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Buoyancy effects on film boiling heat transfer
from a sphere at low velocities
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A theoretical model is developed for the forced convection film boiling phenomenon over
a heated sphere moving vertically downwards in the water. Unprecedented compared with
the previous analytical studies, this model accounts for the buoyancy effects while solving
the momentum and energy equations in the vapour phase to obtain the velocity and the
temperature distribution in terms of the vapour boundary layer thickness. To calculate
the vapour boundary layer thickness, an energy balance is applied at the vapour–liquid
interface. The flow of liquid around the sphere is considered to be governed by potential
theory, and the energy equation in liquid is then solved for the known velocity distribution.
We find that the vapour boundary layer thickness increases with an increase in the sphere
temperature, the bulk water temperature and a decrease in the free stream velocity. This
further results in a decrease in the film boiling heat transfer coefficient. The present study
concludes that at low free stream velocities (<0.5 m s−1) buoyancy becomes significant
in delaying the separation, and when the velocity is further reduced the separation angle
approaches 180◦.

Key words: boundary layer separation, boiling

1. Introduction

The knowledge of heat-transfer rates from spherical particles at high flux levels can
significantly contribute towards designing energy systems associated with space industries
and nuclear reactors. The primary mode of heat transfer in such energy systems is film
boiling in which a vapour layer wraps the heated spherical surface preventing its contact
with the liquid. Film boiling can be characterized as natural convection film boiling and
forced convection film boiling. In natural convection film boiling the motion of the liquid
over the heated specimen is caused by the viscous drag forces of the rising vapour acting
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on the liquid whereas in forced convection film boiling the liquid is forced to flow over
the heated specimen. The information about the film boiling phenomenon can be used to
determine core cooling ability after certain hypothetical nuclear accidents that result in
extensive core melting. The concept of film boiling has also been utilized in the area of
naval applications for drag reduction techniques by inserting a vapour layer in-between the
surface and the surrounding liquid (Vakarelski et al. 2011).

Theoretical and experimental investigation on film boiling of saturated liquid such as
carbon tetrachloride, benzene, ethyl alcohol, n-hexane over a cylinder were performed
by Bromley, LeRoy & Robbers (1953). They reported that for high velocity flows the
separation angle was close to 90◦, whereas for sufficiently low velocities the separation
angle approaches 180◦. Motte & Bromley (1957) used the same experimental set-up as
Bromley et al. (1953) with some modifications to study subcooled (when the temperature
of the liquid is below its boiling point) forced convection film boiling over a cylinder
with turbulence. It was found that with an increase in subcooling and velocity, the heat
transfer rate also increases. Bradfield (1967) also studied film boiling over a sphere using
experimental techniques, and concluded that the minimum temperature of the sphere above
the boiling temperature of liquid required to sustain the film boiling increases linearly with
an increase in subcooling. Transient subcooled forced convection film boiling over a sphere
was experimentally investigated by Walford (1969). Different regimes of film boiling over
the sphere have been identified, and the subsequent heat flux behaviour in those regimes
was reported.

Kobayasi (1965) theoretically investigated film boiling heat transfer from a sphere
moving downward in a liquid and proposed a general solution for predicting the boiling
heat transfer coefficient as a function of certain parameters such as Reynolds number,
liquid–vapour viscosity ratio, Prandtl number, size of the sphere and the kinematic
viscosity of the liquid. However, the findings of Kobayasi (1965) were not accurate owing
to the incorrect pressure used for the theoretical derivation (Hesson & Witte 1966).

To derive the theoretical heat transfer rate, Bromley et al. (1953) and Kobayasi (1965)
used an imposed pressure gradient from the free stream. Additionally, Bernoulli’s theorem
was applied to get an additional equation in terms of the frictional loss in vapour. The
problem was further simplified by considering saturated liquid flow around the body.
When the liquid is at saturation temperature there will be no heat flux going into the
bulk liquid, and all the heat leaving the sphere is used in vaporizing and superheating the
vapour. As the heat transfer phenomenon is straightforward in the case of saturated liquid,
the energy conservation equation is not solved, and the calculations in the liquid become
simple. However, in practical situations, the liquids are not saturated. Therefore, an energy
equation should be solved both in the liquid and the vapour phase to obtain an accurate
temperature distribution to properly characterize the heat transfer process around the body.
In the present investigation, we solve the energy equation in both the liquid and the vapour
phases to obtain the temperature distribution in both phases.

Witte (1967, 1968a,b) and Witte & Orozco (1984) carried out experimental and
theoretical investigations of forced convection film boiling from a sphere moving in a
liquid. The experiment of Witte (1968a) used a transient technique in which a heated
sphere attached to a swinging-arm apparatus was passed through a pool of liquid sodium.
The heat transfer rates from the sphere to the liquid sodium were measured, and were found
to be in good agreement with the theoretical expressions for heat transfer from a sphere
during forced convection with the assumption of potential flow in liquid sodium. Witte
(1968b) assumed a linear profile for velocity in the vapour film and reported the forced
convection film boiling from a sphere in a saturated liquid. The effect of a nonlinear
velocity profile within the vapour film on subcooled flow film boiling from a sphere
943 A5-2
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is analysed by Witte (1967) and Witte & Orozco (1984). While calculating the vapour
boundary layer thickness, Witte (1967) neglected the effect of radiation, and argued that
for highly subcooled liquid the energy required for the vaporization of liquid can be
ignored in comparison with the heat energy going into the bulk liquid. In contrast, Witte
& Orozco (1984) included the heat energy required to vapourize the liquid and concluded
that the results based on the nonlinear velocity profile produce results comparable to the
experiments. The liquid velocity at the vapour–liquid interface was calculated from the
potential flow theory in all the investigations. Additionally these theoretical investigations
did not consider buoyancy in their analysis. We will demonstrate in § 3 that buoyancy plays
a crucial role in obtaining results that are similar to the experiments.

Dhir & Purohit (1978) performed theoretical and experimental investigations to
determine the effect of flow velocity, subcooling and initial sphere temperature on film
boiling heat transfer from a sphere. Their theoretical analysis, although including the effect
of buoyancy, was restricted only to natural convection film boiling over a sphere where the
surrounding liquid was stagnant. The vapour film was assumed to be stable, and very thin
in comparison with the radius of the sphere, so that the nonlinear behaviour of the film
can be neglected. With an increase in both sphere and bulk water temperature, Dhir &
Purohit (1978) observed a decrease in the film boiling heat transfer coefficient owing to an
increase in the vapour film thickness. They also reported that the minimum temperature of
the sphere to sustain a stable film depends only on subcooling, and increases linearly with
subcooling.

An experimental study of transient film boiling on different geometries (spheres,
cylinders, flat plates) with different coolant velocities was also conducted by Jouhara &
Axcell (2009). Their study on the nature of the vapour–liquid interface and the collapse
modes has revealed a new model for film collapse, in which an explosive liquid–solid
contact is followed by film reformation and the motion of a quench front over the hot
surface. The heat transfer coefficients and heat fluxes during film boiling were found
essentially to depend on the temperature of the body and water subcooling. A theoretical
model was also developed that predicted the heat transfer coefficients to within 10 % of
experimental values for water subcooling above 10 K. However, their theoretical model
was restricted to plane surfaces only.

In this investigation, we develop a theoretical model to determine the heat transfer
characteristics and boundary layer separation behaviour owing to film boiling from
a heated spherical particle moving slowly in water under the influence of buoyancy
unprecedented to the earlier theoretical studies. A comparison of our theoretical model
with the experimental study of Jouhara & Axcell (2009), and the theoretical model of
Witte & Orozco (1984), is also performed to access the efficacy of our model.

The methodology for the development of the theoretical model is presented in § 2.
Results from our model are discussed in § 3 and the conclusions drawn from this study
are given in § 4.

2. Methodology

The schematic of film boiling over a sphere is shown in figure 1. When the liquid comes
in contact with the heated sphere, a vapour layer is formed around the sphere as the
temperature of the sphere is higher than the saturation temperature of the liquid. Heat
conduction occurs through the vapour layer. A portion of this heat is utilized in vaporizing
the liquid that adds to the vapour layer, increasing the vapour layer thickness. Another
portion of the heat is diffused into the bulk liquid. Figure 1 manifests the vapour layer
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Figure 1. Schematic of film boiling over a heated sphere moving in the direction of gravity in water showing
temperature Tb at the surface of sphere, Tsat at the vapour liquid interface and Tw in the bulk water.

and the liquid layer around the sphere. The vapour boundary layer moves past the heated
sphere and is influenced by both the sphere and the liquid layer. The liquid layer only
feels the influence of the vapour layer and is not in direct contact with the sphere. We aim
to theoretically determine the heat transfer rates during the film boiling from the sphere
including the effects of buoyancy. Our analysis is based on the following assumptions:

(i) the liquid–vapour interface is smooth and is in dynamic equilibrium;
(ii) the temperature of the sphere is uniform;

(iii) physical properties of vapour and liquid are evaluated at mean film temperature;
(iv) heat transfer across the vapour layer takes place by conduction only;
(v) inertial effects in the momentum and energy equations of vapour are neglected;

(vi) the flow of liquid around the sphere is governed by potential flow theory;
(vii) the vapour film is axially symmetric.

All of the above-mentioned assumptions are justified from the available theoretical
and experimental studies. Bradfield (1966) observed that the ripples formed during film
boiling in the surrounding liquid at rest tend to dampen as the liquid starts moving.
As the velocity of the liquid around the body is increased, the liquid–vapour interface
becomes unstable. The velocity range we use in the current investigation is well below
the limit for an unstable interface and therefore, it is reasonable to assume a smooth
liquid–vapour interface. The uniformity of the temperature of the sphere is justified for
low Biot numbers (a non-dimensional quantity that represents the ratio of the thermal
resistances inside the body and at the surface of the body) Bi = hL/k, where L is
characteristic length of the body, k is the thermal conductivity of the body, h is convective
heat transfer coefficient. Bradfield (1967) also found that the maximum discrepancy in heat
flux calculations was less than 2 % if uniform temperature distribution is assumed within
the specimen as compared with the case when calculations are performed considering
variability in temperature distribution within the sphere. The physical properties of the
vapour and the liquid phase were computed by Bromley et al. (1953) from well-defined
expressions developed to calculate the average value of the physical property. However, it
was concluded that for simplicity all physical properties can be evaluated at the mean film
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temperature except for the latent heat of vaporization. This justifies our third assumption.
Burns (1989) concluded that the film thickness obtained experimentally, and calculated
assuming heat transfer across the film by conduction, manifests no significant difference.
Therefore, the heat transfer across the vapour film can be assumed to take place solely
by conduction. Similar assumptions were made by Bromley et al. (1953) and Motte &
Bromley (1957). Our fifth assumption is justified owing to the fact that the thickness of
the vapour layer is very small in comparison with the diameter of the sphere (Bromley
et al. 1953; Kobayasi 1965; Witte 1967; Witte & Orozco 1984; Jouhara & Axcell 2009).
Also, the Péclet number for the range of parameters used in this investigation is small
and is consistent with our final solution. Assumption (vi) is justified from the study of
Kutateladze (1959) where it has been shown that the assumption of potential flow or
viscous flow in the liquid does not make a significant difference.

2.1. Liquid region
We consider the liquid–vapour interface as smooth, and in dynamic equilibrium.
Therefore, the shear stress acting on the liquid at the liquid–vapour interface is equal to
the shear stress on the vapour at the liquid-vapour interface, and we can write

τl = τv =⇒ μv
∂u
∂y

∣∣∣∣
v

= μl
∂u
∂y

∣∣∣∣
l

=⇒ ∂u
∂y

∣∣∣∣
l
= μv

μl

∂u
∂y

∣∣∣∣
v

. (2.1)

The value of μv/μl for water is very small �1. Therefore, according to the sixth
assumption, the velocity distribution in bulk liquid is (refer to the Appendix for a detailed
derivation)

ur = −3U
r − R

R
cos θ, uθ = 3

2
U sin θ, (2.2a,b)

where, θ is the azimuthal angle measured from the stagnation point, r is the radial
direction, U is the incoming free stream velocity of liquid, ur is the velocity in the radial
direction, uθ is the velocity in the azimuthal direction, R is the radius of the sphere.

From figure 1, we can write

(i) y = r − R and
(ii) θ = x/R,

where x is the curvilinear coordinate along the surface of the sphere, and y is the
curvilinear coordinate normal to the x direction.

We can transform ur and uθ in the curvilinear coordinate system as follows:

ur = −3U
r − R

R
cos θ = −3U

y
R

cos
x
R
, (2.3)

uθ = 3
2

U sin θ = 3
2

U sin
x
R
. (2.4)

Next, we consider the energy equation for the liquid in the spherical coordinate system,

ur
∂T
∂r

+ uθ
r
∂T
∂θ

+ uφ
r sin θ

∂T
∂φ

= αl

(
∂2T
∂r2 + 2

r
∂T
∂r

)
, (2.5)

where αl is the thermal diffusivity of liquid and T is temperature. Since the flow is assumed
to be axially symmetric and there is no component of velocity in the φ direction, we can
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write (2.5) as follows:

ur
∂T
∂r

+ uθ
r
∂T
∂θ

= αl

(
∂2T
∂r2 + 2

r
∂T
∂r

)
. (2.6)

Sideman (1966) demonstrated that if heat transfer is assumed to take place in a thin layer
near the interface, the term scaling with (1/r)(∂T/∂r) can be neglected in comparison with
the term ∂2T/∂r2. Therefore, under this assumption we can modify the (2.6) as follows:

ur
∂T
∂r

+ uθ
r
∂T
∂θ

= αl
∂2T
∂r2 . (2.7)

We use the information from figure 1 for the following transformations:

uθ = ul, ur = vl x = rθ =⇒ dx = r dθ ; y = r − R =⇒ dy = dr, (2.8)

where, ul and vl are the velocities of the liquid in x and y directions, respectively, dx is the
derivative at a given r. Substituting (2.8) in (2.7) we get

ul
∂T
∂x

+ vl
∂T
∂y

= αl
∂2T
∂y2 . (2.9)

The boundary conditions corresponding to (2.9) considering R + δ ∼ R are as
follows:

(i) y → ∞, T = Tw, θ ≥ 0;
(ii) y = 0, T = Tsat, θ ≥ 0; and

(iii) 0 < y ≤ ∞, T = Tw, θ = 0.

Here, Tsat is the saturation temperature of the liquid, Tw is the temperature of bulk
water, δ is the vapour layer thickness. To convert the partial differential equation (2.9) to an
ordinary differential equation, whose solution is already known, we use the transformation
of variables (Sideman 1966; Witte & Orozco 1984) as follows:

�T = T − Tsat, ψ = y sin2 θ, η =
∫ θ

0
sin3 θ dθ = −3

4
cos θ + 1

12
cos 3θ + 2

3
.

(2.10a–c)

Substituting (2.3) and (2.4) into (2.9) and using the variable transform (2.10a–c) leads
to

∂�T
∂η

= 2Rαl

3U
∂2�T
∂ψ2 . (2.11)

Using M = 2Rαl/3U and defining β = (T − Tw)/(Tsat − Tw), we can write

∂β

∂η
= M

∂2β

∂ψ2 . (2.12)

The boundary conditions corresponding to (2.12) are

(i) ψ → ∞, η ≥ 0, β = 0,
(ii) ψ = 0, η ≥ 0, β = 1 and

(iii) 0 < ψ ≤ ∞, η = 0, β = 0.
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The partial differential equation (2.12) can be converted to an ordinary differential
equation using the method of combinations of variables. Defining β = ψa ηb, where a
and b are constants and substituting in (2.12), we get

ψ2

Mη
= a(a − 1)

b
= constant. (2.13)

The new variable can be of the form (cψ2/Mη)d. Let us define the new variable as
γ = ψ/

√
4Mη (obtained by choosing d = 1/2 and c = 1/4) and hence we can write

β(ψ, η) = β(γ ). After expressing the derivatives of β in (2.12) in terms of γ we get an
ordinary differential equation as follows:

d2β

dγ 2 + 2γ
dβ
dγ

= 0. (2.14)

The boundary conditions corresponding to (2.14) will become

(i) γ = 0, β = 1 and
(ii) γ = ∞, β = 0.

The solution of (2.14) is of the form

T − Tw

Tsat − Tw
= erfc

(
ψ

2
√

Mη

)
. (2.15)

Equation (2.15) represents the temperature distribution in the liquid, and we can use it
to calculate the heat flux, q′′

b , into the bulk liquid as follows:

q′′
b = −kl

(
∂T
∂y

)∣∣∣∣
y=0

= kl�Tw sin2 θ√
πMη

, (2.16)

where kl is the thermal conductivity of the liquid.

2.2. Vapour region
We write the momentum equation in the x direction in the vapour region following figure 1
as follows:

ρv

(
u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+�ρg sin θ + μv

∂2u
∂y2 , (2.17)

where�ρ = ρl − ρv , ρl and ρv are the densities of liquid and vapour, respectively, and g is
the acceleration due to gravity, u and v are the velocities of the vapour in x and y directions,
respectively. In stable film boiling regime the bulk liquid motion is considered to be in the
curvilinear x direction. For the range of flow velocity considered in this investigation, the
Mach number is �1, and hence any compressibility effect is neglected. Neglecting inertial
effects in the momentum equation of the vapour owing to the fact that the thickness of the
vapour layer is very small in comparison with the diameter of the sphere results in the
following equation:

∂2u
∂y2 = 1

μv

(
∂p
∂x

−�ρg sin θ
)
. (2.18)

The boundary conditions corresponding to (2.18) are
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(i) y = 0, u = 0 and
(ii) y = δ, u = 3(U sin θ)/2.

Since the vapour layer thickness (δ) is thin, the streamwise variation of pressure in the
liquid layer as given by the Bernoulli equation is impressed on the vapour layer (Witte
1967). Therefore, using Bernoulli’s equation in the liquid layer we can write

p + 1
2
ρlu2

l = constant. (2.19)

Since the size of the sphere is small the net variation of the gravitational contribution
around the sphere in above equation will be negligible. From (2.3) we can write
ul = (3/2)U sin θ = (3/2)U sin(x/R) and modify equation (2.19) as follows:

dp
dx

= −ρlul
dul

dx
= −9

8

(
ρlU2

R

)
sin 2θ. (2.20)

Substituting (2.20) in (2.18) and solving for the corresponding boundary conditions we get

u = 3
2

U sin θ
y
δ

+
(

9
8
ρlU2

μvR
sin θ cos θ + �ρg sin θ

2μv

)(
yδ − y2

)
. (2.21)

We can see that the velocity in (2.21) is comprised of a linear term, (3/2)U sin θ(y/δ),
and two nonlinear terms, (9/8)(ρlU2/μvR) sin θ cos θ and (�ρg sin θ)/2μv . The first
nonlinear term is due to the imposed pressure gradient by the potential flow of liquid,
whereas the second nonlinear term represents the effect of buoyancy. Witte & Orozco
(1984) in their theoretical model did not consider buoyancy effects. Therefore, if we
neglect the buoyancy, then nonlinearity in the velocity profile is sustained only by the
imposed pressure. We can further see that the first nonlinear term is proportional to
the square of the velocity, and at low velocities, the nonlinear term is dominated by the
buoyancy effects.

2.3. Temperature distribution in vapour layer
In (2.21) the vapour layer thickness, δ, is an unknown. Determination of δ is important
for understanding the heat transfer phenomenon. To compute δ we start with the energy
equation for the vapour layer in the x direction as follows:

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 . (2.22)

The corresponding boundary conditions for (2.22) are

(i) y = 0, u = 0, T = Tb and
(ii) y = δ, u = (3/2)U sin θ, T = Tsat,
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Sphere

Vapour region

Liquid region

qb

qr

dθ

qc
qvap

Figure 2. Energy balance over elemental area of sphere.

where Tb is the temperature of the sphere. Using assumptions (iv) and (v) (see 2), (2.22)
can be written, and solved as follows:

∂2T
∂y2 = 0 =⇒ T = C1y + C2. (2.23)

Substituting the corresponding boundary condition in (2.23) we get

T = Tb + (Tsat − Tb)
y
δ
. (2.24)

This equation represents the temperature distribution in the vapour layer.

2.4. Vapour boundary layer thickness
Next, we consider the heating provided by the sphere that results in the vaporization of
liquid at the vapour–liquid interface, and superheating of the newly formed vapour above
Tsat. Heat energy due to conduction and radiation from the sphere reaches the vapour
liquid interface. Since the bulk water is below the saturation temperature of the water, a
part of this heat energy available at the interface is utilized in vaporizing and superheating
the liquid, whereas the remaining part is diffused into the bulk liquid. From the energy
balance on a differential element as shown in figure 2 we can write

dqc + dqr = dqvap + dqb, (2.25)

where:

(i) dqc is heat transfer due to conduction across vapour film, q′′
c = kv(Tb − Tsat)/δ (we

get this by substituting (2.24) in the Fourier’s law of heat conduction);
(ii) dqr is heat transfer due to radiation , q′′

r = σε(T4
b − T4

sat);
(iii) dqvap is heat utilized in vaporizing the liquid;
(iv) dqb is sensible heat energy going in water, q′′

b = (kl�Tw sin2 θ)/
√

πMη.
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The energy flux utilized in the vaporization of liquid can be written as

dqvap = h′
fg dw = h′

fg d(ρvAcū), (2.26)

where dw is the increase of mass flow rate in the vapour layer due to vaporization, hfg is
the latent of vaporization,

h′
fg = hfg

(
1 + 0.4Cpl(Tb − Tsat)

hfg

)
(2.27)

is the modified latent heat of vaporization (Bromley et al. 1953; Witte 1967; Witte &
Orozco 1984) that accounts for the temperature variation in the vapour field and super
heating of vapour above Tsat, Ac = 2πRδ sin θ is the flow cross-section of the film, and ū
is the average vapour velocity at any θ .

The average velocity in the vapour film is calculated as follows:

ū = 1
δ

∫ δ

0
u dy = 1

δ

∫ δ

0

(
3
2

U sin θ
y
δ

+
(

9
8
ρlU2

μvR
sin θ cos θ + �ρg sin θ

2μv

)(
yδ−y2

))
dy

(2.28)

=⇒

ū = 3
4

U sin θ + 3ρl U2

16μvR
sin θ cos θδ2 + �ρg sin θ

12μv
δ2. (2.29)

Using (2.29) in (2.26),

dqvap = h′
fg d

(
ρv2πRδ sin θ

(
3
4

U sin θ + 3ρl U2

16μvR
sin θ cos θδ2 + �ρlg sin θ

12μv
δ2
))
(2.30)

=⇒

dqvap = h′
fg

d
dθ

(
ρv2πRδ sin θ

(
3
4

U sin θ + 3ρl U2

16μvR
sin θ cos θδ2 + �ρlg sin θ

12μv
δ2
))

dθ.

(2.31)

From (2.25) we can write

kv (Tb − Tsat)

δ
dA + q′′

r dA = dqvap + q′′
b dA, (2.32)

where, dA = 2πR2 sin θ dθ is the differential area element on the sphere, and kv is the
thermal conductivity of the vapour. Substituting, dA , q′′

r and q′′
b in above equation, we get

dqvap

2πR2 sin θ dθ
= kv (Tb − Tsat)

δ
+ σε(T4

b − T4
sat)− kl�Tw sin2 θ√

πMη
. (2.33)
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Buoyancy effects on film boiling heat transfer from a sphere

Substituting (2.31) in (2.33), and separating dδ/dθ we obtain

dδ
dθ

=

(
kv (Tb − Tsat)

δ
+ σε(T4

b − T4
sat)− kl�Tw sin2 θ√

πMη

−
h′

fgρv

R

(
3U cos θδ

2
+ 3ρlU2

16μvR
(3 cos2 θ − 1)δ3 + �ρg cos θ

6μv
δ3
))

h′
fgρv

R

(
3U sin θ

4
+ 9ρlU2

16μvR
sin θ cos θδ2 + �ρg sin θ

4μv
δ2
) . (2.34)

The non-dimensional form of (2.34) is as follows (the steps to non-dimensionalize
equation (2.34) is given in the Appendix):

d
(
δ

D

)
dθ

= 1

1 + 3ρl

2ρv
Rev

(
δ

D

)2

cos θ + 1
3

(
δ

D

)2 Gr

Rev

⎛
⎜⎜⎝ 2Jv

3Pev sin θ
(
δ

D

) + 2qr

3ρvUh′
fg sin θ

− 2
(
δ

D

)
cot θ − 1

2
ρl

ρv
Rev

(
δ

D

)3 (3 cos2 θ − 1
sin θ

)
− 2

9
Gr
Rev

(
δ

D

)3

cot θ

−
2
ρl

ρv
Jl sin θ

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2

⎞
⎟⎟⎟⎠ . (2.35)

Here, Rev = ρvUD/μv is the vapour Reynolds number, Gr = g(ρl/ρv − 1)(D3/ν2
v ) is the

Grashof number (representing the ratio of buoyancy force to the viscous force acting on a
fluid), Jv = (Cpv (Tb − Tsat))/h′

fg and Jl = (Cpl(Tsat − Tw))/h′
fg are the vapour and liquid

Jakob numbers, respectively (representing the sensible heat absorbed or released during
the liquid vapour phase change in comparison with the latent heat), Pev = DU/αv and
Pel = DU/αl are the vapour and liquid Péclet numbers, respectively (representing the ratio
of convection by thermal diffusion). We will solve (2.35) by a Runge–Kutta fourth-order
method, for the initial conditions obtained by imposing dδ/dθ |θ=0 = 0. The condition is
justified owing to the fact that the vapour layer thickness is initially very small, and grows
along the sphere surface due to the addition of vapour because of boiling. Therefore, at
θ = 0 this increase in vapour layer is negligible.

2.4.1. Initial condition
We will now use dδ/dθ |θ=0 = 0 or (d(δ/D))/dθ |θ=0 = 0 in (2.35) to get the initial
conditions,

2Jv
3Pev

+ 2qr
δ
D

3ρvUh′
fg

− 2
(
δ

D

)2

− ρl

ρv
Rev

(
δ

D

)4

− 2
9

Gr
Rev

(
δ

D

)4

−
2
ρl

ρv
Jl sin2 θ

δ

D

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2

∣∣∣∣∣∣∣∣∣
θ=0

= 0. (2.36)
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The last term in (2.36) is solved separately as follows (the steps to solve the last term in
(2.36) is given in the Appendix):

lim
θ→0

2
ρl

ρv
Jl sin2 θ

δ

D

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2

∣∣∣∣∣∣∣∣∣
θ=0

= 4√
3πPel

ρl

ρv
Jl
δ

D
, (2.37)

substituting (2.37) in (2.36) we get

2Jv
3Pev

+ 2qr

3ρvUh′
fg

(
δ

D

)
− 2

(
δ

D

)2

− ρl

ρv
Rev

(
δ

D

)4

− 2
9

Gr
Rev

(
δ

D

)4

− 4√
3πPel

ρl

ρv
Jl

(
δ

D

)
= 0 (2.38)

=⇒(
ρl

ρv
Rev+ 2

9
Gr
Rev

)(
δ

D

)4

+ 2
(
δ

D

)2

+
(

4√
3πPel

ρl

ρv
Jl − 2qr

3ρvUh′
fg

)(
δ

D

)
− 2Jv

3Pev
= 0.

(2.39)

Equation (2.39) is solved and the real, non-negative values of δ/D are the initial
conditions to solve (2.35). Equation (2.39) consists of various non-dimensional terms
which are required to be evaluated from the properties of vapour and liquid evaluated
at corresponding mean film temperature. The mean film temperature for vapour is
(Tb + Tsat)/2 and for liquid is (Tsat + Tw)/2. Note that (2.35) has a singularity at
θ = 0◦ and 180◦. Therefore, the initial condition required to solve (2.35) by a Runge–Kutta
method is given at some θ near to 0◦, and not exactly at θ = 0◦.

After calculating the variation of δ(θ) we can compute the heat transfer coefficient, and
the Nusselt number. We consider the fact that the energy leaving the sphere surface has
two components, namely conduction across the vapour film and radiation (see figure 2).
Therefore, an energy balance enables us to write

hθ (Tb − Tsat) = kv(Tb − Tsat)

δ
+ qr, (2.40)

hθ = kv
δ

+ qr

Tb − Tsat
, (2.41)

where hθ represents the local heat transfer coefficient. The local Nusselt number, Nuθ is
defined as hθD/kv , and therefore can be written as

Nuθ = D
δ

+ Dqr

kv(Tb − Tsat)
. (2.42)

From the local Nusselt number, we can calculate the average Nusselt number using the
total sphere area 4πR2 as follows:

Nu = 1
2

∫ θs

0
Nuθ sin θ dθ, (2.43)

here θs is the angle at which separation takes place. The use of θs in (2.43) indicates the
validation of our analytical solutions until the point of separation, and the average heat
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Buoyancy effects on film boiling heat transfer from a sphere

flux over the sphere in the region downstream of the separation point is not accounted for
during the calculation of Nu. We further use (2.43) to calculate the averaged heat transfer
coefficient,

h = NuD
kv

. (2.44)

2.4.2. Flow separation
We can use (2.21), and apply ∂u/∂y|y=0 = 0 to determine the angle of separation. This
boundary condition is used because the point at which the flow separates will have a
velocity profile such that the gradient of velocity with respect to the normal to the surface
becomes zero. Now

cos θs = −

⎛
⎜⎜⎜⎝

3U
2δ2

s
+ �ρg

2μv
9ρlU2

8μvR

⎞
⎟⎟⎟⎠ = −

(
4μvR

3ρlUδ2
s

+ 4Rg�ρ
9U2ρl

)
, (2.45)

where δs is the thickness of the vapour layer at the point of separation. The vapour layer
grows as we move in the direction of θ . As we reach a point where θ = θs, δ is equal to δs.

Equation (2.45) does not predict the separation angle directly, rather it needs to be solved
simultaneously with (2.35). We can also observe from (2.45) that θs > π/2. The second
term in (2.45) represents the effect of buoyancy and scales with 1/U2. This signifies that
at low velocities this term will grow rapidly and will suppress the separation resulting in
an increase in the separation angle (see § 3).

3. Results

The comparison of the variation of heat transfer coefficient with sphere temperature
between the present model and the experiments of Jouhara & Axcell (2009), is shown
in figure 3(a). We also show the corresponding comparison between the model of Witte &
Orozco (1984) and the experimental study of Jouhara & Axcell (2009) in figure 3(b). Our
model achieves a very good agreement with the results from the experiments. The model
of Witte & Orozco (1984) manifests a significant departure from the experimental results.
The reason being the inclusion of buoyancy in our model that successfully captures the
delayed separation. We further discuss the key role of buoyancy in delaying the separation
at low velocities in the upcoming text.

The vapour boundary layer thickness δ increases with an increase in temperature of
water (Tw), and an increase in sphere temperature (Tb) as can be observed from figures 4(a)
and 4(b), respectively. With an increase in the temperature of water Tw, the contribution
of vapour film to the net energy exchange between the sphere and the surrounding liquid
decreases. Therefore, the energy going into the bulk liquid decreases, and the amount of
total energy available for vaporization of liquid increases resulting in an increase in the
vapour boundary layer thickness. Similarly, with an increase in sphere temperature Tb, the
energy available for vaporization of the liquid increases resulting in an increase in vapour
boundary layer thickness. At low velocities, the adverse pressure gradient weakens, and
buoyancy (acting upwards) pushes the fluid against this weak adverse pressure gradient to
delay the separation. Our model captures this separation delay for different Tw and Tb, as
manifested in figure 4(a,b). The model of Witte & Orozco (1984), owing to the exclusion

943 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.383


R. Singh, A. Pal and S. De

Tw = 78.2 °C
Tw = 81.5 °C
Tw = 83.4 °C
Tw = 88 °C
Tw = 90.2 °C

500

D = 20 mm
U = 0.176 m s–1

Solid lines: present study with buoyancy
Dots: Jouhara & Axcell (2009) 

D = 20 mm
U = 0.176 m s–1

Solid lines: Witte & Orozco (1984)
Dots: Jouhara & Axcell (2009) 

450

400

350

h 
(W

 (m
2 k

)–1
)

300

250

200

150

100
250 300 350 400 450 500

Tb (°C)
550 600 250 300 350 400 450 500

Tb (°C)
550 600

500

450

400

350

300

250

200

150

100

(b)(a)

Figure 3. Comparison of the heat transfer coefficient with sphere temperature between (a) present study, and
the experiments of Jouhara & Axcell (2009), (b) Witte & Orozco (1984) and Jouhara & Axcell (2009).
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Dashed lines: Witte & Orozco (1984) 
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Figure 4. Variation of vapour boundary layer thickness over sphere at free stream velocity U = 0.01 m s−1

with (a) bulk water temperature Tw at Tb = 400 ◦C and (b) sphere temperature Tb at Tw = 70 ◦C.

of buoyancy, predicts significantly earlier separation at low velocities as indicated by the
rapid rise in the vapour boundary layer thickness in figure 4(a,b). Equation (2.35) has a
singularity at θ = 180◦, and therefore to avoid any perturbations in the results due to a
sudden increase in the value of δ at θ = 180◦, we have not plotted the results until 180◦.

We report a decrease in the vapour boundary layer thickness with an increase in free
stream velocity U for a given value of the sphere and the water temperature in figure 5. It
can be observed from figure 5(a) that the separation is delayed (shown by the sudden
increase in δ) with decreasing velocity. When the velocity becomes sufficiently low
there is no separation, which is similar to the observations of Bromley et al. (1953). In
comparison with our model, the model of Witte & Orozco (1984) does not show any
variation of separation angle with velocity (see figure 5b). To understand the reason for
the separation even at low velocities we analyse the expression of the angle of separation
(cos θs = −(4μvR/(3ρlUδ2

s ))) from the model of Witte & Orozco (1984). At a given
Tw and Tb the product of U and δ2

s remains constant as shown in table 1. Therefore,
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Buoyancy effects on film boiling heat transfer from a sphere
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Tw = 70 °C Tw = 70 °C(b)(a) Present study:

Figure 5. Variation of vapour boundary layer thickness over the sphere at different velocities for given sphere
and bulk water temperature obtained from (a) present study and (b) the model of Witte & Orozco (1984).

U (m s−1) δs (μm) θs U × δ2
s × 1012

3 16.34 107.18◦ 801.1
0.8 31.64 107.18◦ 801.1
0.3 51.68 107.18◦ 801.1
0.1 89.51 107.18◦ 801.1
0.05 126.58 107.1◦ 801.1
0.01 283.03 107.18◦ 801.1

Table 1. Model of Witte & Orozco (1984) at Tw = 70◦C, Tb = 350◦C, D = 20 mm.

U (m s−1) δs (μm) First term Second term First term + second term θs

3 16.41 0.2931 0.0048 0.2979 107.33◦
0.8 33.28 0.2671 0.0681 0.3352 109.58◦
0.5 45.91 0.2246 0.1744 0.3990 113.51◦
0.3 85.26 0.1085 0.4844 0.5930 126.35◦
0.1 — — No Separation — —

Table 2. Present model at Tw = 70 ◦C, Tb = 350◦C, D = 20 mm.

the denominator in the expression of cos θs will remain a constant and consequently the
separation angle will remain the same with velocity.

Our expression for θs is composed of two terms, (4μvR)/(3ρlUδ2
s ) and

(4Rg�ρ)/(9U2ρl). The second term represents the influence of buoyancy and scales
with 1/U2. Therefore, decreasing the velocity, U, increases the second term. Table 2
demonstrates the variation of the first and second terms with velocity for a given Tb and
Tw. We can observe that as we decrease the velocity, the value of δs increases, the first
term decreases, and the second increases. It can also be observed that the second term is
negligible at high values of U, and does not contribute much in delaying the separation
at high velocity. However, at low velocities, the contribution of buoyancy (second term)
becomes significant resulting in separation delay.
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Figure 6. (a) Surface plot of velocity, at which the first and the second terms in the expression for separation
angle become equal, at different sphere and bulk water temperature obtained from the present study.
(b) Comparison of the surface plot of separation angle for the corresponding parameters of panel (a) obtained
from present study and model of Witte & Orozco (1984). An example point is shown in panel (a) and the
corresponding point is marked in panel (b).

We create a three-dimensional surface plot (see figure 6a) of the velocity, at which
the first and the second terms in the expression for separation angle become equal at
different sphere and water temperatures. We present a data set comprising of the values
of the first and the second terms in the expression for separation angle in table 3.
Comparative three-dimensional surface plots (figure 6b) of the variation of the separation
angle with respect to the sphere and the water temperature are also generated by using
the corresponding parameters of figure 6(a) for the present model, and the model of Witte
& Orozco (1984). From figure 6(b) it is observed that for low values of velocities the
surface generated from the present model is farther away from the surface generated by
the model of Witte & Orozco (1984) and as the velocity is increased the two surfaces in
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Buoyancy effects on film boiling heat transfer from a sphere

Tw
◦C Tb

◦C U (m s−1) δs (μm) First term Second term First term + second term θs

40 300 0.344 41.72 0.3684 0.3684 0.7368 137.46◦
70 350 0.455 49.72 0.2105 0.2105 0.4210 114.89◦
80 400 0.68 62.65 0.0943 0.0943 0.1886 100.87◦
80 450 0.82 70.46 0.0657 0.0657 0.1314 97.55◦
80 550 1.22 95.01 0.0280 0.0280 0.0575 93.30◦

Table 3. A representative dataset for figure 6(a).

figure 6(b) come closer to each other. Therefore, at higher velocities even when the first
and the second terms in the expression of separation angle are equal, the buoyancy effects
may not be significant as the difference in the separation angle obtained from the present
model and the model of Witte & Orozco (1984) decreases. Hence, we can conclude that at
a particular sphere and bulk water temperature, the influence of buoyancy is significant at
lower velocities where the difference in the separation angle for present model and model
of Witte & Orozco (1984) is significant. Clearly, the model of Witte & Orozco (1984)
underpredicts the separation angle at all velocities owing to the exclusion of buoyancy in
their analysis.

According to (2.20) the pressure gradient is favourable in the bottom half of the sphere
(θ < 90◦) whereas it is adverse in the top half (θ > 90◦) of the sphere. Buoyancy favours
the flow of the vapour in both the lower and the upper halves. When the velocity is high the
adverse pressure gradient in the top half is also large, and even though buoyancy supports
the vapour flow, the flow may separate. As the velocity decreases, the adverse pressure
gradient in the top half of the sphere decreases, and buoyancy dominates the vapour flow
resulting in delayed or no separation. Figure 7(a,b) represent the non-dimensional velocity
profiles at different angles for high and low velocities, respectively. At high velocity
(figure 7a) it can be observed that separation takes place in the top half of the sphere but
at low velocity (figure 7b) we do not observe any separation. To further access the role of
buoyancy in suppressing the separation we plot the three components in (2.21) in figure 8
for two different velocities at two different angles. We can observe that for U = 1 m s−1

and 0.2 m s−1 at θ = 60◦, which represents a location at the bottom half of the sphere,
both the pressure and the buoyancy are assisting the flow of vapour (see figure 8a,c).
However, at θ = 105◦, which represents a location at the upper half of the sphere, the
pressure gradient is adverse and it competes with buoyancy to get the flow separated for
U = 1 m s−1 and delay the separation for U = 0.2 m s−1 (figures 8b and 8d, respectively).

4. Conclusion

A theoretical investigation is performed to understand the influence of buoyancy on the
heat transfer characteristics and boundary layer separation behaviour due to film boiling
from a slowly moving heated sphere. The novelty of this study lies in the inclusion
of the buoyancy in the governing equation – unprecedented in the previous theoretical
investigations for a spherical body. In the present analytical model the momentum and the
energy equations are solved in the vapour phase to obtain the velocity and the temperature
distribution in terms of the vapour layer thickness. We apply an energy balance at the
vapour–liquid interface to determine the vapour layer thickness. The flow of liquid around
the sphere is considered to be governed by potential theory, and the energy equation in
liquid is then solved for the known velocity distribution.
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Figure 7. Non-dimensional velocity profile (refer to (2.4) for the expression of uθ ) at (a) U = 1 m s−1,
Tw = 70 ◦C, Tb = 400 ◦C and (b) U = 0.2 m s−1, Tw = 70 ◦C, Tb = 400 ◦C.
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Figure 8. Dimensional velocity profile (refer to (2.21)) at different values of θ for U = 1 m s−1 and
U = 0.2 m s−1.

We find that the film boiling heat transfer coefficient decreases with an increase
in sphere and bulk water temperature owing to a subsequent increase in the vapour
layer thickness. This behaviour of the heat transfer coefficient resembles closely the
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Buoyancy effects on film boiling heat transfer from a sphere

experimental results reported by Jouhara & Axcell (2009). We also found that buoyancy
plays a very significant role at low velocities in delaying the separation and allows the
heat transfer calculation from a larger area. We have included buoyancy in the expression
of the vapour velocity that resulted in capturing the delayed separation phenomenon
similar to the observations of Bromley et al. (1953) and Kobayasi (1965). We further
analysed the dependence of the flow separation behaviour on the relative magnitudes of
the pressure gradient and buoyancy. At high velocity the pressure gradient overshadows the
buoyancy effects, and the flow separates. However, at sufficiently low velocities, buoyancy
drives the flow against the adverse pressure gradient, and separation is not observed.
Therefore, it can be concluded that the inclusion of buoyancy is imperative for capturing
the correct variation of the heat transfer characteristics, and the boundary layer separation
phenomenon at low velocities.
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Appendix A

Steps to derive (2.2a,b).
From potential flow solution around the sphere we finally arrive at the following velocity

distribution:

ur = −U

(
1 −

(
R
r

)3
)

cos θ, (A1)

uθ = U

(
1 + 1

2

(
R
r

)3
)

sin θ. (A2)

Our region of concern lies very near to the sphere. Since the vapour layer thickness is very
small in comparison with the radius of sphere, we can say that r/R ∼ 1, and (A1) can be
transformed as follows:

ur = −U cos θ
(

r3 − R3

r3

)
,

=⇒ ur = −U cos θ(r − R)
(

r2 + R2 + rR
r3

)
,

=⇒ ur = −U cos θ
(

r − R
R

)(
r2R + R3 + rR2

r3

)
,

=⇒ ur = −U cos θ
(

r − R
R

)(
R
r

+ R2

r2 + R3

r3

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)
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In the limit r
R ∼ 1 we can write

ur = −3U
r − R

R
cos θ. (A4)

Similarly uθ can be written as

uθ = 3
2

U sin θ. (A5)

Steps to non-dimensionalize equation (2.34).
Consider (2.34),

dδ
dθ

= 1
h′

fgρv

R

(
3U sin θ

4
+ 9ρlU2

16μvR
sin θ cos θδ2 + �ρg sin θ

4μv
δ2
)
(

kv (Tb − Tsat)

δ

+ σε(T4
b − T4

sat) − kl�Tw sin2 θ√
πMη

−
h′

fgρv

R

(
3U cos θδ

2

+ 3ρlU2

16μvR
(3 cos2 θ − 1)δ3 + �ρg cos θ

6μv
δ3
))

. (A6)

To non-dimensionalize the above equation we first divide the numerator and denominator
by (h′

fgρv/R)(3U sin θ/4). We first consider the non-dimensionalization of denominator as
follows:

h′
fgρv

R

(
3U sin θ

4
+ 9ρlU2

16μvR
sin θ cos θ δ2 + �ρg sin θ

4μv
δ2
)
, (A7)

=⇒
h′

fgρv

R
3U sin θ

4

(
1 + 3ρlU cos θδ2

4μvR
+ �ρgδ2

3μvU

)
, (A8)

=⇒
h′

fgρv

R
3U sin θ

4

(
1 + 3

2
ρl

ρv

ρvUD
μv

(
δ

D

)2

cos θ + �ρg
3U

δ2

μv

)
, (A9)

=⇒
h′

fgρv

R
3U sin θ

4

(
1 + 3

2
ρl

ρv
Rev

(
δ

D

)2

cos θ + �ρg
3U

δ2

μv

)
, (A10)

=⇒
h′

fgρv

R
3U sin θ

4

(
1 + 3

2
ρl

ρv
Rev

(
δ

D

)2

cos θ + Gr
3Rev

(
δ

D

)2
)
. (A11)

Now, dividing the numerator and denominator by (h′
fgρv/R)(3U sin θ/4), we can rewrite

the denominator as

1 + 3
2
ρl

ρv
Rev

(
δ

D

)2

cos θ + Gr
3Rev

(
δ

D

)2

. (A12)
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Now, consider the numerator of (2.34),

1
h′

fgρv

R
3U sin θ

4

1
D

(
kv (Tb − Tsat)

δ
+ σε(T4

b − T4
sat)− kl�Tw sin2 θ√

πMη

−
h′

fgρv

R

(
3U cos θδ

2
+ 3ρlU2

16μvR
(3 cos2 θ − 1)δ3 + �ρg cos θ

6μv
δ3
))

. (A13)

Term 1/D in the above expression comes from the non-dimensionalization of the left-hand
side of (2.34) and dδ/dθ is written as d(δ/D)/dθD. We now non-dimensionalize all the
terms of the above equation, Consider the first term,

(i)

1
D

kv (Tb − Tsat)

δ
h′

fgρv

R
3U sin θ

4

, (A14)

=⇒
2Cpv(Tb − Tsat)

3hfg

kv
CpvρvU sin θδ

, (A15)

=⇒
2Jv

3
ρvCpv

kv
UD

δ

D
sin θ

, (A16)

=⇒
2Jv

3Pev
δ

D
sin θ

. (A17)

Consider the second term,
(ii)

1
D

qr

h′
fgρv

R
3U sin θ

4

, (A18)

=⇒
2qr

3ρvUhfg sin θ
. (A19)

Consider the third term,
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(iii)

1
D

kl�Tw sin2 θ√
πMη

h′
fgρv

R
3U sin θ

4

, (A20)

=⇒
2Cpl(Tsat − Tw)

3h′
fg

kl

Cplρv

sin θ√
πMη

1
U
, (A21)

=⇒
2
3

Jlαl
ρl

ρv

sin θ√
πMη

1
U
. (A22)

Substituting the values of M and η we get
=⇒

2
3

Jl
ρl

ρv
sin θ

1√(
πPel

3

(
2
3

− cos θ + cos3 θ

3

)) . (A23)

Consider the fourth term,
(iv)

1
D

h′
fgρv

R
3U cos θ

2
δ

h′
fgρv

R
3U sin θ

4

, (A24)

=⇒
2 cot θ

(
δ

D

)
. (A25)

Consider the fifth term,
(v)

1
D

h′
fgρv

R
3ρlU2

16μvR
(3 cos2 θ − 1)δ3

h′
fgρv

R
3U sin θ

4

, (A26)

=⇒
1
2

(
δ

D

)3 D
μv
ρlU

(
3 cos2 θ − 1

sin θ

)
, (A27)

=⇒
1
2

(
δ

D

)3
ρl

ρv

ρvUD
μv

(
3 cos2 θ − 1

sin θ

)
, (A28)

=⇒
1
2

(
δ

D

)3
ρl

ρv
Rev

(
3 cos2 θ − 1

sin θ

)
. (A29)

Consider the sixth term,
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(vi)

1
D

�ρg cos θ
6μv

δ3

h′
fgρv

R
3U sin θ

4

, (A30)

=⇒
2
9

(
δ

D

)3

D2 cot θ
�ρg
Uμv

, (A31)

=⇒
2
9

(
δ

D

)3 Gr
Rev

cot θ. (A32)

Arranging all the terms, we finally get

d
(
δ

D

)
dθ

= 1

1 + 3ρl

2ρv
Rev

(
δ

D

)2

cos θ + 1
3

(
δ

D

)2 Gr

Rev

⎛
⎜⎜⎝ 2Jv

3Pev sin θ
(
δ

D

) + 2qr

3ρvUh′
fg sin θ

− 2
(
δ

D

)
cot θ − 1

2
ρl

ρv
Rev

(
δ

D

)3 (3 cos2 θ − 1
sin θ

)
− 2

9
Gr
Rev

(
δ

D

)3

cot θ

−
2
ρl

ρv
Jl sin θ

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2

⎞
⎟⎟⎟⎠ . (A33)

Steps to solve expression (2.37).
Equation (2.37) has to be solved separately as follows:

lim
θ→0

2
ρl

ρv
Jl sin2 θ

δ

D

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2 (A34)

The above equation can be written as

lim
θ→0

2
ρl

ρv
Jl sin2 θ

δ

D

3
(

πPel

9

(
2 − 3 cos θ + cos3 θ

))1/2 , (A35)

=⇒
2
ρl

ρv

Jl√
πPel

δ

D
lim
θ→0

sin2 θ(
2 − 3 cos θ + cos3 θ

)1/2 . (A36)

Now, consider the denominator inside the limit in (A36). It can be written as

(1 − cos θ) (1 − cos θ) (2 + cos θ) , (A37)
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=⇒
4 sin4 θ

2
(2 + cos θ) . (A38)

The numerator inside the limit in (A36) can be written as

sin2 θ = 4 sin2 θ

2
cos2 θ

2
. (A39)

Therefore, (A36) can be written as

2
ρl

ρv

Jl√
πPel

δ

D
lim
θ→0

4 sin2 θ

2
cos2 θ

2(
4 sin4 θ

2
(2 + cos θ)

)1/2 , (A40)

=⇒

2
ρl

ρv

Jl√
πPel

δ

D
lim
θ→0

4 sin2 θ

2
cos2 θ

2

2 sin2 θ

2
(2 + cos θ)1/2

, (A41)

2
ρl

ρv

Jl√
πPel

δ

D
lim
θ→0

2 cos2 θ

2
(2 + cos θ)1/2

(A42)

Substituting the limit we get
4√

3πPel

ρl

ρv
Jl
δ

D
. (A43)

Therefore, we can finally write,

lim
θ→0

2
ρl

ρv
Jl sin2 θ

δ

D

3
(

πPel

3

(
2
3

− cos θ + cos3 θ

3

))1/2

∣∣∣∣∣∣∣∣∣
θ

= − 4√
3πPel

ρl

ρv
Jl
δ

D
. (A44)
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