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A NOTE ON THE RADIAL GROWTH OF BLOCH FUNCTIONS

DANIEL GIRELA

The radial growth of Bloch functions has been extensively studied. Using integral
means estimates and the Hardy Littlewood theorem, Makarov proved the so called
law of iterated logarithm for Bloch functions. This result has also been obtained
using probabilistic arguments. In this paper we present another method of study-
ing the radial growth of Bloch functions, having the integral means estimates as
starting point and using certain results about normal functions.

1. INTRODUCTION

Let A denote the unit disc {z £ C : \z\ < 1}. For 0 < p < oo and g analytic in
A define

/p(r> 9) = h /* l 5 ( r e t f l ) IP Mt 0<r< L

A function / analytic in A is said to be a Bloch function if

II/IIB = 1/(0)1 +Sup (l-|z|2)|/ '(z)|<oo.

The space of all Bloch functions will be denoted by B.
Clunie and MacGregor in [4] and Makarov in [10] have proved the sharp estimate

(1) Ir(r>f) = °((lo&T

valid for 0 < p < oo and / £ B.
The radial growth of Bloch functions has been extensively studied recently. Clunie

and MacGregor proved in [4] the following result.

THEOREM A. ([4, Theorem 3]). Let f be a Bloch function and a > 1/2; then
for ahnost every 0 € (— T, T)

The sharp result of this kind is the so-called law of iterated logarithm for Bloch
functions proved by Makarov in [10].
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144 D. Girela [2]

THEOREM B. ([10, Theorem A]). There exists an absolute constant C > 0 such

that if f is a Bloch function then for almost every 6 <E (—w, T )

(3) lirn sup \l^D\ < C ||/||B .
(

p
(log YT7 logloglog ^ J

A proof of Theorem B with C = 1 is presented by Pommerenke in [12] where he
also proves that C > 0.685.

The proofs of Clunie and MacGregor, Makarov and Pommerenke are based on (1)
and the Hardy-Littlewood theorem [5, pp.12, 235]. A similar argument was used by
the author in [6] to obtain the analogue of Theorem B for certain subspaces of B.

Subsequently a number of different proofs of Theorem B have been given. Let
/ 6 B and set fr(z) = f{rz), 0 < r < 1. Define

)J\f'r{z)\* dxdy

where 0 < a < 1 and Ta(9) is the interior of the smallest convex set containing the
disc {|z| < a} and eie.

ff.(/r)(«) = (J: JJA log ±P${z) |/;(*)|2 dxdy^j

where Pe(z) = f 1 — |z| J / |e*e — z\ is the Poisson kernel. Then Bafiuelos proved in

[1] that

(4) M / O l l L ^ ^

Since ^la(^) ^ Cag*{h) ahnost everywhere, we have

(5) UMWl $ca\\f\\
2
B\ogY±^.

Using (4) and probabilistic arguments, Banuelos [1, Theorem 3] obtained a proof of
Theorem B with C — 1. We remark that (3) can also be deduced from (5) and [3,
Theorem 3.2]. Przytycki obtained in [13] another proof of Theorem B by approximating
a sequence of trigonometric polynomials associated to a Bloch function by a martingale
on dA.
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We should also notice that Korenblum proved in [8] that if / is a Bloch function
then

(6)

and using this result and the John-Nirenberg theorem [7] he obtained a result which is
stronger than Theorem A but weaker than Theorem B.

In this paper we will present a new method of studying the radial growth of Bloch
functions having the integral means estimates (1) as starting point. However, we will not
use the Hardy-Littlewood maximal theorem. We will use instead a result of Bagemihl
and Seidel about limits of normal functions. This method will lead us to obtain a new
proof of Theorem A but unfortunately it does not seem to lead to a proof of Makarov's
theorem. Consequently, it is the proof and not the result which is interesting in this
paper.

In Section 2 we will state some results about normal functions which will be needed
in our proof of Theorem A which will be presented in Section 3.

2. SOME RESULTS ABOUT NORMAL FUNCTIONS

Recall [9] (see also [11, Chapter 9]) that a function g meromorphic in A is said
to be a normal function if

It is trivial that every Bloch function is a normal function. We will need the following

stronger result.

PROPOSITION 1 . Let f be a Blocii function and 0 < A < 1. Set

I log 1- *7T 1 ,
V 1 - 2 )

Then g is a normal function.

PROOF: Notice that

(8)
1

log + iv
1 - 2

Computing g'(z) and using (8), we easily see that

z € A .
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where

(10)

and

Since

we obtain

i-N2
log

l - z

J l lB

- A - l

2,

•a I/WI log
\ - z

Now, if \f(z)\ ^ 1, using (8), we obtain trivially B(z) ^ 2.
On the other hand, if |/(z)| ^ 1, we have

log
\-z

17T

- A - l
1 - 1 log

x-i

the last inequality follows from (8) and the fact that A < 1. Hence, in any case we have
B{z) ^ 2 which, with (9) and (10), shows that

finishing the proof of Proposition 1. U

Bagemihl and Seidel studied in [2] the following question: Let / be a function
meromorphic in A and {zn} be a sequence of points in A that converges to a point
£ £ dA. Suppose that f(zn) —* c, as n —> oo. Under what conditions on / or on the
sequence {zn} can it be inferred that f(z) —y c, as z —> f in some continuous manner?
Among other, they proved the following result.

THEOREM C. ([2, Theorem 2]). Let {zn} be a sequence of points in A which
converges to a point £ £ dA and is such that p n - » 0 where

pn = p[zn, zn+1) = - log
2

r : r
— \zn — zn+1\

denotes the hyperbolic distance trom zn to zn+i • Let f be a meromorphic normal
function in A such that f(zn) —» c, as n —» oo, where c is finite or infinite. Then f
has the non-tangential hmit c at £.
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3. P R O O F OF THEOREM A

Let / be a Bloch function and a > 1/2. We may assume without loss of generality
that a ^ 1. Take and fix (3 such that

(11) 2 < / ? < ° ^ 1

and let p be defined by

(12)

Set
(13) rn = l-exp(-y/n), n = 1, 2, 3, . . .

e»)| > (log ^ - i - ) " 1 .

and

(14) En = lee(-n,n):\j

Using (1), we deduce that there exists C = C(p, / ) > 0 such that

(15) / | / ( r e i e ) | P <£0^C( log -—) , n < r < 1.

Then, with \En\ denoting the Lebesgue measure of En, (15), the definition of En, (12),
and (13) show that

Hence

(16)
n=l n=l

Let £ = {fl £ (—7r, 7r) : 9 belongs to infinitely many of the sets En}. Then

and hence, using (16), we see that

Let
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Notice that |.F| = 2TT.

We will prove the following result.

(19) Let Oe F. Then f{z)(log — j -» 0 as 2 -» eie, non-tangentially.

Since \F\ = 2ir, Theorem A follows from (19). Hence it only remains to prove (19).

PROOF OF (19): . We may assume without loss of generality that 0 = 0. Set

(20) ^(2)=/(

Since 1/2 < a ^ 1, Proposition 1 shows that g is a normal function.

It follows from the definition of F that there exists N such that

and hence, using (11) and (20), we deduce that

(21) g(rn) - • 0, as n -> 00.

Let pn = p(rB)
 rn+i) denote the hyperbolic distance from r n to r n + i . It is a simple

exercise to show that pn —» 0, as n —> 00. Then, using (21), Theorem C yields

g(z) —» 0, as z -> 1, non-tangentially,

and, consequently

( 1 ^ ~ a

/ (z ) I log j—- I —» 0, as z —» 1, non-tangentially.

This finishes the proof. U
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