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Abstract

In this paper we investigate large-scale linear systems driven by a fractional Brownian
motion (fBm) with Hurst parameter H € [1/2, 1). We interpret these equations either in
the sense of Young (H > 1/2) or Stratonovich (H = 1/2). In particular, fractional Young
differential equations are well suited to modeling real-world phenomena as they cap-
ture memory effects, unlike other frameworks. Although it is very complex to solve
them in high dimensions, model reduction schemes for Young or Stratonovich settings
have not yet been much studied. To address this gap, we analyze important features of
fundamental solutions associated with the underlying systems. We prove a weak type
of semigroup property which is the foundation of studying system Gramians. From
the Gramians introduced, a dominant subspace can be identified, which is shown in
this paper as well. The difficulty for fractional drivers with H > 1/2 is that there is no
link between the corresponding Gramians and algebraic equations, making the computa-
tion very difficult. Therefore we further propose empirical Gramians that can be learned
from simulation data. Subsequently, we introduce projection-based reduced-order mod-
els using the dominant subspace information. We point out that such projections are not
always optimal for Stratonovich equations, as stability might not be preserved and since
the error might be larger than expected. Therefore an improved reduced-order model is
proposed for H = 1/2. We validate our techniques conducting numerical experiments on
some large-scale stochastic differential equations driven by fBm resulting from spatial
discretizations of fractional stochastic PDEs. Overall, our study provides useful insights
into the applicability and effectiveness of reduced-order methods for stochastic systems
with fractional noise, which can potentially aid in the development of more efficient
computational strategies for practical applications.
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2 N. JAMSHIDI AND M. REDMANN

1. Introduction

Model order reduction (MOR) is an important tool when it comes to solving high-
dimensional dynamical systems. MOR is, for instance, exploited in the optimal control
context, where many system evaluations are required, and is successfully used in various
other applications. There has been an enormous interest in these techniques for determinis-
tic equations. Let us refer to [3] and [5], where an overview on different approaches is given
and further references can be found. MOR for It stochastic differential equations is also very
natural, thinking of computationally very involved techniques such as Monte Carlo methods.
There has been vast progress in the development of MOR schemes in the Itd setting. Let us
refer to [7], [30], and [36] in order to point out three different approaches in this context.

In this paper we focus on MOR for stochastic systems driven by fractional Brownian
motions and with non-zero initial data. The fractional Brownian motion is an excellent can-
didate for simulating various phenomena in practice due to its self-similarity and long-range
dependence. The significance of long-range dependence is underscored by the extensive vol-
ume of literature that features this concept in their titles. Such publications span diverse
fields including finance [21], econometrics [34], internet modeling [17], hydrology [28], cli-
mate studies [37], linguistics [2], DNA sequencing [18], and physics [13]. However, when
H #1/2, the process W/ is neither a (semi)martingale nor a Markov process. These are the
main obstacles when MOR techniques are designed for such systems. The dimension reduc-
tion we focus on is conducted by identifying the dominant subspaces using quadratic forms
of the solution of the stochastic equation. These matrices are called Gramians. By characteriz-
ing the relevance of different state directions using Gramians, less important information can
be removed to achieve the desired reduced-order model (ROM). Our work considers various
types of Gramians depending on the availability in the different settings. Exact Gramians on
compact intervals [0, 7] as well as on infinite time horizons are studied. These have previously
been used in deterministic frameworks [12, 24] or Itd stochastic differential equations [4, 6, 7,
31]. There are basically no results on Gramian-based MOR for systems driven by fractional
Brownian motion, apart from the heuristic work in [16]. In that work, only the special case of
Galerkin projection techniques is considered without addressing any kind of theoretical ques-
tions. Our motivation is to provide a comprehensive Petrov—Galerkin projection-based MOR
framework for systems driven by fractional Brownian motion. At the same time, the contribu-
tion of this paper is a detailed theoretical treatment in contrast to [16]. Given the Young case of
H > 1/2, the fractional driver does not have independent increments making it hard to extend
the concept of Gramians to this setting. One of our contributions is the analysis of fundamen-
tal solutions of Young differential equations. We prove a weak form of semigroup property in
Lemma 4.1 which is the basis for a proper definition of Gramians for H > 1/2 and new even
if H=1/2. This lemma is the key for the entire theory and opens up opportunities to study
MOR for equations with drivers having only stationary increments. Lemma 4.1, for example,
is exploited to show that certain eigenspaces of the proposed Gramians are associated with
dominant subspaces of the system and therefore confirms that the choice of Gramians is mean-
ingful. This is another important theoretical contribution of our paper. However, this approach
is still very challenging from the computational point of view for fractional Brownian motions
with H > 1/2. This is due to a missing link between the exact Gramians proposed here and
Lyapunov equations, a connection that is the foundation of the previous theory of MOR with
H =1/2 (1t6). The link to matrix equations only exists when H = 1/2, because the increments
of the driver are independent in that case. Therefore empirical Gramians based on simula-
tion data are introduced in particular for H > 1/2. Computing this approximation of the exact
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Gramians is still challenging yet vital since they are needed for deriving the ROM. We fur-
ther point out how exact Gramians can be computed for Stratonovich stochastic differential
equations. Here the equivalence to It6 equations is exploited. Although we show that these
Gramians identify redundant information in Stratonovich settings, MOR turns out to be not
as natural as in the Itd case. In fact, we illustrate that projection-based dimension reduction
for Stratonovich equations leads to ROMs that lack important properties. For instance, stabil-
ity might not be preserved in the ROM and the error does not solely depend on the truncated
eigenvalues of the Gramians. This indicates that there are situations in which the projection-
based ROM performs poorly. For that reason, we propose a modification of the ROM having
all these nice properties known for Itd equations (stability and meaningful error bounds). The
reason why the case H = 1/2 is so special is that we need an extension of classical integration.
However, such an extension is not unique, which raises the question: Which setting is better
(or best) in the MOR context? One of our findings is that Stratonovich equations should not be
projected directly, but rather should be transformed into an Itd equation first before applying
MOR.

The paper is structured as follows. In Section 2 we provide a quick introduction to frac-
tional Brownian motions as well as the associated integration. In particular, we define Young’s
integral (H > 1/2) and the integrals in the sense of It6/Stratonovich (H = 1/2). In Section 3
we briefly discuss the setting and the general reduced system structure by projection. We give
an initial insight into how projection-based reduced systems need to be modified in order to
ensure a better approximation quality in the Stratonovich setting. Section 4 contains a study of
properties of the fundamental solution to the underlying stochastic system, which is vital for
any kind of theoretical concerns and new for each choice of the Hurst index H. A weak type
of semigroup property leads to a natural notion of Gramians. We show that these Gramians
indeed characterize dominant subspaces of the system and are hence the basis of our later
dimension reduction. This subspace identification is an essential theoretical contribution as it
explains the role of the Gramian introduced here. Since exact Gramians are not available for
each H, we discuss several modifications and approximations in this context. Strategies on how
to compute Gramians for Stratonovich equations are delivered as well. In Section 5 we describe
the concept of balancing for all variations of Gramians that we have proposed. A truncation
procedure then yields a ROM. We further prove that the truncation method is not optimal in
the Stratonovich case (no stability preservation and a potentially large error) and suggest an
alternative that is based on transformation into the equivalent It6 framework. This is another
key contribution of this work. Finally, in Section 6, we utilize the methods described in the
previous sections, along with the POD method detailed in Section 6.2, to solve stochastic heat
and wave equations with fractional noises. This section presents the results of our simulations
and demonstrates the effectiveness of the proposed methods in solving these equations with
various noise cases.

2. Fractional Brownian motion and Young/Stratonovich integration

Below, it is assumed that all stochastic processes occurring in this paper are defined on
the filtered probability space (2, F, (Ft)ic[o,1], P), where (F;)icfo,77 18 the natural filtration
of the process driving the differential equations studied in this paper. Our main focus is on
the fractional Brownian motion (fBm) W# (), t > 0, with Hurst parameter H < (0, 1), that will
later take the role of the driving process. It is Gaussian with mean zero and covariance function
given by

E[WH (W (s)] = %(sZH + 27 — | —52H). (2.1)
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The fBm was initially proposed by Kolmogorov, and it was later investigated by Mandelbrot
and Van Ness, who developed a stochastic integral representation of fBm using a standard
Brownian motion. Additionally, Hurst used statistical analysis of annual Nile river runoffs to
create the Hurst index, which is a resulting parameter.

The fBm exhibits self-similarity, which means that the probability distributions of the pro-
cesses a_HWH(at), t>0, and WH(t), t >0, are the same for any constant a > 0, which is a
direct consequence of the covariance function. The increments of the fBm are stationary and,
if H=1/2, they are also independent.

The Holder continuity of the fBm trajectories can be calculated using the modulus of con-
tinuity described in [11]. To be more precise, we find a non-negative random variable G¢ 1 for
alle >0and T > 0, so that

WA () — W (s)| < Ge 7t — 5177,

almost surely, for all s, ¢ € [0, T]. Therefore the Hurst parameter H not only accounts for the
correlation of the increments but also characterizes the regularity of the sample paths. In other
words, the trajectories are Holder-continuous with parameter arbitrary close to H.

In the following, we will always consider H > 1/2 and briefly recall the corresponding inte-
gration theory. In order to cover the ‘smooth case’ H > 1/2, the integral defined by Young [39]
in 1936 is considered. This scenario covers integrands and integrators with a certain Holder
regularity.

Definition 2.1. Let C¥ be the set of Holder-continuous functions defined on [0, T], with index
0 <a < 1. Suppose that f € C* and g € C?, where a + 8 > 1. Given a sequence (t;’)f.zo of
partitions of [0, T], with

1

kn—
lim max{#}, , —£'1 =0,
n—00 =0 { i+1 ! }

the Young integral fOT f(s)dg(s) is then defined by
T kp—1
| Forasor= tim 3 et - 5]
i=0

As the paths of W/ are a.s. Holder-continuous with « = H — €, we define fOT Y(s) o dWH(s)
for processes Y with (H — €)-Holder-continuous trajectories pathwise in the sense of Young if
H > 1/2. More generally, let Y be a process that has S-Holder-continuous trajectories with 8 >
1 —H and H € (0, 1). In this case, the Young integral fot Y(s) o dWH(s) is also well-defined.
However, we are only interested in the case of differential equations driven by fBm, where
integrals occur with Y having the same regularity as W/,

H =1/2 represents the boundary case, in which Young integration no longer works. For
that reason, the probabilistic approach of Stratonovich is chosen in the following.

Definition 2.2. Let H =1/2 and (t?)i‘{lo a partition as in Definition 2.1 Given a continuous
semimartingale Y, we set

T T
/ Y(s) o dWH(s) := / Y(s)dWH(s)+%[Y,WH]T,
0 0
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where the first term is the It integral

T kn—1
Hoy . : H H
/0 Y(s)dW(s):= P — lim 2(; YEH[wH () — wHah]
1=

and
kn—1
Y, Wp o= P— tim 3 [Y(d,) = YEO)[W (1) — WHa)]
i=0

is the quadratic covariation. The expression ‘P — lim’ indicates the limit in probability.

Let us refer, for example, to [20] and [27] for more details concerning stochastic calculus
given H = 1/2. The Stratonovich integral can be viewed as the natural extension of Young,
since the Stratonovich setting still ensures having a ‘classical’ chain rule. Moreover, W/,
H = 1/2, can be approximated by ‘smooth’ processes W:¢ with bounded variation paths when
Stratonovich stochastic differential equations are considered; for example, W€ can be piece-
wise linear (Wong—Zakai [35, 38]). Due to these connections and in order to distinguish from
the It setting, we use the circle notation o dW# for both the Young and Stratonovich cases.
It is worth mentioning that the lack of a martingale property makes the analysis of such inte-
grals particularly challenging, and might require advanced mathematical techniques such as
Malliavin calculus; see e.g. [1]. Nevertheless, Young and Stratonovich differential equations
driven by an fBm have important applications in various fields. The Stratonovich integral, in
particular, is widely employed in the physical sciences and engineering due to its compati-
bility with the traditional chain rule, which simplifies its interpretation in these disciplines.
This form of integration is crucial in feedback systems and scenarios where the noise exhibits
multiplicative characteristics. Applications of Stratonovich calculus include modeling thermal
fluctuations and statistical mechanics [10], addressing non-linear noise effects in control theory
[22], and studying population dynamics influenced by environmental variability [25].

3. Setting and (projection-based) reduced system

We consider a Young/Stratonovich stochastic differential equation controlled by u satisfying

T
Jul, += E/ @I dr < oo.
0

Given H = 1/2, we further assume that u is an (F;),¢[0,71-adapted process, since this property
is required for the state processes in the context of stochastic integration. Otherwise, the control
is general, meaning that it can also be non-Markovian. Now we study the following dynamics:

q
dx(r) = [Ax(t) + Bu(] dt + Y Nex(t) o dWH (1), x(0) = x0 = Xoz,
i=1
y)=Cx(r), t€[0,T],

where A, N; e R BeR"™"™ CecRP*" X, eR"™Y, zeRY, and T > 0 is the terminal time.
wh ... Wg’ are independent fBm with Hurst index H € [1/2, 1). System (3.1) is defined
as an integral equation using Definitions 2.1 (H > 1/2) and 2.2 (H = 1/2) to make sense of
o Nix(s) o dWH (s).

3.1
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For the later dimension reduction procedure, it can be beneficial to rewrite the Stratonovich
setting in the Itd form. Given H = 1/2, the state equation in (3.1) is equivalent to the Itd
equation

1 q q
dx(f) = [(A +5 ; N?)x(t) + Bu(t)] dr + ; Nix(t) dWH (1), (3.2)

exploiting the fact that the quadratic covariation process is

q t
> / N2x(s)ds, 1€[0,TI.
i=1 70

The goal of this paper is to find a system of reduced order. This can be done using projec-
tion methods, in which a subspace spanned by the columns of V € R"*” is identified, so that
x =~ Vx,. Here the particular techniques studied in this paper aim for a strong approximation in
the LZT sense. Inserting this into (3.1) yields

t q t
Vx,(t) = Xoz + / [AVx,(s) + Bu(s)] ds + Z / N;Vx,(s) o dWiH(s) +e(t), y(t)=CVx. (1),
0 i—1 0

(3.3)
We enforce the error e(¢) to be orthogonal to some space im (W) characterized by a full-rank
matrix W € R"*", that is, the Petrov—Galerkin condition WTe(t) =0 holds. In addition, let us
only focus on methods, where we additionally have W'V = I. Now, multiplying (3.3) by W'
from the left yields

q
A (1) = [Apx (1) + B de + Y Nipr(0) 0 dWH (), x,(0) = 0,0 = X012,
i=1
)’r(t) = Crxr(t)v re [O’ T]’

34

where X , = WTXo and
A,=W'TAV, B,=W'B, N,,=W'N,V, C,=CV.

The step from (3.1) to (3.4) can also be interpreted as a Petrov—Galerkin approximation using
the projection VW onto im (V). If W =V has orthonormal columns, we obtain a Galerkin
approximation. On the other hand, we want to point out that reduced-order systems can also be
of a different form when H = 1/2. Inserting x ~ Vx, into (3.2) instead of (3.1) and conducting
the same Petrov—Galerkin procedure, we obtain a reduced Itd system with drift coefficient
A+ % Zj’: " WTNl.2 V. Transforming this back into a Stratonovich equation yields

q q
dx, (1) = [(A, + (WIN?V — N,%,));c,(r) + B,u(z)] dr+ Z N; X0 o dWH(D), (3.5)
i=1

i=1

N =

which is clearly different from the state equation in (3.4). This is due to the [t6—Stratonovich
correction not being a linear transformation. Another contribution of this paper is to analyze
whether x, or X, performs better for H = 1/2. This question arises due to the fact that as soon as
classical integration (Young/Stieltjes sense) no longer works (e.g. H < 1/2), potential exten-
sions of Young/Stieltjes integrals are no longer unique. Therefore it is interesting to ask for
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an optimal setting in which the dimension reduction is conducted. So, it can make sense to
consider reduced systems (3.5) rather than the direct and maybe more intuitive choice (3.4).

4. Fundamental solutions and Gramians

4.1. Fundamental solutions and their properties

Before we are able to compute suitable reduced systems, we require fundamental
solutions @. These ® will later lead to the concept of Gramians that identify dominant sub-
spaces. The fundamental solution associated with (3.1) is a two-parameter matrix-valued
stochastic process @ solving

t q t
O, 5) =1+ / Ad(t, s)dr + Z/ N;i®(z, s)o dW,H(‘E) 4.1
s =179

for t > s > 0. For simplicity, we set ®(¢) := ®(¢, 0), meaning that we omit the second argument
if it is zero. We can separate the variables, since we have ®(z, s) = D) P(s)~! fort> s> 0.
This is due to the fact that ®(r)®~1(s) fulfills equation (4.1). Now we derive the solution of the
state equation (3.1) in the following proposition, which is a known result based on the product
rule.

Proposition 4.1. The solution of the state equation (3.1) for H € [1/2, 1) is given by
t
x(t) = O(t)xo +/ ®(t, s)Bu(s)ds, te][0,T]. 4.2)
0

Proof. Defining

t
k() = xo + / ®(s)” ' Bu(s) ds,
0

the result is an immediate consequence of applying the classical product rule (available in the
Young/Stratonovich case) to ®(1)k(t), t € [0, T]. It follows that

t t
Q(0)k(1) = x0 + / D(s) dk(s) + / (dD(s))k(s)
0 0

t t 4q t
=xp+ / Bu(s) ds + f AD(s)k(s) ds + Z / N;®P(s)k(s) o dW,H(s),
0 0 = Jo

meaning that ®(1)k(?), t € [0, T], is the solution to (3.1). The result follows by
O, 5) = DO P(s). O

The fundamental solution lacks the strong semigroup feature of the deterministic case
(N; =0). This means that ®(z, s) = ©(f — 5) does not hold P-almost surely, as the trajecto-
ries of W on [0,  — 5] and [s, #] are distinct. In the following lemma we can demonstrate that
the semigroup property holds in distribution exploiting the stationary increments of W#. In
fact, this lemma is the key to studying MOR for stochastic systems driven by processes with
stationary (not necessarily independent) increments and can therefore be applied to settings
beyond the case studied in this work.

Lemma 4.1. It holds that the fundamental solution of (3.1) satisfies

O, LD —5), t>5>0.

https://doi.org/10.1017/jpr.2025.10039 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10039

8 N. JAMSHIDI AND M. REDMANN

Proof. We consider ®(-) on the interval [0, r — s] and dD( s) on [s, t]. Introducing the

step size At = (t — s)/N, we find the partitions #; = kAt and tk =s+1,ke{0,1,..., N}, of
[0, t — s] and [s, t]. We introduce the Euler discretization of (4.1) as follows:

q
D1 = D+ ADAL+ Y Nid AW,
=1
= (4.3)

@(5)

® ) © AW
=00 +AD] At—l—ZN(I) AW;

j=1
where we define

H,
AWH =W (o) = Wi and  AWLY =WH () — wi (1Y)

According to [23] and [26], the Euler scheme converges P-almost surely for H > 1/2, yielding
in particular convergence in distribution, that is,

oy S oi—s), YD o), (4.4)

as N — oo. The Euler method does not converge almost surely in the Stratonovich setting.
However, for H = 1/2, we can rewrite (4.1) as the Itd equation

t q q t
d(t,5)=1 +/S <A + % §N§> d(t, 5)dr + ;/ N;®(z, s) dWH ().

This equation can be discretized by a scheme as in (4.3) (Euler—Maruyama). The correspond-
ing convergence is in L'(Q, F, P) [20], so we have (4.4) for H = 1/2 as well. By a simple
calculation we can get from (4.3) that

N—1 q
oy =] <I+AAt+ ZJ\I,»AWIJ?Z() = F(2),

k=0 j=1

N—1
oy =] (1 +AAL+ ZNJAWH m) = F(ZY),

k=0 j=1
where

Z:= (AW/) and Z9:= (AWY), j=1.....q k=0,... . N—1,

are Gaussian vectors with mean zero. Notice that the function F is just slightly different for
H =1/2, thatis, A is replaced by A 4 % Z?:l Niz. It remains to show that the covariance matri-

ces of Z and Z¥ coincide, leading to ®y(t, 5) 4 dy(t — 5). Subsequently the result follows by
(4.4). Using the independence of WiH and WJH for i #j, the non-zero entries of the covariances

of Z and Z® are

E[AWAAWH] and E[aWOaw’Y] ke=01,... . N-1,
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respectively. These expressions are the same, since, exploiting (2.1), we see that
H(: H(:
E[AW O AW =E[(W/ s+ tp0) — Wi (s + 180) (WG + tep) — Wi (s +10))]

1
2H 2H 2H 2H
=§(|fk+1 — 1ol |tk — o1 77 = |t — teg1 177 — e — 1017

is independent of s. This concludes the proof. (|

Let us mention that the result of Lemma 4.1 is new even for the well-studied case of
H =1/2. In fact, we later exploit the fact that Lemma 4.1 yields

E[D(t, s MD(t, 5) | = E[D(r — s)MDP(t —5) ] 4.5)

for a matrix M of suitable dimension. Property (4.5) had already been proved for H=1/2
using relations to matrix ODEs [7]. This is not possible for general H, so the much stronger
result of Lemma 4.1 is required.

4.2. Exact and empirical Gramians

4.2.1. Exact Gramians and dominant subspaces. Similar to the approach presented in the
second POD-based method outlined in the reference [16], our methodology involves partition-
ing the primary system described in equation (3.1) into distinct subsystems in the following
manner:

q
do (1) = [Axy (1) + Bu(t)] d + > Nixy (1) 0 AW (1), x,(0) =0, yu () = Cx,(1),  (4.6)
i=1

q
dey (1) = Axgy () df + Y Nixyy () 0 AW/ (1), x4)(0) =x0 = X0z, Yy (1) = Cxy (1) (4.7)
i=1
Proposition 4.1 shows that we have the representations X, (1) = ®(#)xo and

¢
x, ()= / O(t, s)Bu(s) ds,
0

50 Y(f) = yx,(t) + yu () follows. Lemma 4.1 is now vital for a suitable definition of Gramians.
Due to the weak semigroup property of the fundamental solution in Lemma 4.1, it turns out
that

T T
Pur:= ]E|: / @(s)BB" d(s)" ds:|, Py 1= IE[ / D(5)XoXy D(s)" ds:| (4.8)
0 0

are the right notion of Gramians for (4.6) and (4.7). With (4.8) we then define a Gramian
Pr:= P, 1+ Py, for the original state equation (3.1). For the output equation in (3.1),
a Gramian can be introduced directly by

T
Or=E / @(s) ' CTCD(s) ds.
0

The following proposition contains estimates that tell us in which sense the above Gramians
characterize dominant subspaces of the system. It heavily relies on Lemma 4.1, indicating
the importance of this key lemma in the theory of dimension reduction for stochastic systems
driven by fBm. In particular, the next proposition addresses the theoretical shortcomings of
[16], where model reduction methods have been used without proving the relation between
Gramians and dominant subspaces of the system. In the following, we prove that the proposed
Gramians can be used to identify unimportant information in the system.
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Proposition 4.2. Given v € R", an initial state of the form xo = Xoz, a parameter p =1, 2 and
a control u € L% that is assumed to be deterministic if p = 2. Then we have

T
/ By (0 V)34 <0 P rvlizl3,  suprepo,ry Bl0u(®), vial < 0T Pygvl 2l (4.9)
0

for p=1, 2. Consequently we have

T
/ E|(x(1), v)2| d < ~/2\/vT Prv max{ﬁllzllz, Tlull;2 } (4.10)
0 T

forallue L% and
r 2 T 2 2
[ it 912 dr =207 Prvmax( 125 7y | “.11)
0
if u is also deterministic. Moreover, we have
T
/ E[|CO@)v|3 dr =v" Orv. (4.12)
0

Proof. The first relation is a simple consequence of the inequality of Cauchy—Schwarz and
the representation of x,, in Proposition 4.1. Thus

T T
f E(xg (1), v)3dt=F / (D(1)Xoz, v)3 dr
0 0
T
=E / (z, X] D(1)"v)3 dt
0

T
2 T T..112
§||Z||2E[ 1Xy &) vll5 dr
0
T 2
=v Py, 1vlzl5.

Utilizing equation (4.2) and the Cauchy—Schwarz inequality once more, we have
P

t
E[(x, (1), v)2lf =E < / &(t, 5)Bu(s) ds, v>
0 2

1 p
( / (1, 5)Bu(s), v)2] ds) }

0

! p
(/ [(u(s), BT ®(z, 5) " v)a| ds> ]

0

t P
( /0 lus)l21IBT &(t, 5) vl ds) ]

t p/2
< (VTE f O(r, s)BBT (1, 5) ' ds v> lull?,.
0

<E

=E

<E

L7
Based on Lemma 4.1, we obtain

E[®(t, 5)BB ®(1, 5) | =E[®( — s)BB' ®(t —s5)"].
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Hence
t r/2
E|(x, (1), v)al < (vTE / ®(t—5)BB' ®(1—s)" ds v) Il < 0T Py v Nlull?,
0 t T

by variable substitution and the increasing nature of P, r and [|u|| 2 in 7. This shows the
second part of (4.9). Exploiting Proposition 4.1, we know that x = x,, + x,,. Therefore we have

T T T
/ E(x(1), v)3 df < 2(/ E{xy (1), v)3 dt + / E{x,(1), v)3 dl‘)
0 0 0

T
52(/ E(xy (1), 3 dt 4+ T sup E{x, (), v>§>
0

t€[0,T]

by the linearity of the inner product in the first argument. Applying (4.9) with p =2 to this
inequality yields (4.11), using Py = Py, 1 + P, 7. On the other hand, we obtain

T T T
/OEI(X(I),V)zldIS/O El(xxo(t),\/)zldt-ir/ E|(xu(1), v)2| dt

<¢_\// E(xy (), V)3 dt+T sup E|(x,(t), v)2l.

t€[0,T]
Applying (4.9) with p =1 to this inequality yields (4.10) using

\/VTPXO’TV + \/VTPM’TV <2 TPpv.

By the definitions of Q7 and the Euclidean norm, (4.12) immediately follows, so this proof
is concluded. (]

Remark 4.1. If the limits Py, =limr_ o Py,,7, Pu=limr_o0 Py7, P=limr_ o Pr and
0 =lim7_, » Or exist, the Gramians in Proposition 4.2 can be replaced by their limit, as we
have v Prv <v! Py, vT Orv< vt Qv etc. for all v e R".

The following remark explains the role of the results in Proposition 4.2 in more detail. In
fact, Proposition 4.2 delivers the theoretical motivation for the dimension reduction procedure
studied in this work, a motivation that is missing in the special case considered in [16].

Remark 4.2. We can read Proposition 4.2. as follows. If v is an eigenvector of Py, r and P, 7,
respectively, associated with a small eigenvalue, then x,, and x, are small in the direction
of v. Such state directions can therefore be neglected. The same interpretation holds for x
using (4.10) or (4.11) when v is a respective eigenvector of Pr. Now, given fy € [0, T), we
expand the state variable as
n
xto) = ) _{x(t0). G2k,
k=1

where (qi)k=1,....» Tepresents an orthonormal set of eigenvectors of Q7. We aim to answer the
question of which directions g in x(#p) barely contribute to y on [ty, T]. We can represent the
state in (3.1) by

t q t
x(t) = x(to) + / [Ax(s) + Bu(s)] ds + ) / Nix(s)o dW/(s), 1€ [1o. TI. (4.13)
o i=1 “10
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and introduce X as the solution of (4.13) when replacing x(fy) by X(#o) := x(t9) — (x(t0), qk)29x>
i.e. the direction g is neglected. The process x — X then solves (4.13) with u =0 starting in
(x(%0), qr)2qr at tp. Therefore the difference in the associated outputs is

y(#) — Cx(1) = (x(t0), qr)2CP(t, t0)gk, 1€ [to, T1,

using the solution representation in (4.2). For that reason, we focus solely on the term
CP(¢, t9)gr and observe that

T T T
/ E||CO(, to)gill5 di = / E||CP(1 — to)gx 3 dr < / E[|CO(Dgill3 dt

fo to 0

using Lemma 4.1. Identity (4.12) therefore tells us that the direction v = g; in x(#g) has a low
impact on y(?), t € [ty, T], if the corresponding eigenvalue is small. Such g can be removed
from the each state x(fp) without causing a large error in between the exact output y and its
approximation CXx.

4.2.2. Approximation and computation of Gramians. In theory, Proposition 4.2 together with
Remark 4.2 is the key when aiming to identify dominant subspaces of (3.1) that lead to ROMs.
However, for practical purposes, strategies to compute the associated Gramians are vital.

Empirical Gramians for H > 1/2. The Gramians that we defined above are generally hard
to compute. In fact, there is no known link between these Gramians and algebraic Lyapunov
equations or matrix differential equations when H > 1/2. For that reason, we suggest an empir-
ical approach in which approximate Gramians based on sampling are calculated. In particular,
we consider a discretization of the integral representations by a Monte Carlo method. Let us
introduce a equidistant time grid 0 =s9 < s1 < - - - < spr = T and let NV further be the number
of Monte Carlo samples. Given that A" and N are sufficiently large, we obtain

T N N
P,r~P, 7 =— d)s-,a)-BBTCD Si, Wi T,
u,T u,T N-/\/s ;; ( i ]) ( i ])
, N A 4.14)
Pxo,T %Pxo,T = T i Z Z (D(Si7 CL)])X()X(;FCD(SZ, wj)T7

NN i=1 j=1

where w; € Q. Now the advantage is that ®( - )B and ®( - )X, are easy to sample as they are the
solutions of the control independent variable x,, in (4.7) with initial states xo — B and xo —
Xo, respectively. This is particularly feasible if B and X only have a few columns. Based on
(4.14), we can then define Py := Py, 7 + P, r approximating Pr. Here the goal is to choose N/
and N so that the estimates in Proposition 4.2 still hold (approximately) ensuring the dominant
subspace characterization by the empirical Gramians. Notice that if the limits of the Gramians
as T — oo are considered, then the terminal time needs to be chosen sufficiently large. In fact,
it is also possible to write down the empirical version of Qr, which is

N N
D Osi ) CTCD(si, w)).

i=1 j=1

Q— T
T—N—'M

However, this object is computationally much more involved. This is because C®( - ) is not a
solution to an equation like (4.7) that can be sampled easily when only a few initial states are
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of interest. In fact, we might have to sample from (4.1) to determine Q7. This is equivalent to
computing samples of x,, in (4.7) for n different initial states, i.e. xo — 1. The issue is that n is
very large, whereas the number of columns of B and Xy is generally low. This leaves open the
question of whether Q7 is numerically tractable.

Exact computation of Gramians for H = 1/2. Let us briefly discuss that the computation of
Pr, Or or their limits as 7 — oo is easier when we are in the Stratonovich setting of H = 1/2.
Once more let us point out the relation between It6 and Stratonovich differential equations. So
the fundamental solution of the state equation in (3.1) defined in (4.1) is also the fundamental
solution of (3.2), i.e. it satisfies

t q t
@(t)=1+/ AnD(s) ds + Z/ N;d(s) dWH(s),
0 . 0
i=1
where Ay := A+ % Z?:l Nl-2. Now, defining the linear operators L4, (X) =AyX + XAIE and

q
MX) =Y NXN/,
i=1
itis a well-known fact (a consequence of It6’s product rule in [27]) that Z(r) = E[P(H)M OB
solves d
52(0 =Lay[ZO]+T[Z®)], Z©O)=M, t>0, (4.15)

where M is a matrix of suitable dimension. We refer, for example, to [31] for more details.
Setting M =BBT + XOX(—')— and integrating (4.15) yields

Z(T) — BB" — XoX, = Lay[Pr]+ [Pr] (4.16)

using
T
Pr= IE[ / (s)(BB" + XoX, ) D(s) " ds:|.
0

If system (3.1) is mean-square asymptotically stable, that is, E||®(7)||?> decays exponentially to
zero, then we also find —BBT — XoX | = L4, [P]+ II[P] for the limit P of Pr.

There is still a small gap in the theory left in [31, Proposition 2.2] on how to compute Or
in the case of H = 1/2. Therefore the following proposition was stated under the additional
assumption that CT C is contained in the eigenspace of E;“N + IT*, where

q
i (X0 =AVX+ XAy, TT*(X)= Z N XN;.
i=1
We prove this result in full generality below.
Proposition 4.3. In the Stratonovich setting of H = 1/2, the function Z,.(t) = E[®() T CTCP()]
solves

%Z*(t) =L} [Z.0O]+ TT*[Z.0)].  Z.(0)=C"C, 1>0. 4.17)

https://doi.org/10.1017/jpr.2025.10039 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10039

14 N. JAMSHIDI AND M. REDMANN

Proof. Let us vectorize the matrix differential equation (4.15) leading to
d
o vec [Z(t)] = K vec [Z(1)], vec[Z(0)] = vec [M],

where
q
K=Av®I+I®Ay+) N;®N;
i=1
with ® representing the Kronecker product between two matrices and vec|[ -] being the
vectorization operator. Therefore we know that

e~ vee [M] = vec [Z(1)] = vec [IE[dD(t)MQD(t)T]] =E[®(t) ® ®(r)] vec [M],

again exploiting the relation between the vectorization and the Kronecker product. Since this
identity is true for all matrices M, we have E[®(f) ® P(7)] = eX. This is now applied to

vec [Z(1)] = vee [E[D(1)T CTCd(@)]] = E[D(1) T @ &) Jvec [CTC] =X T vec[CTC],

since E[®() T @ () "] = (E[®(t) @ D(£)])". Therefore we obtain
d% vee [Zu(N] =K vec [Z,(D)], vec [Z.(0)] = vec[CT C].

Devectorizing this equation and exploiting the fact that T is the matrix representation of
L}, + IT* leads to the claim of this proposition. O

Integrating (4.17) and using

T
Or = E[ f o) CTCo() dt]
0

leads to
Z.(T)— CTC= L} [0r] + T*[Qr]. (4.18)

Once more, mean-square asymptotic stability yields the well-known relation —C'C =
L}, 10] + IT*[Q] by taking the limit as T — oo in (4.18). Although we found algebraic equa-
tion (4.16) and (4.18) from which Py and Q7 could be computed, it is still very challenging to
solve these equations. This is mainly due to the unknowns Z(T') and Z,.(T). In fact, in [31] we
suggest sampling and variance reduction-based strategies to solve (4.16) and (4.18). We refer
to this paper for more details.

5. Model reduction of Young/Stratonovich differential equations

In this section we introduce ROMs that are based on the (empirical) Gramians of Section 4.2
as they (approximately) identify the dominant subspaces of (3.1). In order to accomplish this,
we discuss state space transformations first that diagonalize these Gramians. This diagonal-
ization allows us to assign unimportant direction in the dynamics to certain state components
according to Proposition 4.2. Subsequently, the issue is split up into two parts. A truncation
procedure is briefly explained for the general case of H € [1/2, 1), in which unimportant state
variables are removed. This strategy is associated with (Petrov—) Galerkin schemes sketched
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in Section 3. Later, we focus on the case of H = 1/2 and point out an alternative ansatz that
is supposed to perform better than the previously discussed projection method. Let us notice
once more that since a fractional Brownian motion with H > 1/2 does not have independent
increments, no Lyapunov equations associated with the Gramians can be derived. Therefore
we frequently refer to the empirical versions of these Gramians and the corresponding reduced
dimension techniques.

5.1. State space transformation and balancing

We introduce a new variable x(¢) = Sx(f), where S is a regular matrix. This can be interpreted
as a coordinate transform that is chosen in order to diagonalize the Gramians of Section 4.2.
This transformation is the basis for the dimension reduction discussed in Sections 5.2 and 5.3.
Now, inserting x() = S~1%(7) into (3.1), we obtain

q
dx(r) = [AX(t) + Bu(r)] dr + Z Nx(1) o dWH(D),  %(0) =% = Xoz,
i=1

y(0) = Ci(t), tel0,Tl,

5.1)

where A = SAS~L, B= SB, ]V,- =SN;S—1, 5(0 = 5Xp, and C=CS"!. As we can observe from
(5.1), the output remains unchanged under the transformation. However, the fundamental
solution of the state equation in (5.1) is

d(r) = SP(H)S™. (5.2)

This is obtained by multiplying (4.1) by S from the left and S~! from the right. Relation (5.2)
immediately transfers to the Gramians, which are

T
Pr=E f P(s)(BB" +XoX, )D(s)" ds=SPrST, (5.3)
0

T
Or:=E / D) CTCP(s)ds=S"TQrps™ . (5.4)
0

Exploiting (5.2) again, the same relations as in (5.3) and (5.4) hold true if Py and Qr are
replaced by their limits P, Q or their empirical versions Pr, Q7. In the next definition, different
diagonalizing transformations § are introduced.

Definition 5.1.

(i) Let the state space transformation S be given by the eigenvalue decomposition
Pr=ST XS, where ¥ is the diagonal matrix of eigenvalues of Pz. Then the procedure
is called Pr-balancing.

(ii) Let Py and Qr be positive definite matrices. If S is of the form § = %1/2 UTL;,1 with
the factorization Py = LpL}T) and the spectral decomposition LfT, Orlp=U 207, where
¥2 is the diagonal matrix of eigenvalues of PrQr. Then the transformation is called
Pr/Qr-balancing.

(iii) Replacing P and Q7 with their limits (as 7 — o0) in (i) and (ii), then the schemes are
called P-balancing or P/Q-balancing, respectively, where in these cases X is either the
matrix of eigenvalues of P or X2 contains the eigenvalues of PQ.
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>iv) Usmg the empmcal versions of Py and Q7 instead, the methods in (i) and (ii) are called
Pr-balancing and P7/Qr-balancing. Here ¥ can be viewed as a random diagonal matrix
of the respective eigenvalues.

Notice that balancing based on Gramians Pr, P, or Pr refers to the aim of an approximation
of the full state x instead of y. Diagonalizing only one Gramian is, of course, also computation-
ally cheaper but certainly leads to a worse approximation of y if information in Q7, Q, or Or
is not involved in the model reduction procedure. It is not difficult to check that the transfor-
mations introduced in Definition 5.1 diagonalize the underlying Gramians. Nevertheless, we
formulate the following proposition.

Proposition 5.1.

e Using the matrix S in Definition 5.1(i), we find that the state variable Gramian of system
G.D)isPr=3%.

e Ifinstead S is of the form given in Definition 5.1(ii), we have Pr = Qr = ¥

o The same type of diagonalization is established if the underlying Gramians are either P,
Qor Pr, QOr.

Proof. The result follows by inserting thg res_pective S into (5.3) and (5.4). Since these
relations also hold true for the pairs P, Q and Pr, Or, the same argument applies in these cases
as well. (|

Having diagonal Gramians X, Proposition 4.2 (choose v to be the ith unit vector in R")
together with Remark 4.2 tells us that we can neglect state components in (5.1) that correspond
to small diagonal entries o; of X. These have to be truncated to obtain a reduced system.

5.2. Reduced-order models based on projection

In that spirit, we decompose the diagonal Gramian based on one of the balancing procedures
in Definition 5.1. We write
b}
Y= [ 22} , (5.5)

where X1 € R™" contains the r large diagonal entries of ¥ and X, the remaining small ones.
We further partition the balanced coefficient of (5.1) as follows:

1 _[An A % __[B X Nii N, v — [Xo. C—

A=[nan) B=[gnl N=[ixal Xo=[gl C=locl 6o
The balanced state of (5.1) is decomposed as x = [xl] where x; and x, are associated with X;
and X, respectively. Now, exploiting the insights of Proposition 4.2, x, barely contributes to
(5.1). We remove the equation for x, from the dynamics and set it equal to zero in the remaining
parts. This yields a reduced system

q
dx (1) = [A112(0) + Bl di + ) Ny () 0 dW (1), x,(0) =0, = X012,

=1 5.7
)’r(t) = Cl-x}’(t)’ re [09 T]7

which is of the form (3.4). If balancing according to Definition 5.1 is used, then V are the first
r cglumns of S~!, whereas W represents the first » columns of ST. Notice that if solely Pr, P,
or Pr are diagonalized (instead of a pair of Gramians), we have S~! =S and hence W = V..
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5.3. An alternative approach for the Stratonovich setting (H =1/2)

5.3.1. The alternative. As sketched in Section 3, the truncation/projection procedure is not
unique for H = 1/2, meaning that (3.5) can be considered instead of (5.7) (being of the form
(3.4)). Such a reduced system is obtained if We rewrite the state of (5.1) as a solution to an It
equation, meaning that A becomes Ay =A +5 Z N2 in the Itd setting. Now, removing x>
from this system as we explained in Section 5. 2 we obtam areduced It6 system

q
(1) = [An,112:(0) + Buu@] de + > Ny () dWH @), %,0) =0, = Xo,12.

1 (5.8)
yr()=Cix,(1), 1€[0,T],
where
1N,
An11=A1 + 3 ;(Ni,n + Ni,12Ni21)
=
is the left upper r x r block of Ay. In Stratonovich form, the system is
1
de,)=|(An+ 3 ZN' 12Ni21 )% (1) + Byu(t) | dt
r > ~ i, i, r
=
(5.9

q
+ D N0 o dW (1), x(0) =x0,, = Xo,12.
i=1
yr()=Cix,(n), 1€[0,T],
which has a state equation of the structure given in (3.5).

5.3.2. Comparison of (5.7) and (5.9) for H=1/2. Let us continue setting H = 1/2. Moreover,
we assume xp = 0 in this subsection for simplicity. We only focus on P-balancing along with
P/Q-balancing (explained in Definition 5.1(iii)) in order to emphasize our arguments. In addi-
tion, we always suppose that P and Q are positive definite. Let us point out that relations
between (3.1) and (5.9) are well studied due to the model reduction theory of Itd equations
exploiting the fact that these Stratonovich equations are equivalent to (3.2) and (5.8). In fact, the
(uncontrolled) state equation is mean-square asymptotically stable (]E||<I>(t)||2 — 0ast— 00)
if and only if the same is true for (3.2). This type of stability is well investigated in Itd settings;
see e.g. [9, 19]. It is again equivalent to the existence of a positive definite matrix X, so the
operator L4, + IT evaluated at X is a negative definite matrix, that is,

Lay[ X1+ I[X] < 0. (5.10)

Now, applying P/Q-balancing to (3.1) under the assumptions we made in this subsection, the
reduced system (5.9) preserves this property, that is, there exists a positive definite matrix X,

so that
q

AN,UXr—l—XrA;’“—i-ZNluXN 11 <O0. (5.11)
i=1
This result was established in [8] given o, # 0,41, where o; is the ith diagonal entry of X. If
P-balancing is used instead, (5.11) basically holds as well [32]. However, generally a further
Galerkin projection of the reduced system (not causing an error) is required in order to ensure
stability preservation. We illustrate with the following example that stability is not necessarily
preserved in (5.7) given the Stratonovich case.
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Example 5.1. Let us fix xo =0, g = 1 and consider (3.1) with

135 | 3
A= ¥ Y|, B=cT=||. m=]|"?
5 0 11

and hence Ay = [’01 _02]. This system is asymptotically mean-square stable, since (5.10) is

satisﬁed We apply P/Q-balancing in order to compute ROMs (5.7) and (5.9) for r=1 and
=1/2. Now, we find that 24y 1] +N1 11 = —0.85926 < 0, which is equivalent to (5.11) in
the scalar case. On the other hand, (5.7) is not stable, because

2(A11 +0.5N7 ;) + N2 |, =0.13825 > 0.

Since the fundamental solution of (5.7) is ®(r) = eAn/*+N LW O e obtain

IE[(I)(;)Z] = eZ(A11+N12,11)’ — 0138251

This illustrates that (5.7) grows exponentially, whereas the original system decays exponen-
tially. Hence, (5.7) provides a bad approximation quality, especially on large time scales.

Example 5.1 shows us that we cannot generally expect a good approximation of (3.1)
by (5.7) in the Stratonovich setting as the asymptotic behavior can be contrary. This is an
important theoretical finding as it indicates that direct dimension reduction in the Stratonovich
framework can lead to bad approximations.

We emphasize this argument further by looking at the error of the approximations if the full
model (3.1) and the reduced system (5.7) have the same asymptotic behavior. First, let us note
the following. If (3.1) is mean-square asymptotically stable, then applying P- or P/Q-balancing
to this equation ensures the existence of a matrix JV (depending on the method), so that

sup B [[y(1) =y (1)l < (tr (E2V)'2 Jlull 3, (5.12)
te[0, 7]

where y, is the output of (5.9). This was proved in [7] and [32]. Notice that VV is independent
of the diagonalized Gramian ¥ and ¥, contains the truncated eigenvalues only; see (5.5). It is
important to mention that Redmann and Pontes Duff [32] just looked at the P-balancing case if
C =1but (5.12) holds for general C, too. Let us now look at ROM (5.7) and check for a bound
like (5.12). First of all, we need to assume stability preservation in (5.7) for the existence of a
bound. This preservation is not naturally given according to Example 5.1, in contrast to (5.9).

Theorem 5.1. Let us consider the Stratonovich setting of H = 1/2. Let system (3.1) with output
y and xo = 0 be mean-square asymptotically stable. Moreover, suppose that (5.7) with output y,
and xo,» = 0 preserves this stability. If (5.7) is based on either P-balancing or P/Q-balancing
according to Definition 5.1(iii), we have

sup. IO =30l = (te(Z1 (0 — 0 Aw) + w W) Pz, 5.13)
tel0,

where

Wi= C; G+ 24y, 12Q2+Z i,12 ZQ[N' 1= 0Nin).
i=1
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The above matrices result from the partition (5.6) of the balanced realization (5.1) of (3.1) and

1 _ T1An11 AN12
Ay = N.21 AN.zz]’

where Ay =A + % Zl.q:] Niz. Moreover, we set Ay 1] = Z?:l N;12Ni21 and assume that

A

0 =10, 0,1 and Q, are the unique solutions to

1 TA o q o .
(AN,U — EANJl) 0+ 0Ay+ ) N[ ON;=—C]C, (5.14)

i=1

1 i 1 Lo T
<AN,11 - EAN,H) Qr+Qr<AN,11 - EAN,II) +ZN,~,11QrNi,11 =-C,/C1. (5.15)
i=1

The bound in (5.13) further involves the matrix X = [Zl 22] of either eigenvalues of P
(P-balancing) or square roots of eigenvalues of PQ (P/Q-balancing). In particular, X,
represents the truncated eigenvalues of the system.

Proof. We have to compare the outputs of (5.1) and (5.7). This is the same as calculating
the error between the corresponding Itd versions of these systems. In the It equation of (5.1),
A is replaced by Ay and the Itd form of (5.7) involves

1K, 1
A+ 3 X;Ni’“ =AN 11— EAN,II
=

instead of Ajy. Since either P-balancing or P/Q-balancing is used, we know that at least one of
the Gramians is diagonal, i.e. P = X (see Proposition 5.1). Since we are in the case of H =1/2,
we also know the relation to Lyapunov equations by Section 4.2.2, so we obtain

q
ANE+3Ay+ ) NN =-BB'. (5.16)

i=1
In the It0 setting, an error bound has been established in [7]. Applying this result yields

P ~ 1/2
sup Elly(r) — y, (1)l < (r(C=CT) + te(C1P,C] ) = 2te(CPCT)) /2 lul FRENCAY)
1€[0,T]

The reduced system Gramian P, as well as the mixed Gramian P exist due to the assumption
that stability is preserved in the reduced system. They can be defined as the unique solutions

of

1 1 T q
<AN,11 _EAN,11>Pr+Pr<AN,11 _EAN,H) +ZNi,11Pr ,T“=—BlBT, (5.18)
i=1
A 1 I S .
ANP+P(AN,“—§AN,U) +Y NPN[, =-BB]. (519
i=1
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Using the partitions of Ay and the other matrices in (5.6), we evaluate the first » columns of
(5.16) to obtain

BBl =AN[%]+ [ﬁz]g =[] (5.20)

112
_ AN,]I]Z [ElANn:I_I_Z Ni 11 2 N +[ A|2]Z N )
N.21 DAY 1, :21 i11 N2

Using the properties of the trace, we find the relation tr (C‘IAJCIF) =tr (QBBT) between the
mixed Gramians satisfying (5.14) and (5.19). In more detail, one can find this relation by
inserting (5.19) into tr (QBBIT) and exploiting the fact that two matrices can be switched in the
trace of a product of both without changing the result. We insert (5.20) into this relation, giving
us

o Al A A i i
JMCPCT):U(Q[[A%:;]E [2%2]"‘2 N; IATES [N o A lz)D
— AHIAN.11 1 111
—tr<21|:Q N,21]+ (AN,II _EAN,11> Q1+ZN 10l Nia i|>
tr(ElAN 11Q1)+tr(22|:AN 12Q2+ZN1T12Q 5;;]:|>

i=1

+

N =

The first » columns of (5.14) give us

- 1 T q .

Olawn ]+ (AN,ll - EAN,11> 01+ ZNLTUQ[N;;] =-C{ ()
and hence

o 1
— tr(CPC;r) = — tr(ClElC;r) + 5 tr(ElAN llQl) +tr<22|: N 12Q2 + ZN 12Q Nl ;]:|>

i=1

We exploit this for the bound in (5.17) and further find that
tr(CECH) =tr(C1Z1C) ) + tr(C2 220, ).
Thus we have
tr (CZCT) +tr(CyP,C] ) — 2tr(CPCY)

=tr(C1(P, — B1)C] ) +tr (EIA; 11Q1>

+tr<22|:C2 Cy+ 24y, 12Q2+22 10N ;j]D (5.21)

i=1
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Now we analyze P, — X1. The left upper r x r block of (5.16) fulfills

| 1 T q
(AN,II - EAN,II)EI + 21<AN,11 - EANJI) +ZN1',1121N[T11

i=1

q
1 1
T T T
=—-B1B| — El N,-JzEszz — EAN,IIEI — EIEAN,H'
=

Comparing this with (5.18) yields

| | T g
(AN,ll - EAN,II)(Pr - X))+ Pr— 21)<AN,11 - EAN,]1> + ZNi,ll(Pr - EI)N,'T“
i=1

’ T 1 LT
= ZNi,uEzN,-’lz + EAN,IIEI + ElEAN,ll'

i=1
Therefore, using (5.15), we obtain

tr(C1(P, — B1)C] ) = tr((Pr — Z1)C| C1)

1 T 1
=—tf<(Pr— 21)|:<AN,11 - EANJ]) Qr—i-Qr(AN,n - EANJl)

q
+ZN,',T“QrNi,111|>
i=1
1 1 '
=—tr| | [An.11 — EAN’” (Pr=2)+@Pr—ZD)|AN.11 — EAN,]I
q
+ ) NP — zl)NiTll}Qr>
i=1
q
=—tr<|:ZNi,l222NiT12+AN,1121:|Qr>
i=1
q
:—tr<|:22 ZNileQrNi,12+ElQrAN,11:|)-
i=1

Inserting this into (5.21) concludes the proof. (]

Even if stability is preserved in (5.7), we cannot ensure a small error if we only know that
3, has small diagonal entries. This is the main conclusion from Theorem 5.1, as the bound
depends on a matrix X with potentially very large diagonal entries reflecting the dominant
eigenvalues associated with the key modes of the system. If stability is not preserved in (5.7),
the bound in Theorem 5.1 will even be infinite. This is an indicator that there are cases in which
(5.7) might perform poorly. The correction term %AN,M = % Z?:l Ni 12N; 21 in (5.9) ensures
that the expression in (5.13) that depends on Ay 11 is canceled out. This leads to the bound in
(5.12). Further notice that our considerations are not restricted to finite intervals [0, 7']. We can
replace [0, T] with [0, co) in both (5.12) and (5.13).

https://doi.org/10.1017/jpr.2025.10039 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10039

22 N. JAMSHIDI AND M. REDMANN

At this point, let us also refer to the error analysis for Pr/Qr-balancing for H = 1/2 in the
1t6 setting [31]. In this reference, one can find an error bound in the same norm. However,
it is proved differently as it contains terms depending on the terminal time 7, which are
not present when P/Q-balancing is used. Let us conclude this paper by conducting several
numerical experiments.

6. Numerical results

In this section, the reduced-order techniques that are based on balancing and lead to a sys-
tem like that in (5.7) or (5.9) are applied to two examples. In detail, stochastic heat and wave
equations driven by fractional Brownian motions with different Hurst parameters H are con-
sidered and formally discretized in space. This discretization yields a system of the form (3.1),
which we reduce concerning the state space dimension. Before we provide details of the model
reduction procedure, let us briefly describe the time discretization that is required here as well.
We use an implicit scheme because spatial discretizations of the underlying stochastic partial
differential equations are stiff.

6.1. Time integration

The stochastic differential equations (3.1), (5.7), and (5.9) can be numerically solved by
employing a variety of general-purpose stochastic numerical schemes (see e.g. [15], [20], and
[26], and the references therein). Encountered frequently in practice, stiff differential equa-
tions present a difficult challenge for numerical simulation in both deterministic and stochastic
systems. Implicit methods are generally found to be more effective than explicit methods for
solving stiff problems. The goal of this work is to exploit an implicit numerical method that is
well-suited to addressing stiff stochastic differential equations. The stochastic implicit mid-
point method will be the subject of our attention throughout the entire numerical section.
We refer to [14] (H > 1/2) and [33] (H = 1/2) for more detailed consideration of Runge—
Kutta methods based on increments of the driver. In particular, the stochastic implicit midpoint
method is a Runge—Kutta scheme with Butcher tableau

11
2|2
1
It therefore takes the form

Xk + Xkt 1 At I Xk + Xk41
H
X1 = X + [A<T> +Bu<tk + 7>}At+ ?_1 Ni<T>AWi’k 6.1)

when applying it to (3.1), where At denotes the time step related to equidistant grid
points ;.. Moreover, we define AW{? = W,H (e +1)— WI.H (tx). The midpoint method converges
with almost sure/L”-rate (arbitrary close to) 2H — 1/2 for H € [1/2, 1). Before proceeding to
the numerical experiments, let us briefly sketch another MOR scheme that we use as a reference
method within the numerics.

6.2. POD-based method

The proper orthogonal decomposition (POD) method is a data-driven strategy for the reduc-
tion of large-scale models that is based on the singular value decomposition (SVD) of snapshot
matrices. However, POD techniques for stochastic differential equations driven by fBm have
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not yet been studied. For the convenience of the readers, a brief explanation of the POD method
is provided here. For a more detailed discussion, let us refer to [16].
The idea is to sample the solution for fixed # and x( to obtain matrices

Zi=[x(t1, w)), x(t2, @), ..., x(tnr, )], forwjeQ, j=1,..., N,

where N, Ny > 0 are the number of considered time points and samples. We introduce a data
matrix Z := [Xo, Z1, Z2, ..., Zns,] and calculate its SVD:

o)1)

The dominant subspace is identified by considering only singular vectors associated with the
singular values in Xz above a certain threshold. We end up with a POD-based reduced system
(3.4), where the projection matrix V =W consists of vectors associated with large singular
values of the snapshot matrix. Instead of using POD for (3.1) directly, we can also apply it to
subsystems (4.6) and (4.7). Subsequently, we find an approximation for (3.1) by the sum of the
reduced subsystems.

6.3. Dimension reduction for a stochastic heat equation

We begin with a modified version of an example studied in [7]. In particular, we do
not study an Itd equation driven by Brownian motion. Instead, we consider the follow-
ing Young/Stratonovich stochastic partial differential equation driven by a (scalar) fractional
Brownian motion W with Hurst parameter H € [1/2, 1):

0X(1. ©)
» =alAX(t,¢)+ 1[77/4,377/4]2({)”@)
H
pyetaioxe 0o 0 e, ceoap, O

X(t,¢)=0, tel0,1], ¢ 68[0,7'[]2, and X(0,¢)=bcos(¢),

where a, b > 0, y € R and a single input meaning that m = 1. The solution space for a mild
solution is assumed to be H = L*([0, 7]?), exploiting the fact that the Dirichlet Laplacian
generates a Cop-semigroup. The following average temperature is assumed to be the quantity of
interest:

4
Y()=-—

| X, £)de.
3% J10,712\ [ /4,37 /412

Based on the eigenfunctions of the Laplacian, a spectral Galerkin scheme analogous to the
method proposed and explained in [7] is applied to (6.2). Roughly speaking, such a dis-
cretization is based on an orthogonal projection onto the subspace spanned by the dominant
eigenvector of the Laplacian. This results in system (3.1) of order n with scalar control and
a fixed initial state xg. The detailed structure of the matrices A, B, N1, and C can be found
in [7]. In the following, we fix a = 0.2, b = 1 and set n = 1024. We investigate two cases. These
are H=0.5 and H =0.75. In the following, we explain the particular dimension reduction
techniques for each scenario.

Case H = 0.75. We pointed out in Section 4.2.2 that Gramians Pr and Qr (or their limits P
and Q) are hard to compute for H > 1/2, since a link between these matrices and ordinary dif-
ferential or algebraic equations is unknown. Therefore we solely consider empirical Gramians

https://doi.org/10.1017/jpr.2025.10039 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10039

24 N. JAMSHIDI AND M. REDMANN

discussed in Section 4.2.2 for H = 0.75. In fact, Py is available by sampling the solution of
(4.7), whereas Qr seems computationally much more involved. For that reason, we apply Pr-
balancing (see Definition 5.1(iv)) to system (3.1) obtained from the above heat equation. This
results in (5.1), which is truncated in order to find the reduced equation (5.7). Two other related
approaches are conducted in this section as well.

e We apply the same Pr-balancing procedure to subsystems (4.6) and (4.7), that is, Py, -
balancing is used for (4.6) and I_JXO,T-balancing for (4.7); compare with (4.14). The sum
of the resulting reduced-order systems is then used to approximate (3.1). We refer to this
second ansatz as splitting-based Pr-balancing.

e Another empirical dimension reduction technique, discussed in Section 6.2, is POD. In
this method, the solution space of (3.1) is learned using samples which are potentially
based on various initial states xo and controls u. Note that the snapshot matrices are
computed from a small set of xg and u to provide a POD-based reduced system (3.4) that
performs well for a larger number of xg and u. In this approach we apply the POD scheme
to the subsystems (4.6) and (4.7), and approximate (3.1) by the sum of the reduced
subsystems. We refer to this method as splitting-based POD.

Case H = 0.5. Similar techniques are exploited for the Stratonovich setting. However, we have
the advantage that Pr and Qr can be computed from matrix equations; see (4.16) and (4.18).
Still these equations are difficult to solve. Therefore we use the sampling and variance reduc-
tion based schemes proposed in [31] in order to solve them. Due to the availability of both
Gramians, we apply Pr/Qr-balancing (see Definition 5.1(ii)) instead of the procedure based
on diagonalizing Pr. However, we truncate differently, that is, the reduced system (5.9) is used
instead due to the drawbacks of (5.7) pointed out in Section 5.3.2 when H = 0.5. The splitting-
based Pr/Qr-balancing is defined the same way. It is the technique where P, 7/Qr-balancing
is conducted for (4.6) and Py, r/Qr-balancing is exploited for (4.7) to obtain reduced systems
of the form (5.9) for each subsystem. Again we use a splitting-based POD scheme according
to [16] for H =0.5.

For the discretization in time, the stochastic midpoint method (6.1) is employed here, where
the number of time steps is N = 100. Moreover, all empirical objects are calculated based on
N; = 103 samples. The error between the reduced systems and the original model is computed

for the control
2 .
u(t) =,/ — sin (),
T

where the reduction error is measured by the quantity

supyeio. 1] Elly(@) — y-(@ll2

Re=
sup;epo, 1 Elly(@2

In the case of H = 0.5, Figure 1 illustrates that splitting-based P7/Qr-balancing (Gramian 2)
and Pr/Qr-balancing (Gramian 1) generate very similar results. Both techniques produce
notably better outcomes compared to the splitting-based POD method. The worst case errors
of the plot are also stated in the associated Table 1.

On the other hand, the Young setting in which we have H =0.75 presents a different
scenario. Figure 2 demonstrates that splitting-based POD exhibits better performance com-
pared to splitting-based Pr-balancing (Gramian 2) and the usual Pz-balancing (Gramian 1),
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TABLE 1. Rg forre {2, 4,8, 16} and H =0.5.

r POD Gramian 1 Gramian 2
2 2.4471e-02 2.6131e-03 2.4251e-03
4 8.1898e-04 3.6254e-04 3.9410e-04
8 9.0777e-05 1.4427e-05 1.5756e-05
16 3.4842e-05 6.2128e-07 6.1161e-07
H=0.5
107! T T T T T T
—>—POD
—©—1.Gramian
1072 —&—2.Gramian 3

Relative error

10»7 1 1 1 1

Reduced order dimension r

FIGURE 1. R for three approaches with Hurst parameters H = 0.5.

except when the reduced dimension is 16. Surprisingly, for r =16, the Gramian 2 method
yields better results compared to POD. It is worth noting that both empirical Gramian
methods provide similar outcomes, which is an indicator for a nearly identical reduction
potential for both subsystems (4.6) and (4.7). Note that the error of the plot can be found in
Table 2.

For both H = 0.5 and H =0.75 an enormous reduction potential can be observed, meaning
that small dimensions r lead to accurate approximations. According to Remark 4.2, this is
known a priori by the strong decay of certain eigenvalues associated with the system Gramians,
since small eigenvalues indicate variables of low relevance. Given H = 0.75, Figure 3 shows
the eigenvalues of Py (Gramian 1), the sum eigenvalues of P, 7 and Py, 7 (Gramian 2) as well
as the sum of the singular values corresponding to the POD snapshot matrices of subsystems
(4.6) and (4.7). Similar types of algebraic values are considered for H = 0.5 in Figure 4. Here,
square roots of eigenvalues of P7Qr (Gramian 1) or the sum of square roots of eigenvalues
of P, 7Ot and Py, 7Or (Gramian 2) are depicted. The large number of small eigenvalues (or
singular values) explains why small errors could be achieved in our simulations.
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TABLE 2. Rg forr€ {2, 4, 8, 16} and H =0.75.

r POD Gramian 1 Gramian 2
2 1.9428e-02 2.0531e-02 2.0543e-02
4 4.6419e-04 4.2626e-04 5.6448e-04
8 3.5032e-05 7.8586e-05 7.1846e-05
16 1.1479e-05 1.6520e-05 9.8581e-06
H=0.75
107" T T T T T T
—>—POD

—©—1.Gramian
—HB—2.Gramian

Relative error

Reduced order dimension r

FIGURE 2. R, for three approaches with Hurst parameters H = 0.75.

6.4. Dimension reduction for a stochastic wave equation

We consider the following controlled stochastic partial differential equation, which is a
modification of the example studied in [29]. In detail, we consider fractional drivers wH
with H €[0.5, 1) in a Young/Stratonovich setting instead of It6 differential equations driven
by Brownian motion. For ¢ € [0, 1] and ¢ € [0, 7],

0’X(t,5) | 9X(t, ) _ 9 ey el aWH (1)
Y +a Py _a—ng(t,g“)+e u(t) + 2e X(t,0)o ,

(6.3)
X(1,00=0=X(@tm), te[0,1], X(0,7)=0, %X(z,{)\t:():bcos(;)
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H=0.75
105 T T T T T T T T T
——POD
—6—1.Gramian
E .
T 40 —B—2.Gramian
2]
>
)
9]
£
S .-
o 10°
9]
=
©
>
c
S 410
o 10
6
)
Q
=
g 4015
S
S
o
£
2 10-20 Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
i (index)

FIGURE 3. First 50 POD singular values or eigenvalues associated with Py for H = 0.75.

H=0.5
105 T T T T T T T T T
——POD
—6—1.Gramian
—&—2.Gramian

Singular values or eigenvalues of the system
3
>

Il Il Il Il Il Il

_.
<.
&

5 10 15 20 25 30 35 40 45 50

i (index)

FIGURE 4. First 50 POD singular values or eigenvalues associated with P7/Qr for H =0.5.
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H=0.75

——POD
—6—1.Gramian
—HB—2.Gramian

Relative error

108 1 1 1 1 1 1
5 10 15 20 25 30

Reduced order dimension r

FIGURE 5. R, for three approaches with Hurst parameters H = 0.75.

is investigated and the output equation is

1 w/2+€ n/2+€8 T
Y(t)=Z [/2 X(1,¢)dg //2 gx(l,é)dé )

so that both the position and velocity of the middle of the string are observed. Moreover,
a, b >0 and € > 0. Again the solution of (6.3) should be in the mild sense (after transforma-
tion into a first-order equation), where X(¢, -) € Hé([O, m]) and %X(t, ) e L([0, 7). Formally
discretizing (6.3) as in [29], the spectral Galerkin-based system is given by a model of the
form (3.1) with g = 1. We refer to [29] for details of the matrices of this system. In our sim-
ulations, we assume b =1 and a = 2. Further, the sizes of spatial and time discretization are
n=1000 and A/ = 100, respectively. In this example we consider the same scenario as we did
in the first example (6.2), which means that we calculate a splitting-based POD ROM using
snapshots of subsystems (4.6) and (4.7) for some xg, controls u, and a low number of sam-
ples ;. Moreover, (splitting-based) Pr-based balancing is applied to the wave equation given
H =0.75. If H=0.5, empirical Gramians are replaced by exact pairs of Gramians, meaning
that (splitting-based) Pr/Qr-based balancing is exploited. The results are shown in Figures 5

and 6 for
12 .
u(t) =,/ — sin ().
b4

Based on our observations, we find that the splitting-based Pr/Qr-based balancing method
(Gramian 2) outperforms the Pr/Q7-based balancing method (Gramian 1) for both cases when
H =0.75 and H = 0.5. Additionally, the splitting-based POD performs best for H =0.75 and
worst for H = 0.5. The results are again presented in Tables 3 and 4, where the exact numbers
are shown.
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TABLE 3. Rg forre {4, 8, 16, 32} and H =0.75.

r POD Gramian 1 Gramian 2

4 2.8447e-03 8.4704e-02 2.6423e-02
8 8.0259¢-04 1.7882e-02 4.7821e-03
16 2.0032e-04 3.9414e-03 2.3544¢-03
32 6.1316e-05 7.5687e-05 6.8516e-05

TABLE 4. Rg for re {4, 8, 16, 32} and H =0.5.

r POD Gramian 1 Gramian 2
4 3.1540e-03 1.7312e-03 7.1584e-04
8 4.6545e-04 8.4544e-05 3.1884e-05
16 2.9716e-04 3.1405e-05 1.2200e-05
32 4.6438e-05 1.1572e-05 4.5707e-06
H=0.5
10'2 T T T T T T
——POD

—&—1.Gramian
—HB—2.Gramian

Relative error

-
e
&

1076
5 10 15 20 25 30

Reduced order dimension r

FIGURE 6. R for three approaches with Hurst parameters H = 0.5.

Interestingly, for both the heat and the wave equation, splitting-based POD performs best in
the Young setting (H = 0.75) but worst in the Stratonovich case (H = 0.5).

Analogous to Figures 3 and 4, Figures 7 and 8§ illustrate the eigenvalues of approximated
or exact Gramians as well as the sum of singular values corresponding to the POD snapshot
matrices.
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H=0.75
105 T T T T T T T T T
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FIGURE 7. First 50 POD singular values or eigenvalues associated with Py for H = 0.75.

H=0.5
102 T T T T T T T T T
—>—POD
—©—1.Gramian
—H—2.Gramian

Singular values or eigenvalues of the system

5 10 15 20 25 30 35 40 45 50

i (index)

FIGURE 8. First 50 POD singular values or eigenvalues associated with P7/Qr for H =0.5.
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