AN ESTIMATE FOR THE ORDER OF RATIONAL MATRICES

Randee Putz

In this note we prove what we believe to be a new result concerning matrices, namely, that if an $n \times n$ matrix with rational entries has a finite order then this order is bounded. We also give an estimate for this bound and an application.

First we prove a number theoretic lemma which we shall use for our estimate.

LEMMA. Let $\pi(n)$ denote the number of primes less than n. Also let $C(n) = \Pi(p/p-1)$ where the product is taken over the first $\pi(n)$ primes. Let m_1, \ldots, m_n be integers for which $\phi(m_j) \leq n$ $(j = 1, \ldots, n)$ (where ϕ denotes Euler's function) and $m = [m_1, \ldots, m_n]$ their least common multiple. Then

$$m < C(n+1) n^{\pi(n+1)}$$

<u>Proof.</u> Let $m = p_1^{r_1} \cdots p_s^{r_s}$ be the prime decomposition of m. The fact that m is the least common multiple of m_1, \ldots, m_n implies that $p_i^{r_i}$ must appear as a factor of some m_j . Furthermore, since by hypothesis $\phi(m_j) \le n$, we have $\phi(p_i^{r_i}) \le n$, that is, $p_i^{r_i} \le n(p_i/p_i - 1)$. Moreover, as a factor of $\phi(p_i^{r_i})$, also $p_i - 1 \le n$ and hence $p_i \le n + 1$. Therefore, as $s \le \pi(n+1)$,

$$m = \prod_{i=1}^{s} p_i^{r_i} \leq C(n+1) n^{\pi(n+1)}.$$

THEOREM. Let A be an $n \times n$ rational matrix. If A

459

has order m then

$$m \le e^{C} (\log(n+1))(1+1/\log^{2}(n+1)) n^{\pi(n+1)}$$

where C is Euler's constant.

<u>Proof.</u> Let c_1, \ldots, c_n denote the eigenvalues of A. The fact that $A^m = I$ implies that A is diagonizable (3, p.343) and therefore, there exists a basis in complex n space of corresponding characteristic vectors x_1, \ldots, x_n . From the fact that $A x_i = c_i x_i$ we have $A^k x_i = c_i^k x_i$, and therefore that the eigenvalues of A are roots of unity. (This shows that a necessary condition for A to have finite order is that the coefficients of its characteristic polynomial must be dominated in absolute value by the coefficients of the polynomial $(z+1)^n$.) Suppose that c_i is a primitive m_i - th root of unity, and let r denote the least common multiple of m_1, \ldots, m_n . Because x_1, \ldots, x_n form a basis and $c_i^r = 1$, we have $A^r = I$. But r is less than or equal to the order m, so r = m. Thus m is the least common multiple of m_1, \ldots, m_n .

Now the minimal polynomial of c_i over the rationals has degree $\phi(m_i)$ (4, p.160). Therefore, since the characteristic polynomial of A has rational coefficients and is of degree n, we have $\phi(m_i) \leq n$. Thus by the lemma, $m \leq C(n+1) n^{\pi(n+1)}$. From (2) we have the following estimate for C(n+1), $C(n+1) \leq e^C (\log(n+1))(1+1/\log^2(n+1))$ (which yields the theorem), and an approximate value for e^C , $e^C = 1.78107$ 24179 90198.

REMARK. For a particular n one can compute for each i the greatest exponent r_i occurring in the prime decomposition of m, and denote it by s_i . The estimate for m then becomes $m \le p_1^{s_1} \cdots p_{\pi(n+1)}^{s_{\pi(n+1)}} \pi(n+1) = N$, whence we see that at most $(s_1+1) \cdots (s_{\pi(n+1)}+1)$ of the numbers less than or equal to N are possibilities for the order of a given $n \times n$ rational

460

matrix. For example if n = 5 the proof of the theorem shows that $m \le 2^3 \cdot 3 \cdot 5 = N$, (whereas using $C(6) \cdot 5^3$ as an estimate only yields $m \le 468$) and that only sixteen numbers less than or equal to 120 are possibilities for the order of a rational 5×5 matrix, namely 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

As a corollary to the proof of the theorem we have the following.

COROLLARY. Let G be a group of order $p^m s$ (p and s relatively prime), and let f be a representation of G by non-singular $n \times n$ rational matrices, where $n . Then the order of the kernel H of the representation is divisible by <math>p^m$.

<u>Proof.</u> The representation f induces a faithful representation \overline{f} of G/H. If the order of H is not divisible by p^{m} then the prime p divides the order of G/H. Let a be an element of order p in G/H (1, p. 43), then $\overline{f}(a)$ has order p which is a contradiction.

REFERENCES

- Marshall Hall, Jr., The Theory of Groups. Macmillan, 1959.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate Formulas for some Functions of Prime Numbers. Illinois Journal of Mathematics, Vol. 6, No. 1, March, 1962, 64-94.
- 3. O. Schreier and E. Sperner, Modern Algebra and Matrix Theory. Chelsea, 1955.
- B.L. van der Waerden, Modern Algebra, Vol. 1, Ungar, 1953.

Temple University

461