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Conditional value-at-risk (CVaR) and conditional expected shortfall (CES) are
widely adopted risk measures which help monitor potential tail risk while adapting to
evolving market information. In this paper, we propose an approach to constructing
simultaneous confidence bands (SCBs) for tail risk as measured by CVaR and CES,
with the confidence bands uniformly valid for a set of tail levels. We consider one-
sided tail risk (downside or upside tail risk) as well as relative tail risk (the ratio of
upside to downside tail risk). A general class of location-scale models with heavy-
tailed innovations is employed to filter out the return dynamics. Then, CVaR and
CES are estimated with the aid of extreme value theory. In the asymptotic theory,
we consider two scenarios: (i) the extreme scenario that allows for extrapolation
beyond the range of the available data and (ii) the intermediate scenario that works
exclusively in the case where the available data are adequate relative to the tail
level. For finite-sample implementation, we propose a novel bootstrap procedure
to circumvent the slow convergence rates of the SCBs as well as infeasibility
of approximating the limiting distributions. A series of Monte Carlo simulations
confirm that our approach works well in finite samples.

1. INTRODUCTION

When investing in a risky asset, investors assuming a long position are exposed to
downside tail risk due to a sharp fall of the asset price, and investors assuming a
short position are exposed to upside tail risk due to a sharp rise of the asset price.
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In the practice of risk management and investment evaluation, it is important to
monitor potential tail risk while adapting to evolving market information, partic-
ularly the volatility dynamics (McNeil and Frey, 2000, pp. 272–273). A leading
vehicle that aids in fulfilling this task is the conditional tail risk measure, among
whose subordinates the most prominent are conditional value-at-risk (CVaR) and
conditional expected shortfall (CES).1 Let {Rt} be a sequence of returns on a certain
risky asset, and let It be the historical information available up to time t. Based on
observed data from time 1 through n, at a tail level τ which is close to 0, the one-
period ahead upside CVaR and CES are, respectively, defined as

U-CVaR(τ ) = QRn+1(1− τ |In) and U-CES(τ ) = E[Rn+1|Rn+1 > U-CVaR(τ ),In],

where QRn+1(·|In) is the conditional quantile function of Rn+1 given In. Similarly,
the one-period ahead downside CVaR and CES at the tail level τ are, respectively,
defined as

D-CVaR(τ )

= Q−Rn+1(1− τ |In) and D-CES(τ ) = E[−Rn+1|−Rn+1 > D-CVaR(τ ),In],

where Q−Rn+1(·|In) is the conditional quantile function of −Rn+1 given In. In
addition, to facilitate a comparison of downside and upside tail risk, we define,
respectively, the one-period ahead relative CVaR and CES at the tail level τ as

R-CVaR(τ ) = U-CVaR(τ )

D-CVaR(τ )
and R-CES(τ ) = U-CES(τ )

D-CES(τ )
.

In this paper, we propose an approach to constructing simultaneous confidence
bands (SCBs) for upside, downside, and relative CVaR and CES, with the SCBs
uniformly valid for a set of tail levels. The construction of confidence intervals
for one-sided CVaR and CES at a single tail level has been studied in several
works (e.g., Chan et al., 2007; Martins-Filho, Yao, and Torero, 2018; Hoga, 2019a).
Compared with the confidence interval at a single tail level, simultaneous inference
based on the SCB is more appealing both practically and theoretically. First, risk
measurement at a single tail level gives a limited view of the potential loss and
hence can be misleading, particularly during turbulent periods when the market
risk increases (e.g., Francq and Zakoïan, 2016). Therefore, it is desirable to use
multiple tail levels for robust analysis and overall control of the tail risk. For
instance, although it is common for financial institutions to specify their trading
limits as the 1% daily CVaR or CES of their trading books, jointly considering the
tail levels in [0.5%,1%] helps understand the potential loss amid more extreme
market downturns. Second, from the perspective of statistical inference, one cannot
base joint inference for multiple tail levels on a direct combination of separate

1In this paper, we focus on the conditional tail risk measure given historical information, in contrast to the
unconditional tail risk measure. A main distinction between conditional and unconditional risk measures lies in that
conditional risk measures are mainly for daily monitoring of market risk and unconditional risk measures are suitable
for longer-term risk management (see, for example, (McNeil and Frey, 2000, p. 272) and Hoga (2019b, p. 590)).
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inference at each tail level, because this incurs the multiplicity effect that leads
to deflated coverage rates of confidence intervals (e.g., Romano, Shaikh, and
Wolf, 2018). On the contrary, the SCB is immune to the multiplicity effect and
asymptotically targets the nominal confidence level.

We model the dynamics of Rt via a semiparametric location-scale model,
in which the conditional mean and variance are parametrically specified, but
the innovation distribution is unspecified. The key assumption concerning the
innovation distribution is that it has Pareto-type heavy tails. We first fit the location-
scale model to obtain standardized residuals, and then employ extreme value
theory (EVT) to estimate the risk measures. This type of two-stage approach is
pioneered by McNeil and Frey (2000) and has now been standard in the field of
conditional risk measure estimation (e.g., Chan et al., 2007; Martins-Filho et al.,
2018; Hoga, 2019a, 2022).

When deriving the asymptotic results, we work under the double asymptotics,
namely n → ∞ and τ → 0, which is common to EVT-based asymptotic theory
(e.g., de Haan and Ferreira, 2006). In our asymptotic theory, we consider two
scenarios: (i) the extreme scenario that allows for extrapolation beyond the range
of the available data and (ii) the intermediate scenario that works exclusively in the
case where the data are adequate relative to the tail level. Both of the two scenarios
have their relative merits, and when to use which depends on whether extrapolation
is needed. Theoretically, when the data are adequate relative to the tail level (that
is, when extrapolation is not needed), the intermediate scenario can provide a more
accurate finite-sample approximation, because some terms that are neglected in the
extreme scenario are recalled and hence the approximation error is reduced. This
is confirmed by a set of Monte Carlo simulations in Section 5. Nonetheless, our
simulations also reveal that when extrapolation is indeed necessary (that is, when
the tail lies out of the range of the available data), the extreme scenario works
reasonably well.

This paper makes several contributions. First, this paper provides a unifying
asymptotic theory for simultaneous inference for tail risk. The literature has
witnessed continued efforts to develop asymptotic theories for conditional risk
measure estimators. Chan et al. (2007) and Hoga (2019a) derive asymptotic
properties of estimators of CVaR and CES in the autoregressive moving aver-
age (ARMA)–generalized autoregressive conditional heteroskedastic (GARCH)
model, whereas Martins-Filho et al. (2018) do so in a nonparametric location-scale
model. The above papers confine their attention to one-sided tail risk (downside or
upside only) and only consider tail risk measures at a single tail level. Hoga (2022)
establishes a limiting theory for the distortion risk measure and expectile in a
general location-scale model and considers SCBs. Again, only one-sided tail risk is
considered in Hoga (2022). In addition, each of the existing studies only considers
one of the two scenarios of asymptotic theory in this paper. Chan et al. (2007)) and
Hoga (2019a, 2022) derive their asymptotic theory in the extreme scenario, and
the asymptotic theory of Martins-Filho et al. (2018) is developed under a condition
that is essentially equivalent to the intermediate scenario. By incorporating the two
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scenarios in a unifying framework, our theory substantially generalizes the existing
studies.

Second, this paper provides a limiting theory for the relative risk measure,
allowing risk managers to monitor tail risk not only in the absolute sense, but
also in the relative sense. Inference for relative tail risk is relevant because it
is useful to both expected utility and nonexpected utility investors in making
investment decisions. The cumulative prospect theory (CPT) of Tversky and
Kahneman (1992) has confirmed that nonexpected utility investors are generally
risk-seeking for tail gains, but are risk-averse for tail losses. A CPT investor
generally overweights the tails of the return distribution and hence prefers lottery-
like, or positively skewed, assets. Therefore, our approach possesses practical
relevance in that it can help CPT investors to identify assets with more tail gains
than tail losses (that is, assets with more upside risk than downside risk), which can
make their overall wealth more lottery-like. On the other hand, Barberis and Huang
(2008) show that preference for a lottery-like asset can make the asset overpriced,
and hence creates a chance for expected utility investors who can try to exploit
the overpricing by assuming short positions. Nonetheless, as Barberis and Huang
(2008) argue, when shorting the lottery-like asset, expected utility investors face
the risk of poor short-term performance. Then, our approach would help expected
utility investors to monitor the short selling strategy by quantifying the loss relative
to the gain.

Third, we propose a novel bootstrap procedure for finite-sample implemen-
tation. Two implementational issues arise in employing our established theory
to construct SCBs. The first issue is about the slow convergence rates of the
theoretical SCBs in both the extreme and intermediate scenarios, and the other
issue is due to infeasibility of approximating the limiting distributions in the inter-
mediate scenario. To circumvent these issues, we suggest an easy-to-implement
bootstrap procedure. The bootstrap procedure is based on uniform expansions of
the risk measure estimators and employs the idea of multiplier bootstrap. Extensive
simulations confirm that the bootstrap procedure delivers favorable finite-sample
performance.

Finally, we give a formal treatment to the issue of information truncation under
general conditions. Information truncation arises frequently due to the fact that,
although the dynamics usually involve infinite historical information, a feasible
forecast of tail risk is based on finite observations. In addition, our framework
allows for flexible dynamic models. Existing studies are usually confined to
linear models such as the ARMA–GARCH model (McNeil and Frey, 2000; Chan
et al., 2007; Hoga, 2019a). On the contrary, our framework facilitates flexible
specifications, particularly those depicting nonlinear and nonsmooth dynamics
(e.g., the threshold GARCH [TGARCH] model). The flexibility is of much
practical importance, as accounting for nonlinearity is often critical to the success
of financial time series modeling (e.g., Tsay, 2010, Chaps. 3 and 4).

The rest of this paper is organized as follows. Section 2 presents the framework
and illustrates how to estimate CVaR and CES. Section 3 establishes the asymptotic
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theory. Section 4 describes the bootstrap method and justifies its validity. Section 5
contains results of a series of Monte Carlo simulations. Section 6 concludes the
paper and describes future work. All mathematical proofs of main results are
relegated to the Appendix. Auxiliary lemmas along with their proofs can be found
in the Supplementary Material.

2. THE FRAMEWORK AND ESTIMATION OF CVAR AND CES

2.1. The Framework

Assumption 2.1. Rt follows the location-scale model:

Rt = m(It−1,θ0)+σ(It−1,θ0)εt, (2.1)

where m(It−1,θ0) and σ 2(It−1,θ0), both known up to an unknown parameter θ0,
are, respectively, the conditional mean and conditional variance of Rt given It−1.
The innovation εt is independent of It−1 and forms a sequence of independent and
identically distributed (i.i.d.) continuous random variables with zero mean and unit
variance. The information set at time t is It−1 = σ(εt−1,εt−2, . . . ;ηt−1,ηt−2, . . .), the
σ -algebra generated by {εt−i}∞i=1 and possibly additional random vectors {ηt−i}∞i=1.
{ηt}∞t=−∞ is a sequence of random vectors independent of the innovation sequence
{εt}∞t=−∞. In addition, m(It−1,θ0) and σ(It−1,θ0) are measurable with respect to
It−1.

Our framework allows for flexible specifications. Model (2.1) naturally nests
many commonly used models, such as the ARMA–GARCH model that has been
widely adopted in estimation of conditional tail risk measures (e.g., Chan et al.,
2007; Hoga, 2019a). In addition, our setting facilitates specifications that are
nonlinear (even nonsmooth) in the information set. A typical example is the
TGARCH of Glosten, Jagannathan, and Runkle (1993). Finally, our framework
subsumes the popular class of volatility-in-mean models (e.g., Engle, Lilien, and
Robins, 1987).

Remark 2.1. In an alternative framework, we may work with nonparametric
conditional mean and variance functions. Inspired by Martins-Filho et al. (2018),
suppose Xt is a d-dimensional random vector which may include lagged returns
{Rt−�}p

�=1 for positive integers d and p, we may model Rt nonparametrically by

Rt = m(Xt)+σ(Xt)εt, (2.2)

where m(·) and σ(·) are unknown functions, and the innovation εt is independent
of Xt. The advantage of the nonparametric model (2.2) is that it can avoid the
risk of misspecification that emerges from parametric functional forms for m(·)
and σ(·). In this paper, we focus on the parametric model in Assumption 2.1,
but our theory can be extended to the nonparametric model (2.2) with appropriate
technical adjustments. We refer the reader to Remark 3.1 and Lemma S2.1 in the
Supplementary Material for more detailed discussions.
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We also assume that the distribution of εt has Pareto-type heavy tails. Let Fε(·) =
Pr(εt ≤ ·) and F−ε(·) = Pr(−εt ≤ ·) be, respectively, the distribution functions of
εt and −εt. Then, assume that 1 − Fε and 1 − F−ε are both regularly varying at
infinity in the sense that

lim
x→∞[1−Fε(xy)]/[1−Fε(x)] = y−γ −1

R , for all y > 0, (2.3)

and

lim
x→∞[1−F−ε(xy)]/[1−F−ε(x)] = y−γ −1

L , for all y > 0, (2.4)

where γR > 0 and γL > 0 are the extreme value indices associated with the right
and left tails, respectively. It is worth mentioning that, under Assumption 2.1,
the innovation εt is assumed to have unit variance. This implicitly implies that
γR < 1/2 and γL < 1/2.

The motivation for assuming heavy-tailed innovations is twofold. First, in
the context of financial time series modeling, models with the classical normal
innovation are frequently found to be inadequate (e.g., Hamilton, 1994, Chap. 21)
and the literature has witnessed increasing popularity of models with heavy-tailed
innovations such as the Student’s t (e.g., Bollerslev, 1987) and the skewed t (e.g.,
Theodossiou and Savva, 2015) variables. Second, in the context of conditional risk
measure estimation, McNeil and Frey (2000) show by backtesting that procedures
based on heavy-tailed innovations deliver better risk measure estimates than
methods that ignore the heavy-tailed feature. Since McNeil and Frey (2000),
heavy-tailed innovations have been pervasive in subsequent studies (e.g., Chan
et al., 2007; Martins-Filho et al., 2018; Hoga, 2019a).

Based on the model structure (2.1), the conditional tail risk measures become

U-CVaR(τ ) = m(In,θ0)+σ(In,θ0)Qε(1− τ), (2.5)

U-CES(τ ) = m(In,θ0)+σ(In,θ0)E[ε|ε > Qε(1− τ)], (2.6)

D-CVaR(τ ) = −m(In,θ0)−σ(In,θ0)Qε(τ ), (2.7)

and

D-CES(τ ) = −m(In,θ0)−σ(In,θ0)E[ε|ε < Qε(τ )], (2.8)

where Qε(·) is the quantile function of εt.
Suppose, for type ∈ {U, D, R}, that we have estimators ̂type-CVaR and
̂type-CES for, respectively, type-CVaR and type-CES. For a tail region [τl,τu] with

0 < τl ≤ τu, we consider the maximum absolute log-ratios

sup
τ∈[τl,τu]

∣∣∣∣∣log

[
̂type-CVaR(τ )

type-CVaR(τ )

]∣∣∣∣∣ and sup
τ∈[τl,τu]

∣∣∣∣∣log

[
̂type-CES(τ )

type-CES(τ )

]∣∣∣∣∣ . (2.9)
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It is the task of Section 3 to establish the asymptotic distributions of the maximum
absolute log-ratios, which enable us to construct SCBs for the risk measures.

2.2. Estimation of CVaR and CES

In this section, we demonstrate how to employ EVT to estimate CVaR and CES
for a given tail level, based on observed data from time 1 to n. The key step is to
obtain estimators of the quantiles Qε(1 − τ) and Qε(τ ) as well as estimators of
the conditional tail means E[ε|ε > Qε(1 − τ)] and E[ε|ε < Qε(τ )]. We note that
simple nonparametric estimators of the above quantities based on the empirical
distribution function have also been considered, and their asymptotic properties
have been studied (see Gao and Song, 2008).

Suppose that there is a consistent estimator θ̂ of θ0. Let Ĩt−1 be the truncated
information set, which is generated by feasible information up to time t − 1. The
truncation is necessary when the information set relies on infinite past observa-
tions. For example, when It−1 = {Rt−1,Rt−2, . . . ,R1,R0,R−1, . . .}, the truncated
information set is Ĩt−1 = {Rt−1,Rt−2, . . . ,R1}. We obtain the standardized residuals
ε̂t = (Rt − m(Ĩt−1,θ̂ ))/σ (Ĩt−1,θ̂ ), for t = 1, . . . ,n. For dn < n such that dn → ∞
as n → ∞, we discard the residuals for t < dn and work with ε̂t for t = dn, . . . ,n.
The discarding eliminates the effect of information truncation. Similar discarding
is conducted in Chan et al. (2007) and Hoga (2019a) for the ARMA–GARCH
model. Here, we generalize their treatments to general models.

The following estimation procedure is standard in EVT-based tail estimation
(see Hoga (2019a) for a recent example and de Haan and Ferreira (2006) for
a comprehensive documentation). Denote by F←

ε the left continuous inverse of
Fε. Then, for x > 0, the (1 − 1/x)-quantile of Fε is Qε(1 − 1/x) ≡ Uε(x) =
F←

ε (1 − 1/x). By Theorem 1.2.1 and Corollary 1.2.10 of de Haan and Ferreira
(2006), (2.3) is equivalent to

lim
x→∞

Uε(xy)

Uε(x)
= yγR, for all y > 0. (2.10)

Similarly, let F←−ε be the left continuous inverse of F−ε and U−ε(x) ≡ F←−ε(1−1/x),
for x > 0, and (2.4) is equivalent to

lim
x→∞

U−ε(xy)

U−ε(x)
= yγL, for all y > 0. (2.11)

We first consider estimation of the right tail, namely Qε(1 − τ) and E[ε|ε >

Qε(1 − τ)]. For this purpose, we employ the integer sequence k1 ≡ k1,n →
∞ with 1 ≤ k1 ≤ n and k1/n → 0 as n → ∞. Note that, for a small τ , (2.10) implies
the following approximation:

Qε(1− τ) = Uε

(
1

τ

)
≈ Uε

(
n

k1

)(
nτ

k1

)−γR

. (2.12)
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Then, an estimator of Qε(1− τ) can be obtained based on estimators of Uε(n/k1)

and γR. Let ε̂(k) be the (k + 1)-largest value of {ε̂t}n
t=dn

, for k = 0,1, . . . ,n − dn. A
suitable estimator of Uε(n/k1) is ε̂(k1), which is usually known as the intermediate
order statistic (de Haan and Ferreira, 2006, Chap. 2). For estimation of γR, we
concentrate on the prevalent Hill’s (1975) estimator

γ̂R = 1

k1

k1∑
i=0

log

(
ε̂(i)

ε̂(k1)

)
.

Plugging ε̂(k1) and γ̂R into (2.12) delivers the following estimator of Qε(1− τ):

Q̂ε(1− τ) = ε̂(k1)

(
nτ

k1

)−γ̂R

. (2.13)

To estimate E[ε|ε > Qε(1− τ)], we invoke Proposition 4.1 of Pan, Leng, and Hu
(2013), which implies that limτ→0

E[ε|ε>Qε(1−τ)]
Qε(1−τ)

= 1
1−γR

. Since τ is close to 0, the
above equation motivates the following estimator of E[ε|ε > Qε(1− τ)]:

Ê[ε|ε > Qε(1− τ)] = Q̂ε(1− τ)

1− γ̂R
. (2.14)

Estimation of the left tail proceeds in the same way as what is done for the right
tail. Note that U−ε(1/τ) = −Qε(τ ). Then, estimation of Qε(τ ) is equivalent to
estimation of −U−ε(1/τ). For another integer sequence k2 ≡ k2,n → ∞ with 1 ≤
k2 ≤ n and k2/n → 0 as n → ∞, following similar arguments leading to (2.13)

and (2.14), we have the estimator Q̂ε(τ ) = ε̂(n−k2−dn)

(
nτ
k2

)−γ̂L
of Qε(τ ) and

the estimator Ê[ε|ε < Qε(τ )] = Q̂ε(τ )

1−γ̂L
of E[ε|ε < Qε(τ )], where γ̂L is the Hill

estimator of γL based on {−ε̂t} and is written as γ̂L = 1
k2

∑k2
i=0 log

( −ε̂(n−i−dn)

−ε̂(n−k2−dn)

)
=

1
k2

∑k2
i=0 log

(
ε̂(n−i−dn)

ε̂(n−k2−dn)

)
.

Plugging the above estimators into (2.5)–(2.8), we have estimators of the risk
measures

Û-CVaR(τ ) = m(Ĩn,θ̂ )+σ(Ĩn,θ̂ )Q̂ε(1− τ),

Û-CES(τ ) = m(Ĩn,θ̂ )+σ(Ĩn,θ̂ )Ê[ε|ε > Qε(1− τ)],

D̂-CVaR(τ ) = −m(Ĩn,θ̂ )−σ(Ĩn,θ̂ )Q̂ε(τ ),

and

D̂-CES(τ ) = −m(Ĩn,θ̂ )−σ(Ĩn,θ̂ )Ê[ε|ε < Qε(τ )].

And apparently, we have estimators of the relative risk measures

R̂-CVaR(τ ) = Û-CVaR(τ )

D̂-CVaR(τ )
and R̂-CES(τ ) = Û-CES(τ )

D̂-CES(τ )
.
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3. ASYMPTOTIC THEORY

3.1. Assumptions

Assumption 3.1. The estimator θ̂ of θ0 satisfies ||θ̂ −θ0|| = Op(n−υ0/2) for some
positive υ0.

Assumption 3.1 states the convergence rate of θ̂ . It is standard to assume
n1/2-consistency (Bai and Ng, 2001; Hoga, 2019a), which is nested by Assump-
tion 3.1 with υ0 = 1. In addition, Assumption 3.1 allows for estimators with slower
convergence rates, thereby providing more practical flexibility. Take the GARCH
model for example. For the conventional Gaussian quasi-maximum likelihood
estimator (QMLE), a standard condition to ensure n1/2-consistency is the moment
condition E(ε4

t ) < ∞. When the moment condition is suspicious, Assumption 3.1
can still be satisfied by, for example, the estimator of Hill (2015), which is nυ0/2-
consistent with υ0 as close to 1 as desired.

Assumption 3.2. Let 
0 be a neighborhood of θ0.
(i) supθ∈
0

m(In,θ0) = Op(1).
(ii) infθ∈
0 σ(It−1,θ) > c for some c > 0 for all t = dn, . . . ,n+1.
(iii) Both m(It−1,θ) and σ(It−1,θ) are differentiable with respect to θ in 
0 for

all t = dn, . . . ,n+1.
(iv) E

[
supθ∈
0

‖∂m(It−1,θ)/∂θ‖]υ1 <∞ and E
[
supθ∈
0

‖∂σ(It−1,θ)/∂θ‖]υ1 <

∞ for some υ1 > 2/υ0 for all t = dn, . . . ,n + 1, where υ0 is defined in
Assumption 3.1.

Assumption 3.2(i) and (ii) is standard in estimation of heteroskedastic time
series models. Assumption 3.2(iii) imposes common differentiability conditions.
Assumption 3.2(iv) is similar to Assumptions A2 and A3 of Bai and Ng (2001)
and is satisfied by some commonly used models with suitable moment conditions
on εt. For example, Assumption 3.2(iv) is easily shown to hold for the ARMA(1,1)

model when E|εt|υ1 < ∞ for some υ1 > 2/υ0.

Assumption 3.3. (i) For each θ ∈ 
0, m(Ĩt−1,θ) and σ(Ĩt−1,θ) are measurable
with respect to It−1.

(ii) supθ∈
0
|m(Ĩn,θ) − m(In,θ)| = Op(n−υ0/2) and supθ∈
0

|σ(Ĩn,θ) −
σ(In,θ)| = Op(n−υ0/2), where υ0 is defined in Assumption 3.1.

(iii)
∑n

t=dn
E
[

supθ∈
0
|m(Ĩt−1,θ)− m(It−1,θ)|] = o(1) and

∑n
t=dn

E
[

supθ∈
0
|

σ(Ĩt−1,θ)−σ(It−1,θ)|] = o(1).

Assumption 3.3(i) is common. Assumption 3.3(ii) and (iii) is used to control the
effect of information truncation so that the truncation does not affect the asymptotic
theory (see Bai and Ng (2001) for similar assumptions). In particular, Assumptions
3.3(iii) means that the cumulative effect of information truncation is asymptotically
negligible. We note that the effect of discarding the residuals for t < dn matters.
If there is no discarding (that is, the cumulative effect starts from t = 1 rather
than t = dn), we generally have

∑n
t=1 E

[
supθ∈
0

|m(Ĩt−1,θ)−m(It−1,θ)|]= O(1)
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and
∑n

t=1 E
[

supθ∈
0
|σ(Ĩt−1,θ) − σ(It−1,θ)|] = O(1), and thus the cumulative

effect of truncation is no longer negligible. Assumptions 3.2 and 3.3 are high-level
conditions, and it takes effort to verify them for specific models. Appendix A.3
collects primitive conditions for them in the ARMA–GARCH, the TGARCH, and
the GARCH-in-mean models.

Remark 3.1. As discussed in Remark 2.1, it is possible to extend our work to the
nonparametric model (2.2). Let m̂(·) and σ̂ (·) be, respectively, estimators of m(·)
and σ(·), and let ε̂∗

t = (Rt − m̂(Xt))/σ̂ (Xt), for t = 1, . . . ,n, be the corresponding
standardized nonparametric residuals. The ε̂∗

t are employed to estimate CVaR and
CES in the same manner as in Section 2.2. Inspecting the technical derivations
of our theoretical results, we find that the only adjustment needed to obtain
the theoretical results for nonparametric models is to prove that the results of
Lemma S1.7 in the Supplementary Material hold for ε̂∗

t . This lemma quantifies
the difference between the tail empirical distribution of {ε̂∗

t } and that of {εt}.
This can be achieved by assuming some uniform convergence conditions on the
estimators m̂(·) and σ̂ (·), for example, supx∈G

∣∣m̂(x)−m(x)
∣∣ = Op(n−υ0/2) and

supx∈G
∣∣σ̂ (x)−σ(x)

∣∣ = Op(n−υ0/2), for some υ0 > 0, where G is the support
of Xt. Fortunately, these conditions have been justified by Martins-Filho et al.
(2018, Lems. 3 and 4 and Cor. 1), where m(·) and σ(·) are estimated by local
linear smoothing. For theoretical details, we refer the reader to Section S2 of the
Supplementary Material.

Assumption 3.4. (i) There exist ρR < 0 and a function AR(·) which is eventually
positive or negative with limx→∞ AR(x) = 0 such that

lim
x→∞

Uε(xy)
Uε(x)

− yγR

AR(x)
= yγR

yρR −1

ρR
, for all y > 0,

where k1/2
1 AR(n/k1) → 0 as n → ∞.

(ii) There exist ρL < 0 and a function AL(·) which is eventually positive or negative
with limx→∞ AL(x) = 0 such that

lim
x→∞

U−ε(xy)
U−ε(x)

− yγL

AL(x)
= yγL

yρL −1

ρL
, for all y > 0,

where k1/2
2 AL(n/k2) → 0 as n → ∞.

Assumption 3.4(i) and (ii) provides second-order controls over the quality of
the approximations in (2.10) and (2.11), respectively. This type of second-order
condition has been commonly employed to develop asymptotic results in tail
estimation (see, e.g., de Haan and Ferreira, 2006; Chan et al., 2007; Einmahl, de
Haan, and Zhou, 2016; Hoga, 2019a). A commonly employed class of distributions
that satisfies Assumption 3.4 is the Hall class of heavy-tailed distribution (Hall,
1982). For the Hall class, the distribution function F(x) can be expanded as

1−F(x) = Cx−β1 [1+Dx−β2 +o(x−β2)], as x → ∞,
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where C > 0, β1 > 0, β2 > 0, and D is a real number. Then, Assumption 3.4 holds
with γ = 1/β1 and ρ = −β2/β1. A typical member of the Hall class is the Student’s
t distribution (sstd). The t distribution with the degree of freedom ν belongs to the
Hall class with β1 = ν and β2 = 2, which implies that both of its left and right tails
satisfy Assumption 3.4 with γR = γL = 1/ν and ρR = ρL = −2/ν.

Assumption 3.5. (i) τl ≤ τu satisfies τl → 0 as n → ∞ and τu = �τl for
some constant � ≥ 1. (ii) There exist two constants c0 > 0 and c1 ≥ 0 such that
limn→∞ k1/k2 = c0 and limn→∞ nτl/k1 = c1. (iii) limn→∞ k−1/2

1 log(nτl/k1) = 0 and
k1 = o(nδ0) for some 0 < δ0 < υ0, where υ0 is defined in Assumption 3.1. (iv)
dn = o(k1/2

1 ).

Assumption 3.5 states the orders of the effective sample sizes k1 and k2 as
well as the order of the discarded sample size dn. In particular, the conditions
limn→∞ k−1/2

1 log(nτl/k1) = 0 and k1 = o(nδ0), for some 0 < δ0 < υ0, ensure
that the convergence rate of θ̂ is faster than that of the estimators of CVaR and
CES, so that the estimation uncertainty of θ̂ does not affect the limiting behaviors
of the estimators of CVaR and CES. In addition, it is necessary to make more
discussions on the condition k1 = o(nδ0), which requires that only a limited portion
of the sample can be used for estimation so as to ignore the estimation error
contained in θ̂ . We note that this condition is mild when θ̂ is n1/2-consistent (that is,
υ0 = 1), because EVT always requires that k1/n → 0. When υ0 is small, however,
a potential issue is that fewer data can be employed and the estimation error of θ̂ is
large. We investigate the severity of this issue through simulations in Section 5. The
simulation results indicate that, for a reasonable range of k1 and k2, the estimation
error of θ̂ does not have evident influence on the finite-sample performance of our
approach.

3.2. Two Scenarios of Asymptotics

The following three propositions serve as the basis of our theoretical findings. In
Propositions 3.1 and 3.2, we only present the results for upside CVaR and CES. The
results for downside CVaR and CES are similar and can be found in Propositions
A.1 and A.2 in Appendix A.1.

PROPOSITION 3.1. Under Assumptions 2.1 and 3.1–3.5, we have, uniformly
in τ ∈ [τl,τu],

Û-CVaR(τ )

U-CVaR(τ )
−1 = Q̂ε(1− τ)

Qε(1− τ)
−1+op(k

−1/2
1 log(nτ/k1)), and

Û-CES(τ )

U-CES(τ )
−1 = Ê[ε|ε > Qε(1− τ)]

E[ε|ε > Qε(1− τ)]
−1+op(k

−1/2
1 log(nτ/k1)).

PROPOSITION 3.2. Under Assumptions 2.1 and 3.1–3.5, we have, uniformly in
τ ∈ [τl,τu],
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Q̂ε(1− τ)

Qε(1− τ)
−1 =

[
ε̂(k1)

Uε (n/k1)
−1

]
+ log

(
k1

nτ

)
(γ̂R −γR)

+op(k
−1/2
1 log(nτ/k1)), and

Ê[ε|ε > Qε(1− τ)]

E[ε|ε > Qε(1− τ)]
−1 =

[
ε(k1)

Uε (n/k1)
−1

]
+
[

log

(
k1

nτ

)
+ 1

1−γR

]
(γ̂R −γR)

+op(k
−1/2
1 log(nτ/k1)).

PROPOSITION 3.3. Under Assumptions 2.1 and 3.1–3.5, as n → ∞,

⎛
⎜⎜⎜⎜⎝

k1/2
1 γ −1

R

[
ε̂(k1)/Uε (n/k1)−1

]
k1/2

1 γ −1
R (γ̂R −γR)

k1/2
2 γ −1

L

[−ε̂(n−k2−dn)/U−ε (n/k2)−1
]

k1/2
2 γ −1

L (γ̂L −γL)

⎞
⎟⎟⎟⎟⎠

is asymptotically four-dimensional standard normal.

Proposition 3.1 indicates that the estimation uncertainty of the risk measures
are dominated by the estimation uncertainty of the quantiles and conditional tail
means of εt. In particular, the estimation effect of the model parameter does not
affect the limiting behaviors of risk measure estimators up to the dominating order.
Proposition 3.1 generalizes similar results established by Chan et al. (2007) and
Hoga (2019a) in ARMA–GARCH models to general dynamic models and also
enhances them to obtain uniform results. Proposition 3.2 moves on to decompose
the estimation uncertainty of the quantiles and conditional tail means of εt into
two parts, with one part concerning the order statistics and the other concerning
the extreme value index estimators. Finally, Proposition 3.3 indicates that the order
statistics and the extreme value index estimators have the same convergence rates
and are asymptotically independent.

Contemplating the decompositions in Proposition 3.2, we observe that γ̂R −
γR is scaled by log(k1/(nτ)). Consequently, the order of log(k1/(nτ)) plays a

key role in the limiting behaviors. Take the decomposition of Q̂ε(1−τ)

Qε(1−τ)
− 1 for

example. Proposition 3.3 indicates that the convergence rates of
ε̂(k1)

Uε(n/k1)
− 1 and

γ̂R −γR are the same. If c1 = 0, (that is, limn→∞ k1/(nτ) = ∞), then the limiting

behavior of Q̂ε(1−τ)

Qε(1−τ)
−1 is dominated by log

(
k1
nτ

)
(γ̂R −γR) because

ε̂(k1)

Uε(n/k1)
−1 is

asymptotically negligible. If instead c1 > 0 (that is, limn→∞ k1/(nτ) < ∞), then
ε̂(k1)

Uε(n/k1)
− 1 is no longer asymptotically negligible and the limiting behavior of

Q̂ε(1−τ)

Qε(1−τ)
−1 is dominated by both

ε̂(k1)

Uε(n/k1)
−1 and log

(
k1
nτ

)
(γ̂R −γR).
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Based on the above discussion, we distinguish our asymptotic theory between
two scenarios, depending on the magnitude of the effective sample sizes k1 and k2

relative to nτ . The first one, the extreme scenario, corresponds to the case when
c1 = 0. In this scenario, τ is of smaller order than k1/n, meaning that the tail
to be estimated lies out of the range of the available data. The second one, the
intermediate scenario, corresponds to the case when c1 > 0. In this scenario, τ is
of the same order as k1/n, meaning that the tail level is comparable to the size of
the available data.

We argue that both the extreme and intermediate scenarios bear their own appeal
and when to use which depends on the specific problem. In the extreme scenario,
the intuition behind the condition c1 = 0 is that the starting point of extrapolation
(that is, k1/n and k2/n) is more central relative to the level at which the tail is to be
estimated (that is, τ ). Accordingly, this scenario is capable of estimating very deep
tails. For example, when one needs to estimate the tail risk at τ = 0.01% but the
available data are only of size 1,000, the tail to be estimated lies out of the range of
the data. In this case, the extreme scenario applies, but the intermediate scenario
cannot work because no reasonable k1 is comparable to nτ = 0.1.

To appreciate the relative merit of the intermediate scenario, consider the case
where the sample size is 1,000 and the tail level is 1%. In this case, the size of
available data is comparable to the tail level. Though theoretically the extreme
scenario still applies to this case, the intermediate scenario seems more appealing.
The reason is that the terms that are negligible in the extreme scenario (that

is,
ε̂(k1)

Uε(n/k1)
− 1 and

−ε̂(n−k2−dn)

U−ε(n/k2)
− 1) may result in approximation errors when the

associated limiting distributions are used to construct SCBs. On the contrary,
the neglected terms are recalled in the intermediate scenario and hence can lead
to more reliable finite-sample performance. Indeed, our simulation results in
Section 5 confirm that, when the available data are adequate relative to the tail
level, the intermediate scenario produces more accurate coverage rates than the
extreme scenario.

3.3. Main Results

The following theorem establishes uniform convergences of the maximum abso-
lute log-ratios in the two scenarios.

THEOREM 3.1. Suppose that Assumptions 2.1 and 3.1–3.5 hold.
(i) (extreme scenario, c1 = 0) As n → ∞,

sup
u∈[1,�]

∣∣∣∣∣ k1/2
1

log(k1/(nuτl))

{
log

[
̂type-CVaR(uτl)

type-CVaR(uτl)

]}∣∣∣∣∣ →
∣∣Ztype

∣∣ and

sup
u∈[1,�]

∣∣∣∣∣ k1/2
1

log(k1/(nuτl))

{
log

[
̂type-CES(uτl)

type-CES(uτl)

]}∣∣∣∣∣ → ∣∣Ztype

∣∣
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in distribution, where

Ztype ∼

⎧⎪⎨
⎪⎩

N (0,γ 2
R ), if type = U,

N (0,c0γ
2
L ), if type = D,

N (0,γ 2
R + c0γ

2
L ), if type = R.

(ii) (intermediate scenario, c1 > 0) As n → ∞,

sup
u∈[1,�]

∣∣∣∣∣k1/2
1

{
log

[
̂type-CVaR(uτl)

type-CVaR(uτl)

]}∣∣∣∣∣ → sup
u∈[1,�]

∣∣G1,type(u)
∣∣ and

sup
u∈[1,�]

∣∣∣∣∣k1/2
1

{
log

[
̂type-CES(uτl)

type-CES(uτl)

]}∣∣∣∣∣ → sup
u∈[1,�]

∣∣G2,type(u)
∣∣

in distribution, where G1,type(u) and G2,type(u) are centered Gaussian processes
with variance–covariance functions γ1,type(u1,u2) = Cov(G1,type(u1),G1,type(u2))

and γ2,type(u1,u2) = Cov(G2,type(u1),G2,type(u2)) satisfying that

γ1,type(u1,u2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ 2
R

[
1+ log(c1u1) log(c1u2)

]
, if type = U,

c0γ
2
L

[
1+ log(c0c1u1) log(c0c1u2)

]
, if type = D,

γ 2
R

[
1+ log(c1u1) log(c1u2)

]
+ c0γ

2
L

[
1+ log(c0c1u1) log(c0c1u2)

]
, if type = R,

and

γ2,type(u1,u2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ 2
R

{
1+ [

(1−γR)−1 − log(c1u1)
][

(1−γR)−1 − log(c1u2)
]}

, if type = U,

c0γ
2
L

{
1+ [

(1−γL)−1 − log(c0c1u1)
][

(1−γL)−1 − log(c0c1u2)
]}

, if type = D,

γ 2
R

{
1+ [

(1−γR)−1 − log(c1u1)
][

(1−γR)−1 − log(c1u2)
]}

+ c0γ
2
L

{
1+ [

(1−γL)−1 − log(c0c1u1)
][

(1−γL)−1 − log(c0c1u2)
]}

, if type = R.

Remark 3.2. In the extreme scenario, CVaR and CES share the same limiting

distributions for each type. This is because
ε̂(k1)

Uε(n/k1)
− 1 and

−ε̂(n−k2−dn)

U−ε(n/k2)
− 1 are

asymptotically negligible and hence CVaR and CES have the same asymptotic
expansion. Similar results are also found in Hoga (2019a).

Remark 3.3. According to Theorem 3.1(i), we can construct SCBs for the risk
measures in the extreme scenario based on consistent estimators of the limiting
variances. Take the relative risk measures for example. A consistent estimator of
the limiting variance is γ̂ 2

R + k1γ̂
2
L /k2. Hence, the asymptotic (1 − α)-SCBs for

R-CVaR(τ ) and R-CES(τ ) are, respectively,

R̂-CVaR(τ )exp

[
−�−1(1−α/2)k−1/2

1 log(k1/(nτ))

√
γ̂ 2

R + k1γ̂
2
L /k2

]
≤ R-CVaR(τ )

≤ R̂-CVaR(τ )exp

[
�−1(1−α/2)k−1/2

1 log(k1/(nτ))

√
γ̂ 2

R + k1γ̂
2
L /k2

]
,
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and

R̂-CES(τ )exp

[
−�−1(1−α/2)k−1/2

1 log(k1/(nτ))

√
γ̂ 2

R + k1γ̂
2
L /k2

]
≤ R-CES(τ )

≤ R̂-CES(τ )exp

[
�−1(1−α/2)k−1/2

1 log(k1/(nτ))

√
γ̂ 2

R + k1γ̂
2
L /k2

]
,

where �−1(·) is the quantile function of the standard normal distribution.

By incorporating the two scenarios as well as relative risk measures in a unifying
theory, Theorem 3.1 substantially generalizes and unifies some existing studies.
The extreme scenario is conventional in EVT-based tail estimation (e.g., de Haan
and Ferreira, 2006), particularly in estimation of conditional risk measures. Chan
et al. (2007) and Hoga (2019a) derive the asymptotic properties of estimators of
CVaR and CES in the ARMA–GARCH model. The intermediate scenario is less
popular, but is still employed in several places. Remark 4.3.7 of de Haan and
Ferreira (2006) mentions a similar result in a discussion of quantile estimation.
Recently, Martins-Filho et al. (2018) estimate the CVaR and CES by fitting the
generalized Pareto distribution to the residuals of an estimated heteroskedastic
nonparametric regression. Their asymptotic theory is developed under a condition
that is essentially equivalent to the intermediate scenario of this paper. The above
works confine their attention to one-sided tail risk (downside or upside only) and
only consider risk measures at a single tail level.

4. BOOTSTRAP IMPLEMENTATION

Although Theorem 3.1 provides limiting distributions for the maximum absolute
log-ratios, two implementational issues arise when employing the theorem to
construct SCBs. The first issue is due to the slow convergence rates of the
maximum absolute ratios because k1 and k2 are small compared to n and τ is close
to 0. Consequently, even if Remark 3.3 gives the SCBs in the extreme scenario,
our preliminary simulation results indicate that the coverage of such theoretical
SCBs is seriously distorted. The second issue arises because it is quite hard to
approximate the limiting distributions in the intermediate scenario, which are
constructed from Gaussian processes that depend on the underlying model in a
very complicated manner. To circumvent the two issues, we propose an easy-to-
implement bootstrap procedure for finite-sample implementation.

We first discuss the bootstrap procedure for the extreme scenario. For any real
number x, let log> x take value logx if x > 1 and 0 otherwise. Under Assumptions
2.1 and 3.1–3.5 and for type ∈ {U, D, R}, the proof of Theorem 3.1 implies that

k1/2
1

log(k1/(nτ))
log

[
̂type-CVaR(τ )

type-CVaR(τ )

]

= I(type∈{U,R})k1/2
1 (γ̂R −γR)− I(type∈{D,R})(k1/k2)

1/2k1/2
2 (γ̂L −γL)+op(1),
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and

k1/2
1

log(k1/(nτ))
log

[
̂type-CES(τ )

type-CES(τ )

]

= I(type∈{U,R})k1/2
1 (γ̂R −γR) I(type∈{D,R})(k1/k2)

1/2k1/2
2 (γ̂L −γL)+op(1),

uniformly in τ ∈ [τl,τu], where I(A) is the indicator function of the event A which
equals 1 if A occurs and 0 otherwise. It is worth mentioning that, in the extreme
scenario, CVaR and CES share the same asymptotic expansions in terms of the
log-ratio, although they are very different quantities. The reason is as follows. As
judged from (2.14), the tail mean estimator is constructed by dividing the quantile
estimator by the factor 1 − γ̂R. The estimation uncertainty of γ̂R is of order k1/2

1 ,
which is smaller than k−1/2

1 log(k1/(nτ)) (the order of the leading term in the
extreme scenario). Therefore, the estimation uncertainty of γ̂R does not affect the
limiting property up to the leading order.

PROPOSITION 4.1. Under Assumptions 2.1 and 3.1–3.5,

γ̂R −γR = MR +op(k
−1/2
1 ) and γ̂L −γL = ML +op(k

−1/2
2 ),

with

MR = 1

k1

n∑
t=dn

I(εt > ε(k1))

(
log> εt

ε(k1)

−γR

)
, (4.1)

and

ML = 1

k2

n∑
t=dn

I(εt < ε(n−k2−dn))

(
log> εt

ε(n−k2−dn)

−γL

)
. (4.2)

Proposition 4.1 gives linear expansions of the tail index estimators. In addition,
Proposition 3.3 implies that the tail index estimators γ̂R and γ̂L are asymptotically
independent. Our proposal is to employ the idea of the multiplier bootstrap to
approximate the uncertainty characterized by components γ̂R − γR and γ̂L − γL,
by exploiting the linear expansions as well as the asymptotic independence.
Specifically, suppose we have two independent sequences of multipliers {ξt}n

t=dn
and {νt}n

t=dn
, which consist of i.i.d. random variables with zero mean, unit variance,

and bounded support, and are both independent of the original data. Then, multi-
plying the summands in (4.1) and (4.2), respectively, with {ξt}n

t=dn
and {νt}n

t=dn
,

we obtain

M∗
R = 1

k1

n∑
t=dn

I(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)

− γ̂R

)
ξt, (4.3)
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and

M∗
L = 1

k2

n∑
t=dn

I(ε̂t < ε̂(n−k2−dn))

(
log> ε̂t

ε̂(n−k2−dn)

− γ̂L

)
νt, (4.4)

which are used to mimic MR and ML, respectively. Then, define for type ∈
{U, D, R}
Tex∗

type = I(type ∈ {U,R})k1/2
1 M∗

R − I(type ∈ {D,R})(k1/k2)
1/2k1/2

2 M∗
L,

which is used to approximate
k1/2

1
log(k1/(nτ))

log
[

̂type-CVaR(τ )

type-CVaR(τ )

]
and

k1/2
1

log(k1/(nτ))

log
[

̂type-CES(τ )

type-CES(τ )

]
.

Bootstrap Algorithm for the Extreme Scenario

1. Specify a proper dynamic model and estimate it to obtain the residuals {ε̂t}.
Compute the tail index estimates γ̂R and γ̂L as well as the maximum absolute
log-ratios as defined in (2.9).

2. Generate i.i.d. random variables {ξt} and {νt} from a certain distribution with
zero mean and unit variance, then compute M∗

R and M∗
L to obtain Tex∗

type.
3. For a large integer B, repeat Step 2 B times to obtain {Tex∗

type,b}B
b=1. Then, for α ∈

(0,1), calculate zex∗
type,1−α , which is the (1−α)-sample quantile of {|Tex∗

type,b|}B
b=1.

4. For type ∈ {U, D, R}, asymptotic (1 − α)-SCBs for type-CVaR(τ ) and
type-CES(τ ) are, respectively,[

̂type-CVaR(τ )exp
[
−zex∗

type,1−αk−1/2
1 log(k1/(nτ))

]
,

̂type-CVaR(τ )exp
[
zex∗

type,1−αk−1/2
1 log(k1/(nτ))

]]
,

and[
̂type-CES(τ )exp

[
−zex∗

type,1−αk−1/2
1 log(k1/(nτ))

]
,

̂type-CES(τ )exp
[
zex∗

type,1−αk−1/2
1 log(k1/(nτ))

]]
.

Now, we move on to propose the bootstrap procedure for the intermediate scenario.
Under Assumptions 2.1 and 3.1–3.5 and for type ∈ {U, D, R}, the proof of
Theorem 3.1 implies that

k1/2
1 log

[
̂type-CVaR(τ )

type-CVaR(τ )

]

= I(type ∈ {U,R})
[
log(k1/(nτ))k1/2

1 (γ̂R −γR)+XR

]
− I(type ∈ {D,R})

{
(k1/k2)

1/2
[
log(k2/(nτ))k1/2

2 (γ̂L −γL)+XL

]}
+op(1),
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and

k1/2
1 log

[
̂type-CES(τ )

type-CES(τ )

]

= I(type ∈ {U,R})
{[

log(k1/(nτ))+ (1−γR)−1
]

k1/2
1 (γ̂R −γR)+XR

}

− I(type ∈ {D,R})
{
(k1/k2)

1/2
[
log(k2/(nτ))+ (1−γL)−1

]
k1/2

2 (γ̂L −γL)+XL]
}

+op(1),

uniformly in τ ∈ [τl,τu], where XR and XL are two independent normal random
variables with zero mean and respective variances γ 2

R and γ 2
L , and they are both

independent of γ̂R −γR and γ̂L −γL.
Unlike the extreme scenario, we need to account for the contributions of the

components XR and XL apart from those of the tail index estimators. To this end,
we randomly draw observations from X ∗

R and X ∗
L , which are independent normal

random distributions with zero mean and respective variances γ̂ 2
R and γ̂ 2

L , and are
independent of {ξt}n

t=dn
and {νt}n

t=dn
. For CVaR, define for type ∈ {U, D, R} and

τ ∈ [τl,τu]

T int∗
type-CVaR(τ ) = I(type ∈ {U,R})

[
log(k1/(nτ))k1/2

1 M∗
R +X ∗

R

]
− I(type ∈ {D,R})

{
(k1/k2)

1/2
[
log(k2/(nτ))k1/2

2 M∗
L +X ∗

L

]}
,

(4.5)

where M∗
R and M∗

L are defined in (4.3) and (4.4), respectively.
Then, for type ∈ {U, D, R}, T int∗

type-CVaR(τ ) is used to mimic k1/2
1{

log
[

̂type-CVaR(τ )/type-CVaR(τ )
]}

. Similarly, for CES, define for type ∈
{U, D, R} and τ ∈ [τl,τu]

T int∗
type-CES(τ )

= I(type ∈ {U,R})
{[

log(k1/(nτ))+ (1− γ̂R)−1]k1/2
1 M∗

R +X ∗
R

}
− I(type ∈ {D,R})(k1/k2)

1/2
{[

log(k2/(nτ))+ (1− γ̂L)
−1
]

k1/2
2 M∗

L +X ∗
L

}
.

(4.6)

Then, for type ∈ {U, D, R}, T int∗
type-CES(τ ) is used to mimic k1/2

1{
log

[
̂type-CES(τ )/type-CES(τ )

]}
.

Bootstrap Algorithm for the Intermediate Scenario

1. Specify a proper dynamic model and estimate it to obtain the residuals {ε̂t}.
Compute the tail index estimates γ̂R and γ̂L as well as the maximum absolute
log-ratios as defined in (2.9).
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2. Generate i.i.d. random variables {ξt} and {νt} from a certain distribution with
zero mean and unit variance, then compute M∗

R and M∗
L. Generate X ∗

R and X ∗
L

from normal distributions with zero mean and respective variances γ̂ 2
R and γ̂ 2

L ,
then compute T int∗

type-CVaR(τ ) and T int∗
type-CES(τ ) for τ ∈ [τl,τu].

3. For a large integer B, repeat Step 2 B times to obtain {T int∗
type-CVaR(τ )}B

b=1 and
{T int∗

type-CES(τ )}B
b=1. Then, for α ∈ (0,1), calculate zint∗

1,type,1−α and zint∗
2,type,1−α , which

are, respectively, the (1−α)-sample quantiles of {supτ∈[τl,τu] |T int∗
type-CVaR(τ )|}B

b=1

and {supτ∈[τl,τu] |T int∗
type-CES(τ )|}B

b=1.
4. For type ∈ {U, D, R}, asymptotic (1 − α)-SCBs for type-CVaR(τ ) and

type-CES(τ ) are, respectively,[
̂type-CVaR(τ )exp

(
−zint∗

1,type,1−αk−1/2
1

)
, ̂type-CVaR(τ )exp

(
zint∗

1,type,1−αk−1/2
1

)]
,

and[
̂type-CES(τ )exp

(
−zint∗

2,type,1−αk−1/2
1

)
, ̂type-CES(τ )exp

(
zint∗

2,type,1−αk−1/2
1

)]
.

The validity of the proposed bootstrap algorithms are formally justified by the
following theorem. By showing that the bootstrap statistics converge to the same
limiting distributions as their original versions, Theorem 4.1 guarantees that the
coverage rates of the bootstrap SCBs converge to the nominal confidence level.

THEOREM 4.1. (i) Under the assumptions of Theorem 3.1(i), for type ∈
{U, D, R}, supu∈[1,�]

∣∣Tex∗
type

∣∣ converges in distribution to
∣∣Ztype

∣∣ conditional on the
original data in probability, where Ztype is defined in Theorem 3.1(i).

(ii) Under the assumptions of Theorem 3.1(ii), for type ∈ {U, D, R}, supu∈[1,�]∣∣Tint∗
type-CVaR(uτl)

∣∣ converges in distribution to supu∈[1,�]

∣∣G1,type(u)
∣∣ and supu∈[1,�]∣∣Tint∗

type-CES(uτl)
∣∣ converges in distribution to supu∈[1,�]

∣∣G2,type(u)
∣∣ conditional on

the original data in probability, where G1,type(u) and G2,type(u) are defined in
Theorem 3.1 (ii).

5. NUMERICAL STUDY

In this section, we first provide guidelines on how to choose the effective sample
sizes k1 and k2 to implement the proposed approach, and then proceed to show the
results of a Monte Carlo study.

5.1. Data-Driven Selection of k1 and k2

The implementation of the proposed approach requires selection of the effective
sample sizes k1 and k2. Previous studies on EVT-based risk measure estimation
have found that the choice of the effective sample size is crucial (e.g., Chan
et al., 2007; Martins-Filho et al., 2018). Various authors have proposed different
empirical suggestions. For example, when constructing pointwise confidence
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intervals for downside CVaR, Chan et al. (2007) suggest 1.5(logn)2� for n =
1,000, where ·� is the integer part of a real number. Nonetheless, their suggestion
is based on their simulations for n = 1,000, and Spierdijk (2016) finds that it is
no longer adequate for larger sample sizes. Compared to the ad hoc suggestions,
a data-driven rule is desirable because it selects k1 and k2 that are tailored to the
data at hand.

Below we suggest a data-driven method for selecting k1 and k2. Our estimation
relies on the Pareto approximation to the tails of the innovation distribution. Then,
k1 and k2 actually determine where the approximation starts for the right and left
tails, respectively. Therefore, it is reasonable to choose the effective sample size
that leads to the best Pareto approximation. To this end, we follow the wisdom
of Danielsson et al. (2019), who propose to measure the Pareto approximation
by the maximum distance between the fitted Pareto-type tail and the empirical
quantile. Then, the optimal effective sample size is chosen as the minimizer of
the measure. Since estimating CVaR essentially involves estimating quantiles, the
quantile-based method is suitable for CVaR estimation.

Following the proposal of Danielsson et al. (2019), for the estimation of upside
CVaR, we use k1 equal to

k∗
1 = arg min

l=kmin,...,kmax

{
max

j=1,...,kmax

[∣∣∣ε̂(j) − ε̂(l) (j/l)−γ̂R(l)
∣∣∣]}, (5.1)

where 1 ≤ kmin < kmax ≤ n and γ̂R(l) is the estimator of γR with k1 = l. In (5.1), ε̂(j)

is the empirical quantile and ε̂(l) (j/l)−γ̂R(l) is the quantile estimator given by the
Pareto approximation. Similarly, when estimating downside CVaR, k2 is chosen as
k∗

2, which is obtained by applying the above criterion to {−ε̂t}.
For a conceptually suitable criterion for CES estimation, we modify (5.1) by

employing its tail mean-based analog. Specifically, when estimating upside CES,
we use k1 equal to

k∗
1 = arg min

l=kmin,...,kmax

{
max

j=1,...,kmax

[∣∣∣∣∣
∑n

t=dn
I(ε̂t > ε̂(j))ε̂t∑n

t=dn
I(ε̂t > ε̂(j))

− ε̂(l) (j/l)−γ̂R(l)

1− γ̂R(l)

∣∣∣∣∣
]}

,

(5.2)

where
∑n

t=dn
I(ε̂t>ε̂(j))ε̂t∑n

t=dn
I(ε̂t>ε̂(j))

is the empirical estimator of the tail mean over the (1− j/n)-

quantile and
ε̂(l)(j/l)−γ̂R(l)

1−γ̂R(l) is the estimator given by the Pareto approximation. Again,
when estimating downside CES, k2 is chosen as k∗

2, which is obtained by applying
the above criterion to {−ε̂t}.

Finally, we note that Assumption 3.5(ii) and (iii) sets conditions for k1 and k2.
Below we provide suggestions on how these conditions can be satisfied. First,
we choose k1 and k2 from the same [kmin,kmax] so that k1 and k2 are comparable
as required by Assumption 3.5(ii). Second, for the intermediate scenario (corre-
sponding to Assumption 3.5(ii) with c1 > 0), k1 and k2 should be comparable
to nτ . Accordingly, we can set kmin = anτu and kmax = bnτu with 0 < a < b.
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For example, if the tail region is [0.5%,1%], we can set kmin = 2% × n and
kmax = 15% × n, corresponding to the setting that a = 2 and b = 15. In addition,
the choice of kmax means that at most 15% of the sample are used, meeting the
requirement of Assumption 3.5(iii) that kmax should be small relative to nυ0 , where
υ0 is usually equal to, or at least close to, 1. Third, for the extreme scenario
(corresponding to Assumption 3.5(ii) with c1 = 0), k1 and k2 should be larger
relative to nτ . Accordingly, we should set kmin to be larger than nτu. For example,
if the tail region is [0.05%,0.1%], we can set kmin = 1%×n and kmax = 10%×n.
Again, the choice of kmax meets the requirement of Assumption 3.5(iii). Lastly,
given the above two rules, k1/2

1 would generally be larger than | log(nτl/k1)|
and hence the condition limn→∞ k−1/2

1 log(nτl/k1) = 0 in Assumption 3.5(iii) is
satisfied.

5.2. Monte Carlo Simulations

In this section, we conduct a series of Monte Carlo simulations to evaluate the
finite-sample performance of the proposed approach. In the bootstrap imple-
mentation, the number of bootstrap replications is B = 500 and the multipliers
are generated from the two-point distribution with the probability mass function
P(ξ = 1) = P(ξ = −1) = 1/2. The confidence level is 95%. The number of
discarded observations is dn = 5 × (nτl)

1/3�, which should satisfy dn = o(k1/2
1 )

to satisfy Assumption 3.5. Since k1 ∼ nτl under the intermediate scenario and
k1 = o(nτl) under the extreme scenario, setting dn to be 5 × (nτl)

1/3� meets
the required order of dn for both the intermediate and extreme scenarios. All the
reported simulation results are obtained based on 1,000 replications.

The data are generated from the GARCH(1,1) model

Rt = σtεt, σ 2
t = ω+ω1R2

t−1 +ω2σ
2
t−1, (5.3)

where ω = 0.001, ω1 = 0.04, and ω2 = 0.85. The innovation term εt follows the
standardized skewed sstd with the shape parameter ν and the skewness parameter λ

(in short, sstd(ν,λ); see Fernández and Steel, 1998). The sstd is symmetric if λ = 1
and asymmetric otherwise, being skewed to the left if λ < 1 and to the right if λ > 1.
In our simulations, we consider sstd(5,λ) where λ ∈ {0.95,1}. The conclusions are
qualitatively unchanged for other models such as the TGARCH model.

In the first part, we compare the finite-sample performance of the SCBs based
on the two scenarios of asymptotics. The tail region is [0.5%,1%], and the sample
size n ∈ {500,1,000,1,500,5,000}. Note that the tail region is not beyond the range
of the sample. Hence, theoretically, both the extreme and intermediate scenarios
apply. The effective sample sizes k1 and k2 are selected using the data-driven
method in Section 5.1 with kmin = 2%×n and kmax = 15%×n for the intermediate
scenario and kmin = 5% × n and kmax = 15% × n for the extreme scenario. Apart
from the data-driven (k∗

1, k∗
2), we also use (k∗

1 +n/100, k∗
2 +n/100) and (k∗

1 +n/50,
k∗

2 + n/50). This means that the user may want to employ more data, but at the
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cost of less accurate Pareto approximations. The model parameters are estimated
with the Gaussian QMLE method. We only report the results for the relative risk
measures to save space.

The empirical coverage rates and relative lengths are collected in Tables 1 and 2.
Since our proposed SCBs are constructed in a multiplication-division manner,
it is more informative to consider the relative length defined as the ratio of the
SCB’s upper bound to its lower bound. Several observations are in the sequel.
First, the SCB based on the intermediate scenario has satisfactory coverage rates,
but the SCB based on the extreme scenario suffers from evident underestimation.
This confirms our discussion in Section 3.2 that, when data are adequate so
that no extrapolation is needed, the intermediate scenario provides more accurate
approximations. Second, the more accurate coverage of the intermediate scenario
is accompanied by a larger length. This means that the risk measure estimators
under the intermediate scenario has more variability, the consequence of recalling
the neglected terms in the extreme scenario. In addition, the coverage of the
extreme scenario does not improve even if n increases to 5,000. This indicates that
the impact of the neglected terms persist even for a very large sample size. Third,
for n = 500, (k∗

1, k∗
2) leads to better coverage than (k∗

1 + n/100, k∗
2 + n/100) and

(k∗
1 + n/50, k∗

2 + n/50) under the intermediate scenario. However, as n increases,
the performance becomes more robust. Finally, the results are basically robust to
different innovation distributions.

To summarize, we find that when the data are adequate so that extrapolation is
not needed, the intermediate scenario produces SCBs with more accurate coverage
rates than the extreme scenario, but accompanied by larger lengths. In addition, the
data-driven methods yield the best finite-sample performance when n = 500 and
the performance tends to be robust as n increases.

In the second part, we evaluate the performance of the SCB based on the extreme
scenario when the tail region is indeed beyond the range of the available data, that
is, when extrapolation is needed. We consider the tail region [0.05%,0.1%]. To
ensure extrapolation, the sample size should be no larger than 1,000, and hence
we consider n ∈ {500,1,000}. The data are still generated from model (5.3). The
effective sample sizes k1 and k2 are selected using the data-driven method in
Section 5.1 with kmin = 1% × n and kmax = 10% × n. Moreover, in addition to
the data-driven (k∗

1, k∗
2), we also use (k∗

1 + n/100, k∗
2 + n/100) and (k∗

1 + n/50,
k∗

2 + n/50) to check robustness. The simulation results are collected in Table 3.
We observe that the coverage rates of the SCBs for CVaR are very close to the
nominal level, but the coverage rates of the SCBs for CES are underestimated.
Hence, it seems more difficult to estimate CES than CVaR under the extreme
scenario. The same issue is also found in the simulation study of Martins-Filho
et al. (201). Finally, we observe that the SCBs based on (k∗

1, k∗
2) have more accurate

coverage rates and larger lengths than the SCBs based on (k∗
1 +n/100, k∗

2 +n/100)

and (k∗
1 +n/50, k∗

2 +n/50).
A potential explanation for the undercoverage for CES under the extreme

scenario is as follows. As judged from (2.14), the tail mean estimator is constructed
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Table 1. Comparison of the two scenarios when extrapolation is not needed: τ ∈ [0.5%,1%] and εt ∼ sstd(5,1)

(k∗
1, k∗

2) (k∗
1 +n/100, k∗

2 +n/100) (k∗
1 +n/50, k∗

2 +n/50)

Coverage Relative length Coverage Relative length Coverage Relative length

n Scenario CVaR CES CVaR CES CVaR CES CVaR CES CVaR CES CVaR CES

500 Intermediate 0.956 0.955 2.031 3.025 0.942 0.926 2.086 3.125 0.954 0.934 2.112 3.120

Extreme 0.899 0.739 1.784 1.784 0.908 0.710 1.797 1.797 0.930 0.716 1.835 1.835

1,000 Intermediate 0.954 0.959 1.668 2.268 0.947 0.953 1.702 2.296 0.954 0.941 1.714 2.290

Extreme 0.917 0.732 1.510 1.510 0.906 0.686 1.529 1.529 0.901 0.688 1.544 1.544

1,500 Intermediate 0.948 0.949 1.523 1.971 0.948 0.946 1.552 1.995 0.946 0.949 1.560 1.987

Extreme 0.905 0.710 1.405 1.405 0.896 0.690 1.419 1.419 0.922 0.716 1.427 1.427

5,000 Intermediate 0.949 0.952 1.267 1.477 0.952 0.949 1.276 1.472 0.952 0.946 1.280 1.466

Extreme 0.902 0.676 1.204 1.204 0.923 0.721 1.212 1.212 0.912 0.706 1.216 1.216

Notes: The results are for the relative risk measures under the confidence level 95%. k∗
1 and k∗

2 are selected by the data-driven methods in Section 5.1. The relative
length is defined as the ratio of the SCB’s upper bound to its lower bound. We note that under the extreme scenario, the SCBs for CVaR and CES have the same
relative length.
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Table 2. Comparison of the two scenarios when extrapolation is not needed: τ ∈ [0.5%,1%] and εt ∼ sstd(5,0.95)

(k∗
1, k∗

2) (k∗
1 +n/100, k∗

2 +n/100) (k∗
1 +n/50, k∗

2 +n/50)

Coverage Relative length Coverage Relative length Coverage Relative length

n Scenario CVaR CES CVaR CES CVaR CES CVaR CES CVaR CES CVaR CES

500 Intermediate 0.959 0.961 2.025 2.999 0.959 0.943 2.083 3.094 0.953 0.938 2.117 3.141

Extreme 0.876 0.719 1.780 1.780 0.888 0.683 1.805 1.805 0.905 0.692 1.834 1.834

1,000 Intermediate 0.944 0.957 1.659 2.245 0.957 0.945 1.703 2.293 0.948 0.936 1.719 2.303

Extreme 0.897 0.708 1.513 1.513 0.908 0.685 1.530 1.530 0.913 0.713 1.537 1.537

1,500 Intermediate 0.949 0.952 1.527 1.982 0.947 0.947 1.550 1.988 0.951 0.953 1.557 1.981

Extreme 0.904 0.711 1.400 1.400 0.914 0.693 1.415 1.415 0.912 0.706 1.430 1.430

5,000 Intermediate 0.950 0.952 1.267 1.476 0.945 0.942 1.275 1.471 0.952 0.949 1.279 1.464

Extreme 0.902 0.669 1.204 1.204 0.897 0.665 1.210 1.210 0.906 0.701 1.216 1.216

Notes: The results are for the relative risk measures under the confidence level 95%. k∗
1 and k∗

2 are selected by the data-driven methods in Section 5.1. The relative
length is defined as the ratio of the SCB’s upper bound to its lower bound. We note that under the extreme scenario, the SCBs for CVaR and CES have the same
relative length.
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Table 3. Performance of the extreme scenario under extrapolation: τ ∈ [0.05%,0.1%] and εt ∼ sstd(5,λ)

(k∗
1, k∗

2) (k∗
1 +n/100, k∗

2 +n/100) (k∗
1 +n/50, k∗

2 +n/50)

Coverage Relative length Coverage Relative length Coverage Relative length

λ n CVaR CES CVaR and CES CVaR CES CVaR and CES CVaR CES CVaR and CES

1 500 0.942 0.841 3.369 0.924 0.822 3.338 0.929 0.812 3.331

1,000 0.946 0.862 2.405 0.936 0.843 2.377 0.935 0.844 2.373

0.95 500 0.957 0.849 3.380 0.937 0.816 3.323 0.944 0.837 3.321

1,000 0.944 0.859 2.405 0.917 0.810 2.375 0.932 0.846 2.357

Notes: The results are for the relative risk measures under the confidence level 95%. k∗
1 and k∗

2 are selected by the data-driven methods in Section 5.1. The relative
length is defined as the ratio of the SCB’s upper bound to its lower bound. We note that under the extreme scenario, the SCBs for CVaR and CES have the same
relative length.
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by dividing the quantile estimator by the factor 1 − γ̂R, thereby introducing
more variability into the CES estimator than the CVaR estimator. Nonetheless,
Theorem 3.1 indicates that CVaR and CES share the same limiting distributions
under the extreme scenario, meaning that the variability of the dividing factor is
of smaller order. In finite samples, however, the variability of the dividing factor
increases estimation uncertainty. Since the multiplier bootstrap only mimics the
first-order stochastic behavior, the resulting SCBs tend to be too tight.

In the third part, we investigate the impact of the convergence rate of θ̂ on the
performance of the proposed approach. We employ model (5.3) with sstd(3,1)
innovations, and the sample size is n = 1,000. We consider τ = 1% for the
intermediate scenario and τ = 0.1% for the extreme scenario. For the estimation
of the model parameters, two methods are employed: the Gaussian QMLE and
the Laplace QMLE. When the innovation is sstd(3,1), the convergence rate of
the Laplace QMLE is n−1/2 (Francq and Zakoïan, 2010, Exam. 9.3), but the con-
vergence rate of the Gaussian QMLE is roughly n−1/3 (Mikosch and Straumann,
2006, Thm. 4.4). We also consider setting the parameter estimates to be the true
parameter to investigate the performance when there is no estimation uncertainty.
Figure 1 shows the coverage rates and relative lengths of the confidence intervals
for R-CVaR for k1 = k2 = k with k ∈ {20,25, . . . ,195,200}. It appears that there
is no visible difference among the performances based on different estimators and
the true parameter. Hence, for a reasonable range of k1 and k2 (at most 20% of
the sample here), the first-stage estimation uncertainty does not seem to affect the
performance of the proposed approach.

In the final part, we compare our EVT-based approach with the purely nonpara-
metric approach of Gao and Song (2008). We employ model (5.3) with sstd(5,1)
innovations, and the sample size is n = 1,000. We apply our intermediate scenario
and the approach of Gao and Song (2008) to construct confidence intervals for
downside CVaR and CES for τ ∈ {0.1%,0.2%, . . . ,1%}. For our approach, k1 and
k2 are selected by the data-driven methods in Section 5.1 with kmin = τ + 3% × n
and kmax = τ + 10% × n. Figure 2 shows the coverage rates and lengths for
different τ . For a direct comparison of the interval length, we use the absolute
length defined as the difference between the confidence interval’s upper bound
and its lower bound.

We first discuss the results for CVaR. When 0.4% ≤ τ ≤ 1%, the coverage
rates are basically comparable, but the nonparametric approach has larger lengths.
When τ becomes more extreme (that is, when τ < 0.4%), the coverage rate of
the nonparametric approach declines sharply and the length of the nonparametric
approach is much smaller than the length of the EVT-based approach. Turning to
the results for CES, we observe that the EVT-based approach has better coverage
and, again, the gap in coverage becomes very evident when τ < 0.7%. In addition,
the length of the EVT-based approach is larger than that of the nonparametric
approach. Combining the above observations, we find that our approach performs
more reliably for small tail levels, thereby highlighting the merit of EVT in
estimating deep tails.
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Figure 1. Comparison of coverage rates and relative lengths of the confidence intervals for R-CVaR
based on different estimators of θ0. The confidence level is 95%. “Gaussian” means the Gaussian
QMLE, “Laplace” means the Laplace QMLE, and “True” means the true parameter. The relative length
is defined as the ratio of the confidence interval’s upper bound to its lower bound.

6. CONCLUSION

This paper proposes an approach to construct SCBs for CVaR and CES. We
consider the one-sided risk measures as well as the relative risk measures. In the
asymptotic theory, we consider two scenarios: (i) the extreme scenario that allows
for extrapolation beyond the range of the available data and (ii) the intermediate
scenario that works exclusively in the case where the available data are adequate
relative to the tail level. For finite-sample implementation, we propose a novel
bootstrap procedure to circumvent the slow convergence rates of the SCBs as well
as infeasibility of approximating the limiting distributions. Simulations confirm
that the proposed approach has favorable finite-sample performance. For future
research, our theoretical results and the bootstrap procedure can be potentially
extended to other risk measures such as the expectile (e.g., Daouia, Girard, and
Stupfler, 2017; Hoga, 2022).
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Figure 2. Coverage and absolute length of the confidence intervals. The confidence level is 95%.
“EVT” denotes our proposed EVT-based approach, and “NP” denotes the nonparametric approach of
Gao and Song (2008). The absolute length is defined as the difference between the confidence interval’s
upper bound and its lower bound.

APPENDIX

The appendix consists of three parts. The first part provides full versions of Propositions 3.1
and 3.2 and their proofs. The second part contains the proofs of the main results. The last
part collects primitive conditions for Assumptions 3.2 and 3.3 in the ARMA–GARCH,
TGARCH, and GARCH-in-mean models.

A. Full Versions of Propositions 3.1 and 3.2

PROPOSITION A.1. Under Assumptions 2.1 and 3.1–3.5, we have, uniformly in τ ∈
[τl,τu],

Û-CVaR(τ )

U-CVaR(τ )
−1 = Q̂ε(1− τ)

Qε(1− τ)
−1+op(k−1/2

1 log(nτ/k1)),

D̂-CVaR(τ )

D-CVaR(τ )
−1 = Q̂ε(τ )

Qε(τ )
−1+op(k−1/2

1 log(nτ/k1)),
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Û-CES(τ )

U-CES(τ )
−1 = Ê[ε|ε > Qε(1− τ)]

E[ε|ε > Qε(1− τ)]
−1+op(k−1/2

1 log(nτ/k1)),

D̂-CES(τ )

D-CES(τ )
−1 = Ê[ε|ε < Qε(τ )]

E[ε|ε < Qε(τ )]
−1+op(k−1/2

1 log(nτ/k1)).

Proof. By simple algebra,

Û-CVaR(τ )

U-CVaR(τ )
−1 =

m(Ĩn,θ̂ )−m(In,θ0)
σ (In,θ0)Qε(1−τ)

+ σ(Ĩn,θ̂ )
σ (In,θ0)

[
Q̂ε(1−τ)
Qε(1−τ)

−1

]
+
[

σ(Ĩn,θ̂ )
σ (In,θ0)

−1

]
1+ m(In,θ0)

σ (In,θ0)Qε(1−τ)

.

First, Lemma S1.16 in the Supplementary Material indicates that σ(Ĩn,θ̂ )/σ (In,θ0)−1 =
Op(n−υ0/2). In addition, as Qε(1−τ) is decreasing in τ and Qε(1−τu) → ∞ as n → ∞ (de
Haan and Ferreira, 2006, Prop. B.1.9), Qε(1−τ) → ∞ uniformly in τ ∈ [τl,τu]. It follows

that m(In,θ0)
σ (In,θ0)Qε(1−τ)

= op(1) and m(Ĩn,θ̂ )−m(In,θ0)
σ (In,θ0)Qε(1−τ)

= op(n−υ0/2) uniformly in τ ∈ [τl,τu].
Thus,

Û-CVaR(τ )

U-CVaR(τ )
−1 =

{[
Q̂ε(1− τ)

Qε(1− τ)
−1

][
1+Op(n−υ0/2)

]
+Op(n−υ0/2)

}
[1+op(1)]

= Q̂ε(1− τ)

Qε(1− τ)
−1+op(k−1/2

1 log(nτ/k1))

uniformly in τ ∈ [τl,τu], where the last equality is due to Lemma S1.10(ii) in the
Supplementary Material and Assumption 3.5 that k1 = o(nδ0) with δ0 < υ0. The proofs
of other terms are similar and are thus omitted here. �

PROPOSITION A.2. Under Assumptions 2.1 and 3.1–3.5, we have, uniformly in
τ ∈ [τl,τu],

Q̂ε(1− τ)

Qε(1− τ)
−1 =

[
ε̂(k1)

Uε (n/k1)
−1

]

+ log

(
k1

nτ

)
(γ̂R −γR)+op(k−1/2

1 log(nτ/k1)),

Q̂ε(τ )

Qε(τ )
−1 =

[−ε̂(n−k2−dn)

U−ε (n/k2)
−1

]

+ log

(
k2

nτ

)
(γ̂L −γL)+op(k−1/2

1 log(nτ/k1)),

Ê[ε|ε > Qε(1− τ)]

E[ε|ε > Qε(1− τ)]
−1 =

[
ε(k1)

Uε (n/k1)
−1

]

+
[

log

(
k1

nτ

)
+ 1

1−γR

]
(γ̂R −γR)+op(k−1/2

1 log(nτ/k1)),

Ê[ε|ε < Qε(τ )]

E[ε|ε < Qε(τ )]
−1 =

[−ε(n−k2−dn)

U−ε (n/k2)
−1

]

+
[

log

(
k2

nτ

)
+ 1

1−γL

]
(γ̂L −γL)+op(k−1/2

1 log(nτ/k1)).
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Proof. This proposition follows immediately from Lemmas S1.10(ii) and S1.13(ii) in
the Supplementary Material. �

B. Proofs of the Main Results

Proof of Theorem 3.1. Theorem 3.1 follows from Propositions A.1 and A.2 and
Lemmas S1.12 and S1.15 in the Supplementary Material, combined with the facts that

log

[
R̂-CVaR(τ )

R-CVaR(τ )

]
= log

[
Û-CVaR(τ )

U-CVaR(τ )

]
− log

[
D̂-CVaR(τ )

D-CVaR(τ )

]

=
[

Q̂ε(1− τ)

Qε(1− τ)
−1+op(k−1/2

1 log(nτ/k1))

]
[1+op(1)]

−
[

Q̂ε(τ )

Qε(τ )
−1+op(k−1/2

1 log(nτ/k1))

]
[1+op(1)]

=
[

Q̂ε(1− τ)

Qε(1− τ)
−1

]
−
[

Q̂ε(τ )

Qε(τ )
−1

]
+op(k−1/2

1 log(nτ/k1))

and

log

[
R̂-CES(τ )

R-CES(τ )

]
= log

[
Û-CES(τ )

U-CES(τ )

]
− log

[
D̂-CES(τ )

D-CES(τ )

]

=
[

Ê[ε|ε > Qε(1− τ)]

E[ε|ε > Qε(1− τ)]
−1

]
−
[

Ê[ε|ε < Qε(τ )]

E[ε|ε < Qε(τ )]
−1

]

+op(k−1/2
1 log(nτ/k1)). �

Proof of Proposition 4.1. According to Lemma S1.9(ii) in the Supplementary Material,
ε̂(k1), ε̂(n−k2−dn), γ̂R −γR, and γ̂L −γL are asymptotically independent and converge to a
four-dimensional normal distribution jointly. The results of this proposition then follow
immediately from Lemmas S1.10 and S1.13 and the proof of Lemma S1.9(ii) in the
Supplementary Material, and Theorem 3.1. �

Proof of Theorem 4.1. (i) It is clear that, for type ∈ {U,D,R}, Tex∗
type is free of τ . In

addition, M∗
R and M∗

L are independent conditional on the original data. Thus, it suffices

to show that k1/2
1 γ −1

R M∗
R and k1/2

2 γ −1
L M∗

L both converge to standard normal distribution
conditional on the original data.

According to Lemma S1.8 in the Supplementary Material and k−1
1

∑n
t=dn

I(ε̂t >

ε̂(k1))

(
log> ε̂t

ε̂(k1)

)2
= ∫∞

1 2F̂(R)(s) log(s) ds
s , we have

k−1/2
1

n∑
t=dn

I(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)

)2
= k−1/2

1

n∑
t=dn

I(εt > ε(k1))

(
log> εt

ε(k1)

)2
+op(1),
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where

k−1
1

n∑
t = dn

I(εt > ε(k1))

(
log> εt

ε(k1)

)2
= 2γ 2

R +op(1)

is due to Lemma 3.5.1 of de Haan and Ferreira (2006).

We first show that conditional on the original data, k1/2
1 γ −1

R M∗
R converges to standard

normal distribution. It suffices to check the Lindeberg–Feller condition for {�∗
R,t}n

t=dn
, with

�∗
R,t = k−1/2

1 γ −1
R I(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)
− γ̂R

)
ξt. Denote E∗(·) as the expectation con-

ditional on the original data. It is clear that conditional on the original data, �∗
R,dn

, . . . ,�∗
R,n

are independent with mean zero. Then, E∗(�∗
R,t) = 0 and

E∗(�∗2
R,t) = k−1

1 γ −2
R 1(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)
− γ̂R

)2
,

for t = dn, . . . ,n. Thus,

n∑
t=dn

E∗(�∗2
R,t) = k−1

1 γ −2
R

n∑
t=dn

1(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)
− γ̂R

)2

= k−1
1 γ −2

R

n∑
t=dn

1(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)

)2

−2k−1
1 γ −2

R γ̂R

n∑
t=dn

1(ε̂t >ε̂(k1))

(
log> ε̂t

ε̂(k1)

)
+ k−1

1 γ −2
R γ̂ 2

R

n∑
t=dn

I(ε̂t >ε̂(k1)),

where the first term in the last equation is k−1
1 γ −2

R
∑n

t=dn
1(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)

)2
=

2+op(1). For the second term and the last term, we have

−2k−1
1 γ −2

R γ̂R

n∑
t=dn

1(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)

)
= −2γ −2

R γ̂ 2
R and

k−1
1 γ −2

R γ̂ 2
R

n∑
t=dn

I(ε̂t > ε̂(k1)) = γ −2
R γ̂ 2

R .

Thus, we obtain that

n∑
t=dn

E∗(�∗2
R,t) = 2+op(1)−γ −2

R γ̂ 2
R = 1+op(1)

as γ̂R is a consistent estimator of γR.
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For t = dn, . . . ,n, denote �R,1,t = k−1/2
1 γ −1

R I(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)
− γ̂R

)
and

�R,2,t = k−1
1 γ −2

R I(ε̂t > ε̂(k1))

(
log> ε̂t

ε̂(k1)
− γ̂R

)2
. Define

�R,1 = max

⎧⎨
⎩
∣∣∣∣∣∣�R,1,t

/√√√√ n∑
t=dn

E∗(�∗2
R,t)

∣∣∣∣∣∣ : t = dn, . . . ,n

⎫⎬
⎭ .

Note that, for t = dn, . . . ,n,

min

(
0,k−1/2

1 γ −1
R I(ε̂(k1−1) > ε̂(k1))

(
log> ε̂(k1−1)

ε̂(k1)
− γ̂R

))

≤ �R,1,t ≤ k−1/2
1 γ −1

R I(ε̂(0) > ε̂(k1))

(
log> ε̂(0)

ε̂(k1)
− γ̂R

)
.

According to Corollary 1.2.4 of de Haan and Ferreira (2006), ε(0)/UR(n) = Op(1). In
addition, as ε(k1)/U(n/k1) = 1 + op(1) and UR(n)/UR(n/k1) = O(kγR

1 ), we have that

ε(0)/ε(k1) = O(kγR
1 ). According to Lemma S1.16 in the Supplementary Material, m(Ĩn,θ̂ )−

m(In,θ0) = Op(n−υ0/2) and σ(Ĩn,θ̂ )−σ(In,θ0) = Op(n−υ0/2). As σ(In,θ0) > c for some
c > 0, simple algebra yields that

ε̂t

εt
=

Rt−m(Ĩn,θ̂ )

σ (Ĩn,θ̂ )

Rt−m(In,θ0)
σ (In,θ0)

= Rt −m(Ĩn,θ̂ )

Rt −m(In,θ0)

σ (In,θ0)

σ (Ĩn,θ̂ )

=
[

1− m(Ĩn,θ̂ )−m(In,θ0)

σ (In,θ0)εt

][
1+ σ(Ĩn,θ̂ )−σ(In,θ0)

σ (In,θ0)

]−1

= 1+op(1).

Thus, we have ε̂(0)/ε̂(k1) = O(kγR
1 ). In addition, according to Lemma S1.9 in the Sup-

plementary Material, ε̂(k1−1)/Uε(n/(k1 − 1)) = 1 + Op(k−1/2
1 ) and ε̂(k1)/Uε(n/k1) =

1+Op(k−1/2
1 ). Furthermore, it is easy to show that Uε(n/(k1 −1))/Uε(n/k1) = 1+o(1).

So we have ε̂(k1−1)/ε̂(k1) = 1+op(1), and this implies �R,1 = op(1).

Note that �∗
R,t = �R,1,tξt and �∗2

R,t = �R,2,tξ
2
t . For any ε > 0,

⎡
⎣ n∑

t=dn

E∗(�∗2
R,t)

⎤
⎦

−1 n∑
t=dn

E∗

⎡
⎣�∗2

R,tI

⎛
⎝|�∗

R,t| > ε

√√√√ n∑
t=dn

E∗(�∗2
R,t)

⎞
⎠
⎤
⎦

=
⎡
⎣ n∑

t=dn

E∗(�∗2
R,t)

⎤
⎦

−1 n∑
t=dn

�R,2,tE∗

⎡
⎣ξ2

t I

⎛
⎝|�R,1,tξt| > ε

√√√√ n∑
t=dn

E∗(�∗2
R,t)

⎞
⎠
⎤
⎦

=
⎡
⎣ n∑

t=dn

E∗(�∗2
R,t)

⎤
⎦

−1 n∑
t=dn

�R,2,tE∗

⎡
⎣ξ2

t I

⎛
⎝
∣∣∣∣∣∣�R,1,tξt

/√√√√ n∑
t=dn

E∗(�∗2
R,t)

∣∣∣∣∣∣ > ε

⎞
⎠
⎤
⎦
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≤
⎡
⎣ n∑

t=dn

E∗(�∗2
R,t)

⎤
⎦

−1 n∑
t=dn

�R,2,tE∗
[
ξ2

t I
(
�R,1 |ξt| > ε

)]

=
⎡
⎣ n∑

t=dn

E∗(�∗2
R,t)

⎤
⎦

−1 n∑
t=dn

�R,2,tE∗
[
ξ2

1 I
(
�R,1 |ξ1| > ε

)]

= E∗
[
ξ2

1 I
(
�R,1 |ξ1| > ε

)]
≤ [E∗(ξ4

1 )]1/2[Pr∗(�R,1 |ξ1| > ε)]1/2

= op(1),

where the second last equality is due to
∑n

t = dn
�R,2,t = ∑n

t = dn
E∗(�∗2

R,t), the last
inequality is from Cauchy–Schwarz inequality, and the last equality is because of �R,1 =
op(1). Thus, {�∗

R,t}n
t=dn

satisfies the Lindeberg–Feller condition, and hence k1/2
1 γ −1

R M∗
R

converges to standard normal distribution. Similarly, we can show that k1/2
2 γ −1

L M∗
L also

converges to standard normal distribution conditional on the original data and thus the first
part of this theorem.

(ii) Regarding the formulations of T int∗
type-CVaR and T int∗

type-CES, along with k1/2
1 γ −1

R M∗
R and

k1/2
2 γ −1

L M∗
L both converge to standard normal distribution conditional on the original data

as shown in part (i), the proof of this part of this theorem can be proved in the same manner
as part (ii) of Lemma S1.11 in the Supplementary Material and thus is omitted here. Then,
we finish the proof of this theorem. �

C. Primitive Conditions for Assumptions 3.2 and 3.3.

This section provides primitive conditions for Assumptions 3.2 and 3.3 in the ARMA–
GARCH, the TGARCH, and the GARCH-in-mean models. In the following discussions,
we restrict our attention to the simplest forms of these models to reduce notational
complication.

Example C.1 (ARMA–GARCH).

Rt = μ+φRt−1 + et +ψet−1, et = σtεt, σ 2
t = ω+ω1e2

t−1 +ω2σ 2
t−1,

where ω > 0, ω1 > 0, and ω2 > 0. Here, θ0 = (μ,φ,ψ,ω,ω1,ω2), It−1 = σ {εt−1,εt−2, . . .},
m(It−1,θ0) = μ+φRt−1 +ψet−1, and σ 2(It−1,θ0) = ω+ω1e2

t−1 +ω2σ 2
t−1.

Example C.2 (TGARCH).

Rt = μ+σtεt, σ 2
t = ω+ (ω0Nt−1 +ω1)σ 2

t−1ε2
t−1 +ω2σ 2

t−1,

where Nt equals 1 if εt < 0 and 0 otherwise, ω > 0, ω0 +ω1 > 0, ω1 > 0, and ω2 > 0. Here,
θ0 = (μ,ω,ω0,ω1,ω2), It−1 = σ {εt−1,εt−2, . . .}, m(It−1,θ0) = μ, and σ 2(It−1,θ0) = ω+
(ω0Nt−1 +ω1)σ 2

t−1ε2
t−1 +ω2σ 2

t−1.

Example C.3 (GARCH-in-mean).

Rt = μ+φXt−1 +ψσ 2
t−1 +σtεt, σ 2

t = ω+ω1σ 2
t−1ε2

t−1 +ω2σ 2
t−1,
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where ω > 0, ω1 > 0, and ω2 > 0. Xt is an exogenous variable generated by {ηt}∞t=−∞,
a sequence of i.i.d. random vectors independent of the innovation sequence {εt}∞t=−∞.
Here, θ0 = (μ,φ,ψ,ω,ω1,ω2), It−1 = σ {εt−1,εt−2, . . . ;ηt−1,ηt−2, . . .}, m(It−1,θ0) =
μ+φXt−1 +ψσt−1, and σ 2(It−1,θ0) = ω+ω1σ 2

t−1ε2
t−1 +ω2σ 2

t−1.

PROPOSITION C.1. Under the condition that E(|Rt|υ1) < ∞, for some υ1 > 2/υ0,
Assumptions 3.2 and 3.3 are satisfied:

(i) by Example A.1, if |φ| < 1, ω > 0, 0 < ω1 < 1, 0 < ω2 < 1, and 0 < ω1 +ω2 < 1;
(ii) by Example A.2, if ω > 0, 0 < ω0 +ω1 < 1, 0 < ω1 < 1, 0 < ω2 < 1, 0 < ω0 +ω1 +

ω2 < 1; and
(iii) by Example A.3, if Xt = ψ1Xt−1 +ηt with E(|ηt|υ1) < ∞, |ψ1| < 1, ω > 0, 0 < ω1 <

1, 0 < ω2 < 1, and 0 < ω1 +ω2 < 1.

The proof of Proposition C.3 can be found in Section S3 of the Supplementary Material.

SUPPLEMENTARY MATERIAL

To view the online supplementary material for this article, please visit:
https://doi.org/10.1017/S0266466622000275
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