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1. Summary. Let xik (i, k= 1, 2, ..., n) be n2 independent variables,
aik be TO2 constants, and £ik be n% operators aikd/dxik.

Let x = (xik) be the determinant formed from the n2 elements xik, and
f = (fft) the determinantal operator formed from the elements $ik.

If a is any constant, then, when a,fc= 1, so that £<fc = 3/<?x,-fc, Cayley
proved that

f ) ( l ) 1 . (1.1)

Capelli generalised this result:—
Let xIE be that determinant of order m ^ n formed from x by choosing

those rows for which i = ilt i2, ..., im and those columns for which
K = ftj, Kg , . . . , Km.

Let * / x be the cofactor of xIK.
Let £j£ and £*z be defined in a similar way.
Capelli generalised (1.1) by showing that

?Kx* = a ( a+ l ) . . . (x+n—m—l)x*-1XiK. (1 . 2)

In this paper we remove the restriction that aik = 1, and obtain a
result corresponding to (1.2) assuming only that aik are constants.

2. We have to define other symbols used in the sequel.
Let / ' be a selection of r different numbers from the numbers 1 to n,

arranged in ascending order. Let K' be another similar selection. Let
/ * be the set / ' followed by the set / , and K* be the set K' followed by
the set K. We may form the determinant Xj.K. whose element x*g in
the p-th. row and g'-th column is xk)l where A is the p-th. number in / * and
fj. is the g-th number in K*. We will say that the determinant xIK has
been "bordered" by r rows and r columns, and will write xrIE for xt.K..
In the special case when r= 1 and the " border " consists of elements
from the ^-th and q-th column of x, we write xpIqK for xItK, or xrIK.

If this " bordering " is repeated s times, the resulting determinant will
be called xri,im__,iIK which we shall sometimes abbreviate to xr.IK.

The elements common to the r rows and columns of a " border " form
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92 P. STEIN

a minor of x which we denote by xyy The cofactor of this minor in x
will be denoted by aPK

If xM is " bordered " by the p-th row and q-th column of x, we denote
the resulting determinant by a^Xr)-

The symbols xrIK, xvIqK, of"1* and a^9Xr) denote the cofactors of the
corresponding forms when they exist: otherwise they are defined as zero.

We extend this notation to the determinants a and £ and to the
permanents ||a;||, | |a|| and ||£||, in the obvious way.

We define P(r) by

P(r) = \\a\\«ZxrIK\\a\\M^ (2.1)
and

P{rlt rt, .... ri) = ||o||'<ii«av(.)/jt A ||a||wa^«>. (2.2)

If s = 0, we define P = ||a\\IK xIK.
Q(ri> r2> •••> r«) wiU denote the sum of all such distinct terms as

P(rx, r2, ...., r3) for fixed numbers rlt r2, ..., r,, but varying suffixes for the
elements in rlt r2, ..., ra.

In terms of the above notation, our extension of Capelli's result is

f «" = r - ^ r " ~ S ~ 1 « ( « - l ) - ( a - s ) ^ - 8 - 1 ^ (n-m- £ r\ Q(rlt r2 ..., ra)«•—m «=o r \ t=i I
(2.3)

where the summation E is taken over all values of rv r2, ..., r, for which
r

r1+ri+...+r,<n—m.
3. We prove (2.3) by induction. An examination shows that it is

true when m = TO—1. Hence, to prove it in general, it will be sufficient
to show that if (2.3) is assumed true for m+1 numbers in / and K, it
must then be true for m numbers in / and K.

Let / and K contain m numbers: then our hypothesis is that

1 ft—m—2 / ' \
gpitKg* = 2 <x(a— 1)... (a—s)^-8-1! , ' (TO—m—1— 2 rt) Q'

n—m—i t = 0 r \ t=i /

(where r 2 +r 2 + . . . -\-r, < TO—m— 1 in S', and Q' is similar to Q(rlt r2, ...,»",),

but is formed from plqK instead of IK), or, what is equivalent,

gPi<,K3fc = i s a(a—l)...(a—sJa^-^SlTO—m—1— S r,) Q'
»—m—i , = 0 f \ »=i /

(3.1)
with »"i+*'j+...+fi <»—w.
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We require two lemmas:—

LEMMA 1. £ 2 xpgaPI<'K= (n—m)"xlK.

LEMMA 2. S I, zpg\\z\\P^E = (n-m)\\x\\IK.

Lemma 1 is proved by Lars Garding1. The proof of Lemma 2 is
similar to Garding's proof of Lemma 1.

We operate on both sides of (3.1) with £pg = apgd/dxpq and sum for all
values of p and q from 1 to n. By Lemma 1,

i i tpg £»"«* sf<=(n-m)£IKx*. (3.2)

This gives the value of the left-hand side after the operation.
The terms on the right-hand side of (3.1) after the operation can be

grouped into two classes A and B, where a typical term in the A class is of
the form

-m-l-ij,) Q'(r1,...,rl)aPg*>* (3.3)

and a typical term in the B class is of the form

P<Q'(r»r» . . . ,r .) . (3.4)

If in (3. 3) we break up Q' into its elements P', a typical term is

-l)(«-«-l) (n_m_x_ j. A Mlr«PIQK

oMa!W. (3.5)

n—m—1 \ t 1

By (2.2)

a," — J. y i v -i2,

where r,+1= 1.
Hence ( 3 . 5 ) becomes

a ( a — l ) . . . ( a — s — 1 ) _ . „ / 'i,1— s—^ ' xa~'~i (n—m— 2Jn—m—1 \ t=1

provided r H . 1 = 1.

» Proe. Edinburgh Math. Soc. (2), 8 (1947), 73-75.
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94 P. STEIN

We replace s-\-1 by s in this, and sum for all values of p and q from 1 to n:
then, if n' is the number of times 1 occurs among the numbers rv r2, ..., r,,
the terms in (3 . 3) and so the terms in Class A will be the sum of the terms

" ' ' ^ • " i ' ^ * ~ * (n-m~ i r) P(rv rt, .... r.). (3.6)
IV lib Jl \ ^ = ^ /

The terms in (3.4) can be grouped into two classes C and D, where a
typical term in C is1

X UJiaW^afrO, (3.7)

and a typical term in D is

(3.8)

where ru is any r and II' is used instead of II to denote that the factor
|| a || (ru)^

r") is omitted.
In (3.7), the coefficient of aJ,fl||a||r<"J>/a* is independent of p and q.

Also, by Lemma 2,
n n i t

Hence the terms in (3.7) and so the terms of class C are all terms of
the type

, . . . , , , ) . (3.9)

To evaluate the terms in (3.8) we proceed as follows:—

Let rx', r2', ..., rj, ..., rs' be s sets of possible " borders ", and suppose
that at least one set has rj > 1.

We choose the sets rt in (3.8) so that ru = rj, t =£u; and rtt so that
{pq)(ru) = ru'. We now sum all the terms in (3.8) for relevant values of
p and q. We observe that for these sets the coefficient of ^JI^H(,•,,) is
independent of the separate values of pq and ru. Again, ||a||(r,,) is the

1 If p occurs in I or g|in K, then (M x,>rrqK = 0, but also ||o||r'»J9ir = 0. Hence there
is no error resulting from ignoring such terms.
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cofactor of apa in || a ||(,.„'). By Lemma 2, the sum of all such terms as
amIIa II<rj i s rJ IIa II0-..0- Again rJ = 1 + ru > a r id rt = rt,t=£ u.

Hence the terms in (3.8) which have been thus added give

a(q-l)...(a-a) _x ( _ y A , j>( , , ,,

From this we see that the terms in (3.8) give rise to all possible terms
of the type

(3•

where n' is, as before, the number of times 1 occurs among the numbers
rlt r2, ..., r,.

Adding the terms in (3.6), (3.9) and (3.10), we find that, after
operation, the right-hand side of (3.1) gives all possible terms of the type

a ( a - l ) . . . ( a - 3 ) a ; - » - 1 ( » - m - S r,) . P f o , r2> ..., r,). (3.11)

Hence if we add all possible terms of the type (3.11), the result (2.3)
follows from the definition of Q(rv r2, ..., rs) and (3.2).

Very similar formulae can be obtained when $ or x are permanents.
The same proofs are valid. The differences in the formulae obtained arise
only in that the minors of a and x (whether occurring as minors or their
cofactors) in the definition of P(r1, r2, ..., ra) may occur either as minors
of permanents or as minors of determinants. The actual results can be
seen from the table below:—

I x Minors of o Minors of x

determinant determinant permanents determinants
determinant permanent determinants permanents
permanent determinant determinants determinants
permanent permanent permanents permanents

4. The derivation of Capelli's result from (2.3) is not immediate.
The following lemmas, which are extensions of Lemma 1, will be required.

LEMMA 3. Let u(r) be the number of ways of selecting r different integers
from (n—m).

Let xIK be that determinant of order m<n formed from x as in Section 1,
and let x^), XTIK, x1*, etc. be defined as in Section 1. We note that «(,.) may be
any minor of x containing r rows and columns.

https://doi.org/10.1017/S0013091500021350 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021350


96 P. STEIN

Then, with the summation convention of the tensor calculus, applied to the
sets of numbers in r,

We prove this lemma by the method used by Lars Garding in the proof
of his Lemma 1.

L e t i i , i 2 ' , ••-, i'm', i", i'2, •••, im"> *i> *2> •••>*»» d e n o t e a n e v e n , p e r m u t a t i o n
of the numbers 1, 2, ..., n.

Let kj1, k2, ..., h'm', k[', k!2'', ..., k'^-, k±, k2, ..., km also denote such a
permutation, but not necessarily the same. We denote ix, i2, ..., im by / ;
k±, k2, ..., km by K, with similar meanings for / ' , K', I" and K".

Let / *' denote any sequence of m' integers from the set

Let /m- denote a sequence of m' integers from the full set of n integers
h ' . i z , • • • > i ' m > * " > ^ 2 ' ' • • • » * « " > H> * 2 » • • • > V

Let K*- and K^ have similar meanings with regard to the k sets.
In this notation, using Lagrange's expansion for determinants, we have

xu.K.af--IK>* = xrrK-K"> (4.1)

If we now define xiIkK = 0 if i 8 / or k e K, we may replace /*< by 7m<
in (4.1). In (4.1) also, we may replace K' by any fixed TO' integers from
the first m'-\-m" integers. Adding for all such choices, we get

We may now replace K%> by Km- giving

which, with a change of notation, is the result of the lemma.

LEMMA 4. / / u(rv r2, ..., rs) is the number of sets of s sequences that
can be formed with numbers rlt r2, ..., rs in the sequences from (n—TO)
integers, then

aflrt...r.is n ^ = «(r1, rt, ..., r,)x*K.
t=i

The proof of this lemma is similar to that of Lemma 3, and is omitted.

LEMMA 5. Defining u(rls r2, ..., rs) as for Lemma 4, we have

XrlU...r.iK n ic<^ = ii(rlJ r2, ..., r,)x?xIK.
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To prove this, let yik = x*k; then by Jacobi's formula

and y — x71-1.

If we substitute for x in terms of y in Lemma 4, this gives the result
stated, with y in place of x.

If now

(n—m— S r^ ! n rt\, (4.2)
\ *=i / t~i

we have, by Lemma 5 and (2. 3),

n—m—\rM—\v n—m—\ i i \
= E—±££ s a(a-l)...(a-s)£' (n-m- L r.)

n—m ,=0 \ t=i V

, r2, ..., re).v(rx, r2, ..., r,) (4.3)

(where 2 ' denotes the sum for all values of rx, r2, ..., rs such that
ry+r2+...-\-rs<n—m).

To obtain u we proceed as follows: Select a permutation of R integers
from (n—m). This can be done in (n—m)\/(n—m—R)\ ways. We
arrange the permutation in a line and insert (s— 1) divisions between

) ways. This divides the

E integers into s sets. Since the order of the sets in u is irrelevant, and
the order of the integers in each set is their natural order, we have

R—

From this, (4.2) and (4.3) we obtain

(=0

n—m—

B

8\

n—\
X

m-1 iff l \

2 (n—m—R)( ) . (4.4)
=« \8—1/
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98 P. STEIN-

By equating the coefficients of a?"1 in the formal expressions in ascending
powers of x of the two sides of the identity

_ (l+x)n~m (1+x)8 (n—m—
X* X*

n—m—l

n-m-i /2—l\ tn—m\
we have 2 (n—m—B)l , ) = . . .

R-, . '\S—lJ \S+lJ

Again, by equating the coefficients of l/x in the formal expressions
in ascending powers of x of the two sides of the identity

we obtain
n~Z~l i i\ i An—m—l)\/n—m\2 a(a— l ) . . . ( a — s ) y- ^ '- ^ + 1 J

Substituting this is (4.4) we obtain Capelli's result.

5. There are two other cases which lead to simple formulae when
aik = 1 for all i and k. The one case is when £ is a determinant and x is
a permanent. The other case is when f is a permanent and x is a
determinant. In both cases the minors of a which occur in the definition
of P in (2.2) are determinants and so are zero except when of order 1.
Hence, for the non-zero values of P, an = 0, except when rt = 1 in which
case alt= 1. Further ar'IK — 0, except when

<
2 r,+w = n—1, so that 8 = n—m—1.

In the case when $ is a determinant and x a permanent, the non-zero
values of P are given by

• P = a*'ix'x\\x\\riK,Kn\\x\\**, (5.1)

where / ' contains all the numbers, with one exception, from the set 1 to n
which are not in I, and K' similarly contains all the numbers, with one
exception, from the set 1 to n which are not in K; p, q are numbers in
/ ' , K' respectively, no two numbers p being the same and no two numbers q
being the same; II contains s = n—m— 1 factors. If pv qlt are the missing
numbers in / ' and K' respectively, we may write (5.1) as

||a;||»«. (5.2)
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If we write yik = || a; ||rfc and form the determinant y, using the previous
>

notation we write II ym = II y^. (5.2) may be written as

We may now apply Lemma 4 and obtain for the non-vanishing Q,

Q = SP = «(r1, r2, ..., r,)yI*=(n-m)yIK. (5.4)

<
Since n—m—£r,= 1 we have immediately, from (2.3),

I

^ | | a ; | | « = a(a—l)...(a—»4-m+l)a;a-n+myrz, (5.5)

where y(k = ||*||*.
The second case when £ is a permanent and x a determinant may be

treated in a similar way. Corresponding to (5.1) we have

P = ariK'KXriK,

and hence, corresponding to (5.2), we have

? = ^ 9 i I I ^ . (5.7)

In this case we define yik = Xth and form the permanent \\y\\, which gives
xPiQi = ypigi = \\y\\r'IK so that corresponding to (5.3) we have

PHIyir '^na^ (5.8)

It may be readily proved that, mutatis mutandis, Lemmas 3 and 4
are true for permanents as well as determinants, and hence, applying
Lemma 4, we have

(5.9)

and hence (2.3) gives
: = a(a— l)...(a—n+m+l)aft-fl+m\\y\\IK. (5.10)

I must thank the referee for pointing out an error in one of the formulae,
and my colleague Mr. S. E. Cruise for reading the manuscript and checking
the details.
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