chaotic. This state causes the destruction of the initial Lamb—Oseen vortex. We notice a
small level of asymmetry in the vorticity contours shown in figure 4(b), and believe this
to be a numerical artefact. We now examine, in figure 4(c), what happens when there
is a density difference in the two fluids. It is clear that when the surface tension is low
and the density contrast is high, there is a generation of alternating spirals of positive
and negative vorticity in the region outside the core. The blue arms of the spiral are
unstable to centrifugal Rayleigh—Taylor (CRT) modes, while the red arms are stable (Dixit
& Govindarajan 2010). At later time we see a nonlinear breakdown of the flow, as in the
figure. When surface tension and density contrast are both high, just outside the vortex
core, the CRT mode is stabilised by surface tension but displayed at long distances from
the core, as is to be expected from our simplified theory. And the vortex gets disrupted
due to the rapidly growing KH instability. We observe from figure 4(d) that the heavy
fluid moves outward from the core of the vortex due to centrifugal effects. Note that the
different panels of figure 4 are shown at different times. The times were chosen so as to
make the instability and its nonlinear development evident.

4.3. Evolution of the interface

The interfaces for the cases in figure 4 are shown in figure 5. At low surface tension
and zero density difference, the spiralling interface of figure 5(a) is indistinguishable
from that at zero surface tension seen earlier in figure 1(c). This is because the time T,
given by (2.7), beyond which surface tension effects will be significant, is larger than our
simulation time. At high surface tension, we observe from figures 4(b) and 5(b) that the
interface shape is completely different from the vorticity distribution. Although vorticity
is generated only at the interface, it rolls up into small-scale structures independent of
the interface due to the KH instability, and with time spreads through the vortex core.
The interface meanwhile adopts a relatively short and straight shape in the central region,
in deference to the high surface tension. In contrast, due to the low surface tension in
figure 5(c), the interface closely mimics vorticity contours of figure 4(c). Here, the CRT
and KH instability are on display due to the density contrast. Far away from the core,
alternating positive and negative vorticity appears on the spiral arms, indicating, from
(3.8), that in this case density contrast is dominant over surface tension. Meanwhile, in
the core, the vortices peel off from the interface, as a consequence of the KH instability.
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Figure 4. Perturbation vorticity for We = 10040 and 12 with and without density contrast for Re = 10 114: (a)
We = 10 040, At = 0 at 1, = 25. Perturbation vorticity of small magnitude, in the neighbourhood of r ~ r, is
generated. Vorticity generated within the core is small; (b) We = 12, At = O att,, = 25. The negative vorticity is
mainly from the interior of the vortex; (c¢) We = 10 040, At = 0.05 at ¢, = 40. The alternating signs of density
jump on the spiral arms cause alternating positive and negative vorticity; (d) We = 12, At = 0.5 at 1, = 14.
Due to the effect of either surface tension or density contrast or both, the original flow structure is disrupted in
(b),(c) and (d). The black circle represents the vortex core.

An important consequence of centrifugal forces is seen in figure 5(d). We started with a
symmetry in the flow when rotated by the angle . In this image we see that this symmetry
is completely broken, with the light fluid occupying the initial vortex core, and the heavy
fluid having been expelled by centrifugal forces. We thus have a competition between the
response to the vortex, which increases the length of the interface, and surface tension,
which acts to reduce it. An independent estimate of the interface length can be obtained
from energy balance. As there is no external forcing and small viscous dissipation here,
the total kinetic energy is given by

E =(u-Fqs)+ey, 4.1)

where the angled brackets refer to an average per unit area taken over the whole
domain, E = (pu?/2) and €, 1is the viscous dissipation rate. We also have (u - F,) =
—(1/A)0; f odl, where dl is an interfacial line element and A is the total area of the domain
(Joseph 1976). At high Reynolds number and significant levels of surface tension, we may
neglect the viscous dissipation, to obtain

s E—E
8,(E+U—> —0, je ———"0_

S 4.2)
A o A’ '
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Figure 5. Regime occupied by the two fluids, one shown in black and the other in white. (a) A spiral interface
is seen at We = 10 040 with At = O at ¢, = 25; (b) We = 12, At = 0, t, = 25. The fine structure is erased, and a
straight interface is seen in the central portion; (¢) We = 10 040 with Ar = 0.05 at t, = 40. The CRT instability
in the nonlinear regime is visible; (d) We = 12, At = 0.5 at t,, = 14. The interface is displaced from the core of
the vortex when both surface tension and density contrast are present. Here, Re = 10 114.

where S = [ d, and Ej the initial kinetic energy. We obtain the length S of the interface
numerically as a function of time from all four simulations, by tracking jumps in ¢ from
0 to 1. Obtaining the interface length correctly is a hard test for simulations. We perform
this test by defining a simulation Weber number We, ~ pULZ.rCS /[A(Ey — E)], where the
kinetic energy is obtained from the simulations. This quantity is plotted against time
in figure 6(a), and is reassuringly close to the prescribed Weber number in all cases
except for the highest Weber number. In this case, we do not expect an agreement, since
surface tension effects are small, becoming comparable to viscous effects, which we have
neglected in estimating We.. We have checked in inviscid simulations (not shown) of all
four cases that We, at all times is in excellent agreement with We. This confirms that the
discrepancy at high We is due to viscous effects. The test verifies the reliability of the
numerics. The interface length is plotted in figure 6(). At the highest Weber number is
the practically unbridled lengthening of interface by its winding up into a spiral. As the
surface tension is made higher, it competes better against the dynamics as dictated by the
central vortex and suppresses the increase in interface length.
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Figure 6. (a) Weber number estimated by the energy balance (symbols) compared against the actual Weber
number (lines). (b) Increase in interface length (scaled by total area) with time.

4.4. Two-dimensional turbulence

To evaluate whether the mechanism we propose, of destabilisation of a flow by surface
tension, is of relevance in a general 2-D turbulent flow of two immiscible fluids, we
conduct DNS — at a Reynolds number (Rer = puysL/ 1L, Where u,, is the root mean
square velocity at # = #;) of 5.3 x 107 unless otherwise specified — and Az = 0 on a doubly
periodic box of length L = 27 and discretise it with 2048 collocation points. We generate
the initial vorticity field by first performing a single-fluid simulation. Here, we start with
white noise for vorticity, and run the simulation until we attain a k=3 scaling in the energy
spectrum. Once this energy spectrum has been attained, we set the time to zero, and
restart the simulation, this time with two fluids, separated by a flower-shaped interface.
Such an interface shape provides some irregularity, and is obtained by superimposing a
sinusoidal perturbation on a circle. The volume fraction of the minority phase is 0.225,
and simulations are conducted at four different Wer (= ,oufmsL/a): 00, 5 x 10°, 5 x 10*
and 5 x 103 in runs 7TR1, TR2, TR3 and TR4, respectively. The initial conditions for
the two-fluid simulation are shown in figure 7(a,d). The relevance to 2-D turbulence
of the model flow we studied in previous sections becomes apparent when we examine
figure 7(d) in some detail. We started out our single-fluid simulation with white noise, and,
as expected, the vorticity organised itself primarily into concentrated patches. While some
of these patches, due to the very nature of 2-D turbulence, have deviated from a circular
shape, most of the vortex patches are fairly circular. Moreover, as shown in Appendix
C, the vorticity profiles within the patches are well described by the Lamb—Oseen. This
is not too surprising, given that Lamb—Oseen vortices are the natural steady state for a
patch of vorticity (in the absence of forcing) in viscous flow, but it is reassuring to check
this. Thus, studying an interface near a single Lamb—Oseen vortex is a good model for
studying two-fluid turbulence. It remains to be argued why we chose a straight interface
going through the centre of the vortex. This was for simplicity of algebra, and it provides
the physics of the instability. It can be checked that a displaced interface, or one that is
initially of a different shape, will be wound into a spiral-like shape in the vicinity of the
vortex.

The flow consists of vortices of several scales (with vortex core radii ranging from
approximately 0.001L to 0.03L), encompassing a range of Weber numbers based on each,
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Figure 7. Density (a—c) and vorticity (d—f) contours for viscous simulations at #;/7, = 9.4 with Re = 5.3 x
10°. (a,d) Initial profiles, (b,e) profiles at r*/t, = 14.6 for Wer =5 x 10, (c, f) profiles at */t, = 14.6 for
Wer = 5 x 10° where 1, = L/uyms = 0.745 is the eddy turn over time. Small-scale vortical structures occur
in greater abundance as the surface tension increases. The colour scale in (d—f) has been adjusted for a better
view of small-scale vorticity.

with the largest being an order of magnitude smaller than the smallest Wer. Moreover,
the interface is not particularly designed to pass through the centre of any vortex. So,
we do not expect an exact agreement with theory, but do expect vorticity generation
due to surface tension, and instabilities resulting in small-scale vortices. The regions
occupied by the two fluids at ¢/7, = 14.6 for high and low Weber number are shown
in figures 7(b) and 7(c) respectively, and the corresponding vorticity distributions are
shown in figures 7(e) and 7(f) respectively. At Wer = 5 x 10°, the two fluids, which
displayed many spiralling interfaces at short times (see movies in the supplementary
material), are mingled intricately by this time, with elongated fine structures of the inner
fluid. This picture is already qualitatively different from flow at zero surface tension, in
that we see vorticity generation due to surface tension along the interfaces, as predicted.
But the instability, and the vorticity being peeled off from the interfaces is not yet
visible. The picture is starkly different at high surface tension. There is an explosion of
small-scale vorticity everywhere in the flow, and the initial vortices have been disrupted
completely. Because of these small-scale vortices, there is an enhancement of energy at
large wavenumbers with increase in surface tension.

The total kinetic energy in the system in shown as a function of time in figure 8(a).
The two-phase simulation is started at ¢ = ¢;. During the time ¢ < t;, the initial condition
is prepared by running the single-phase simulation, and so this portion of the plot is not
relevant to our discussion. We see that kinetic energy goes down with time. A very small
part of this may be attributed to viscous dissipation whereas, especially at high surface
tension, a significant part of the kinetic energy is converted to surface energy, manifested
as an increase in the total length of the interface. Turbulent kinetic energy spectra (given
by E(k) = X |u%|, where uy is the velocity in spectral space) are shown in figure 8(b). With
increase in surface tension, there is a significant enhancement of kinetic energy at large
wavenumbers. The small-scale vorticity generated by the action of surface tension is the
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Figure 8. (a) The variation in time of the total kinetic energy (pu?/2). At t;/T,, we start our multiphase
simulations with the flower-shaped interface and non-zero surface tension (figure 7a,d). (b) Energy spectra
(E(k)) versus wavenumber (k) at r*/t,, which is shown in (a). Note that E(k) is normalised in each case by
E(1). The fraction of energy in small scales is higher at higher surface tension. The vertical dashed lines
correspond to the characteristic length scale L, in each case. This is compared in the inset at different We with
the estimated length scale (L, ). The black dash-dotted line indicates a slope of —3.

reason for this increase. Incidentally, earlier studies (Li & Jaberi 2009; Trontin et al. 2010)
have obtained a similar increase in kinetic energy with decrease in Weber number, but have
not explored the underlying mechanism. The details of the instability might be different in
the case of Trontin et al. (2010) due to vortex stretching in their case.

In figure 8(b), which is shown at #/t, = 14.6, we had seen a significant component of
energy in the small scales, and the small-scale vortices were visible in figure 7(f). We
perform a consistency check now to verify that the instability due to surface tension did
indeed set in well before this time. The theory is for a single vortex, so we choose the
largest positive vortex (vortex 2 in figure 10b) in Appendix C. We first fit this vortex to a
Lamb—Oseen vortex of appropriate circulation and width, yielding r. >~ 0.2, as shown in
figure 11(b) of Appendix C. Using this and the fact that the maximum vorticity is I"/(m rcz.)
for a Lamb—Oseen vortex, we obtain I" = 38.96 and U, = 19.6. Thus, for this single
vortex, the effective We = 768.32 (run TR4). Using (3.7), and for a typical wavenumber of
kr. = 2, we estimate the time (¢, = t/T,) above which the instability should take place as
t, = 4.4+ t;/7, (we add t;/ 7, because the two-phase simulation starts at time #;). Since the
inertial time scale 7, = 0.0065, we expect the instability should occur after ¢/7, = 9.783.
Indeed, in figures 7(f) and 8(b), we observe significant small-scale vorticity at /7, = 14.6,
clearly indicating the development of an instability. The interface near smaller vortices
will go unstable at earlier times than near the largest vortex. Due to the nonlinear
nature of the flow, our theory cannot predict the size distribution of vortices at later
times.

Another check we perform is to calculate the characteristic length scale, L, of a blob
of the minority fluid, as a function of time, and compare it against the Hinze scale, Ly,
obtained by balancing the inertial forces with the surface tension (Hinze 1955; Perlekar
et al. 2014; Mukherjee et al. 2019; Perlekar 2019). The two are defined as

2 C(k)

L, = T ECE and Loy ~ o372/, (4.3a,b)
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Figure 9. Value of P(a/A) versus a/A for two runs TR2, We = 5 x 107 and TR4, We = 5 x 10° time averaged
from 14.17, to 14.67,. Black dashed line corresponds to a/A = 1. The black solid line with circles represents
the p.d.f. for a circular patch of minority fluid of the same volume fraction (=0.225) as that of the minority fluid
in the simulations. As the We increases, most boxes have the same volume fraction as that of the total domain.

where the indicator function spectrum (Perlekar, Pal & Pandit 2017) is C(k) = >_ ik
(ci is the Fourier transform of indicator function ¢) and B = v(|V£2|?) is the enstrophy
dissipation rate. The inset in figure 8(b) shows very good agreement between the estimated
and the calculated length scales. We notice in figure 8(b) that the range of small-scale
turbulence affected by the surface tension increases with surface tension, and is of the
same order of magnitude as the characteristic length scale L.

To quantify the chaotic mixing process and the effect of surface tension on it, we divide
the domain into n;, = 256 equal area square boxes, 16 in each dimension, and calculate
the fraction of the minority fluid (a) occupying each box. The volume fraction (A) of
the minority phase averaged over the entire computational domain is 0.225, and this
remains invariant in time. The probability density function (p.d.f.) P(a/A) for TR2 and
TRA4, at low and high surface tension respectively, are shown in figure 9. It is instructive to
compare these with the p.d.f. of (a/A) for a circular patch of minority fluid embedded in a
square patch of majority fluid, and occupying the same volume fraction of 0.225 as in our
simulations. When this square patch including both fluids is split into n;, boxes, many boxes
do not have minority fluid (¢ = 0) and some boxes have a = 1, 1.e. a/A = 1/0.225, giving
peaks at a/A = 0 and a/A = 4.44. Any entries between a/A = 0 and 4.44 indicate a box
occupied in part by both fluids. It is clear that significant mixing has taken place due to
turbulence in both TR2 and TR4. When ideally mixed, every box would have a = A, giving
a single peak at 1 in the p.d.f. of a/A, and no entries elsewhere. But we do not expect ideal
mixing in our simulation, since surface tension would compete with the mixing tendency
of turbulence, to minimise interface length. Therefore, it would impart to the minority
fluid a tendency to form blobs. Consistent with this expectation, we see in figure 9 weaker
mixing at higher surface tension. This is also consistent with the size distribution shown
in Trontin et al. (2010), where the number of large droplets increase with the decrease in
We.
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5. Conclusion

A new role for surface tension, as a destabiliser, in the vortical flow of immiscible fluids
is shown here. Due to surface tension, vorticity is generated practically everywhere on the
interface, and this vorticity increases with time. It follows that the two fluid layers on either
side move with different velocities, making it conducive for the KH instability to manifest
itself beyond a critical time proportional to We'/#. This mechanism acts alongside the CRT
instability when there are density differences. Our simulations on a single vortex confirm
our theoretical predictions and also reveal a peeling off of small-scale vorticity from the
interface. This mechanism is shown to have a significant presence in viscous simulations
of 2-D turbulence at low Weber number, with an increased proportion of energy in small
scales.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.97.
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Appendix A. Derivation of the expression for vorticity on the interface
A.l. Vorticity generation due to surface tension

We define f(r, ) = r — r;(0) which vanishes on the interface. The unit vector normal to
the interface n = Vf/|Vf] is given by

—rgt+ drs0
n— rst =+ dgrs (A1)

NGRACION

and the curvature, k = —V - n, by

1y +2@B07)* — 157

[r2 + (pr5)213/2 (42)

On the interface (when r = r(0)), V x F; is

ry + 2r5(3pry)* — 7 Bp07
[r2 + (dgr5)2]2
12 +2(prs)? — rsdpors
[r2 + (3g7y)?12
o rg + ZrS(E)grs)2 — rfagers
+ — 3 2 272
r [r2 + (3975)2]

1
V x Fy = =~ 09(F,) = %39 [ 5(r0 — res)}

0p[6(r0 — 1rBs)]

:| 8(ré — rby). (A3)
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Using the equation of interface given by (2.5) in (A3), we get

ro 164"
VxF,=-— —
3245 | 2 + exp(2q)rire —1 +exp(—g)(1 +¢g)
4a’[r* — {—1 + exp(@)}rZ?

8a? exp(3q)r4rg{—4r8 —[11 + Zexp(q)]r(’rz +[—-19+ 13 exp(q)]r‘*rﬁ}
- (2 — (=1 + exp()}r2)°
8a” exp(3q)r*r2{12[—1 + exp(q)1r2r® — 6[—1 + exp(q)*r%}
- (2 — (=1 + exp(q)}r2)°
exp(5q)r3ro(8r% +10r%72 + 11747 + 107278 + 518 + 5 exp(29)r®)
- (2 — {—1 +exp(q)}r2)’
exp(Sq)rSrf{—2 exp(q)rz[Zr6 + 3r4rf + Srng + Srf]}
- (r2 — {—1 + exp(q)}r2)’

i| 8(rf — rby).
(A4)

Note that (A3) contains terms in the 8-derivative of the delta function. Since this derivative
is an odd function, its effect at the interface gets cancelled out, and it does not contribute
to the vorticity.

The vorticity generated due to surface tension is obtained by integrating 1/pV x F, in
time, to give

_ o exp(q)nsrg [8 exp(4q)r8rf(r4 + rzrg —{—1+ exp(q)}r?)2
© T 2pr (= + (=1 +exp(@))rd)? (exp(2g)m2rtrd)?
8 exp(dq)r3rt(r* + r*r2 — [—1 + exp(@)}rhH?
(exp(2q)2rtrt + I22{r? — [—1 + exp(q)]r2}?)?
2exp(2q)r*[4r® + {11 4 2exp(q)}rr2 — {—18 + 13 exp(q)}r*rd]
2 [exp(q) 72 rtrd + I22{r2 — [—1 + exp(q)1r2}?]
 2expQe)ri[4r® + {11 + 2exp(@)}ror? — (=18 4 13 exp(@)}r*r]
72 [exp(2q) 2 rtrd]
2exp(2q)r*[—10{-1 + exp(q)}r’r¢ + 5{=1 + exp(q)}*r¢]
2[exp(2q) W2t + I22{r2 — [—1 + exp(q)1r2}?]
[P ep@)rl O+VWWﬁ4+m@%q>
w4 °8 exp(2q)m2rird
 2exp@)r*[=10{=1 + exp()}r*r? + 5(=1 + exp(¢)}*r}]
72[exp(2q) 2 rtrd]

:| 8(ro — rby).
(AS)

Note that the vorticity due to surface tension in (AS) is the perturbation vorticity due to
the surface tension as we have removed the vorticity at t = 0.
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After some algebra, we get the perturbation vorticity due to surface tension as,

re o [1—exp(=1)]exp(q) ) 2o 1
UCQU_ 4Wey3 {S(q e (1 Xz)

—2[4¢* + 11¢° + 184* + 10g + 5 + (2¢° — 13¢* — 10g — 10) exp(q) + 5 exp(29)]

1 2 r r
l—— ) —y-logx¢é|l—60——6),
X rC rC

_ AU (ie _ 19S> . (A6)

U, Te re

Well within the core when ry < 7. or ¢ < 1. We may set y ~ —¢*/2, x ~ 1 +
[t2q/ exp(q)]* and exp(q) ~ 1 + q + ¢*/2 + ¢°/6 + q* /24 in (A6) to get
AU 9[1 — exp(—l)]t,zl

A7
U, 2We (A7)

Outside the core, ry > r. or ¢>> 1, y ~ —exp(q) and x ~ 1 + [21,/¢)* and we may
neglect exp(—q) in (A6), so

AU 4022[1 — exp(—1)]

= A8
U, q*We (A8)
A.2. Vorticity generated by baroclinic effects
Following the approach of Dixit & Govindarajan (2010), we get
D2 1 Vi U2, 1
— =—-VxF,——x|—r|+-VL. (A9)
Dt p P r P

Density contrast can only contribute to vorticity at the interface when the interface departs
from a circular shape, just as baroclinic torque is only created on an interface inclined to
the horizontal. We obtain this departure in terms of the angle ¢ made by the interface,
with a circle whose origin is at the centre of the vortex

'J'[r2
tana = , (A10)
I'{—1+exp(—¢)(1 + q)}
2
sina = T (A11)

[I22{—1 +exp(=q)(1 + ¢)}* + n2r4]1/2

Using Vp = £Apd(r0 — rfs)n, where n is the normal to the interface, to calculate the
contribution of baroclinic term to the vorticity, we get

Vo (U%, Ap U?
— X | —7 ) =+——sinad (8 — rby). (A12)
0 r p T
Assuming ¢ = —1 + exp(—¢g)(1 + g) we rewrite (A12) as
D(2,) Vp U?.\ AtI?[1 —exp(—¢)]? 1
~—x|—7) = 8(ré — rby).
Dt D r 4mr (F22¢2 + n2rh1/2
(A13)
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We obtain £2,, by integrating (A13),

_ 2
§2p(r, t)=AtF[1 exp(=9)] tanh ™! |:( I'ee

43'”"{ F2t2§2 N J_[2’/4)1/2:| 8(7‘9 — r@s)‘ (A14)

In non-dimensional form, the above equation can be rewritten as

Qp(r,Ore  Afll —exp(—q)? - [ 2l :|8 (LQ - Lg)
U, 201 —exp(—=1)]2q!/2¢ an (42202 4 ¢2}1/2 re s |-

re

(A15)

Far away from the vortex core or g > 1,¢ ~ —1, exp(—q) ~ 0 and tanh ™! [x/v/1 + 2] ~
x — x3 /6, where x = 21, /q so

AU _ N At[l —exp(—)]> [2t, 88 Al6
U. 2l —exp(—D1%q"%¢ | ¢ 4| (Al6)
c [1—exp(=DI*¢"/*¢ L q ¢
When ¢ > 1, we drop the terms with g so,
AU _ 1At (AIT)

+ .
U, [1 —exp(—1D]2g3/2

Appendix B. Dispersion relation away from the core of the vortex

Upon linearising (2.2) about the base flow, using normal mode analysis and following the
approach given by Dixit & Govindarajan (2010), we obtain

_ mU 1 r Uy m 5
P w— —— _8}’ — (8rur + —> — —Ur ¢+ Mrar'{2
r r m r r
_ U

m\ 3
—) 5(r—ry), (B1)

where u, is the perturbation velocity in the azimuthal direction and u, is the velocity at r;.
Using all the boundary and jump conditions similar to Dixit & Govindarajan (2010), we
get the dispersion relation at r as

m - - m — —
w=——"——[poUo + p1(Up + AU)] & [——{,OOU2 — p1(Uy + AU)?
r(po + p1) r2(p1 + po) 0
12
Lome mzpom(AU)z} / )
Ppo+p1)  r*(po+ p1)?

where U} = Uy + AU and Uy and U, are the velocities of po and pp fluids at the jump
near a given r. In the absence of surface tension (o = 0), this reduces to the one given in
Dixit & Govindarajan (2010).
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Figure 10. (@) The initial condition of vorticity for the single-phase decaying turbulence simulation. (b)
Vorticity at #;/7, at which time the two-phase simulation is initiated.
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Figure 11. Comparison of the vorticity profile for vortices 1,2 shown in figure 10(b) with the best fitting
Lamb-Oseen vortex (Gaussian). Vorticity variation along x and y for (a) vortex 1 and () vortex 2. The black
dashed lines represent the fit to a Lamb—Oseen vortex 2 = §2p exp(—gq), where §2¢ is the maximum vorticity

and g = (x> +y?)/ rf. The origin in each case is at the vortex core.

In non-dimensional form the dispersion relation will be of the form

wre

_ (-1 L—Ar\ (AUN i
T Q+( 2 )(Uc‘)q

B (1 — A 1 — A2 AU\?
12|
4 { 2m +< J >}<U)

(1—AHQ [ AU AtQ2+ m 1V
U, mq — 2q'/*We

(B3)

mql/2

where Q = [1 —exp(=¢)]/[1 — exp(=1)].
936 A45-20


https://doi.org/10.1017/jfm.2022.97

https://doi.org/10.1017/jfm.2022.97 Published online by Cambridge University Press

Surface tension effects on a vortical interface

Appendix C. Two-dimensional turbulence - presence of Lamb-Oseen vortices

We had chosen to study a Lamb—Oseen vortex as a suitable building block of 2-D
turbulence. We now show that this choice is appropriate. It is known that the Lamb—Oseen
profile is an attracting solution for a patch of vorticity in isolation. Indeed in 2-D turbulence
(if there were no interface), despite its highly nonlinear nature, the flow may be described
well by a distribution of discrete vortex patches. Further, these patches are often practically
Lamb—-Oseen vortices. To make this visually evident, we started our 2-D decaying
turbulence simulation on a single fluid phase, with white noise as the initial condition
for vorticity as shown in figure 10(a). The system, as we know it should, spontaneously
evolves into concentrated patches of vorticity, as seen in figure 10(b) at time ;. While
the nature of turbulence makes these vortices depart somewhat from axisymmetry, their
profiles for the most part are remarkably close to Lamb—Oseen, as demonstrated for two
sample vortices in figure 11. The shape of the sample vortices is similar to the isolated
vortex shape given in McWilliams (1984).
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