ON THE SIZE OF A MAXIMUM TRANSVERSAL IN A STEINER TRIPLE SYSTEM

A. E. BROUWER

Let (X, \mathscr{B}) be a Steiner triple system on $v=|X|$ points, and suppose that $\mathscr{F} \subset \mathscr{B}$ is a partial parallel class (transversal, clear set, set of pairwise disjoint blocks) of maximum size $t=|\mathscr{F}|$. We want to derive a bound on $r=|X \backslash \cup \mathscr{F}|=v-3 t$. (I conjecture that in fact r is bounded, e.g., $r \leqq 4-4$ is attained for the Fano plane, but all that has been proved so far (cf. [1], [2]) are bounds $r<C . v$ for some C. Here we shall prove $r<5 v^{2 / 3}$.)

Define a sequence of positive real numbers by $q_{0}=Q \cdot r^{2} / v, q_{1}=\frac{1}{2} q_{0}$, $\ldots q_{i}=\frac{1}{2} q_{i-1}, \ldots, q_{l}$, where l is determined by $q_{l} \geqq 6, \frac{1}{2} q_{l}<6$, i.e.,

$$
l=\left[\log \left(Q r^{2} / 6 v\right) / \log 2\right] .
$$

(The constant Q will be chosen later.) Define inductively sets A_{i}, K_{i} and collections $\mathscr{B}_{i}, \mathscr{F}_{i}$ as follows. Let

$$
A_{0}=X \backslash \cup \mathscr{F},
$$

and for $0 \leqq i \leqq l$, let

$$
\begin{aligned}
& \mathscr{B}_{i}=\left\{T \in \mathscr{B}|\quad| T \cap A_{i} \mid \geqq 2\right\}, \\
& K_{i}=\left\{x \in X \backslash A_{i} \mid \quad \#\left\{T \in \mathscr{B}_{i} \mid x \in T\right\} \geqq q_{i}\right\}, \\
& \mathscr{F}_{i}=\left\{T \in \mathscr{F}|\quad| T \cap K_{i} \mid \geqq 1\right\}, \\
& A_{i+1}=A_{0} \cup\left(\cup \mathscr{F}_{i}\right) \backslash K_{i} .
\end{aligned}
$$

One verifies immediately that each of these series is increasing: $A_{i} \subset$ $A_{i+1}, K_{i} \subset K_{i+1}$ etc. Also that $A_{i} \cap K_{j}=\emptyset(\nvdash i, j)$. It is convenient to set $\mathscr{F}_{-1}=\emptyset$. \{The numbers q_{i} are chosen in such a way that an exchange process works. If B is an arbitrary block and we want to add it to \mathscr{F}, we must discard at most three members of \mathscr{F} in order to maintain disjointness. But if the discarded triples are in \mathscr{F}_{i} for some i then they are of the form $\{a, b, x\}$ with $x \in K_{i}$, and now that we no longer use x (supposing that $x \notin B$) we may add new triples $\{x, c, d\} \in \mathscr{B}_{i}$ to \mathscr{F}. In order to be able to add three pairwise disjoint triples $\left\{x_{j}, c_{j}, d_{j}\right\} \in \mathscr{B}_{i}(j=1,2$, 3) we must be sure that each x_{j} is incident with sufficiently many blocks in \mathscr{B}_{i}. (In fact it suffices if x_{1} is incident with 1 block, x_{2} with 3 blocks and x_{3} with 5 blocks.) If $i=0$ we are finished and have increased the size of our transversal. If $i>0$ then we must continue, discard the at
most six members of \mathscr{F}_{i-1} containing the points c_{j}, d_{j} and add again members of \mathscr{B}_{i-1} etc. $\}$

Claim. (i) A_{i} does not contain a block $B \in \mathscr{B}(0 \leqq i \leqq l+1)$.
(ii) No block $T \in \mathscr{F}$ intersects K_{i} in more than one point $(0 \leqq i \leqq l)$.

Proof. Ad (i): If $B \subset A_{0}$ for some block $B \in \mathscr{B}$ then $\mathscr{F} \cup\{B\}$ would be a larger partial parallel class, a contradiction. If $B \subset A_{i+1}$ then we can enlarge \mathscr{F} by an exchange process:

Define $\mathscr{N}_{j}, \mathscr{R}_{j}$ by backward induction on $j(i+1 \geqq j \geqq 0)$:

$$
\begin{aligned}
& \mathscr{R}_{i+1}=\emptyset, \mathscr{N}_{i+1}=\{B\}, \\
& \mathscr{R}_{j}=\left\{T \in \mathscr{F}_{j} \backslash \mathscr{F}_{j-1} \mid T \cap \bigcup_{k=j+1}^{i+1} \cup \mathscr{N}_{k} \neq \emptyset\right\} .
\end{aligned}
$$

Choose for \mathscr{N}_{j} some collection of $\left|\mathscr{R}_{j}\right|$ blocks from \mathscr{B}_{j} such that each $T \in \mathscr{R}_{j}$ meets exactly one of them, and such that $\mathscr{N}_{j} \cup \mathscr{N}_{j+1} \cup \ldots$ $\cup \mathscr{N}_{i+1}$ is a collection of pairwise disjoint blocks. That the latter is possible follows from

$$
\left|\left(\bigcup_{k=j}^{i+1} \cup \mathscr{N}_{k}\right) \cap A_{j}\right| \leqq 3.2^{i-j}
$$

and

$$
q_{j} \geqq 6.2^{i-j}-1
$$

Now

$$
\mathscr{F}^{\prime}=\left(\mathscr{F} \cup \bigcup_{j=0}^{i+1} \mathscr{N}_{j}\right) \mid \bigcup_{j=0}^{i} \mathscr{R}_{j}
$$

is a larger partial parallel class, a contradiction.
Ad (ii): This is proved using an almost identical argument.
Let $a_{i}=\left|A_{i}\right|$, so that $r=a_{0}$, and let $k_{i}=\left|K_{i}\right|$. By (ii) it follows that (1) $a_{i+1}=2 k_{i}+r$.

From (i) it follows that

$$
\binom{a_{i}}{2} \leqq k_{i} \cdot \frac{a_{i}}{2}+\left(v-k_{i}-a_{i}\right) \cdot q_{i}
$$

hence
(2) $a_{i}<k_{i}+\frac{2 q_{i} v}{a_{i}}$,
and, using (1) and $a_{j} \geqq a_{0}, q_{j} \leqq q_{0}$,

$$
\begin{equation*}
a_{i+1}>2 a_{i}+r(1-4 Q) \tag{3}
\end{equation*}
$$

Now $v \geqq a_{l+1}+k_{l}=r+3 k_{l}$ so that

$$
\begin{array}{r}
\frac{1}{3} v>a_{l}-2 Q r>2 a_{l-1}+r(1-6 Q)>4 a_{l-2}+r(3-14 Q)>\ldots \\
>2^{l} a_{0}+r\left(2^{l}-1-\left(2^{l+2}-2\right) Q\right)= \\
r\left(2^{l+1}-1\right)(1-2 Q) \\
\\
>r\left(\frac{Q r^{2}}{6 v}-1\right)(1-2 Q)
\end{array}
$$

Take $Q=\frac{1}{4}$. Then we have for large r :

$$
(16+\epsilon) v^{2}>r^{3}
$$

and one verifies immediately that $r \geqq 5 v^{2 / 3}$ leads to a contradiction for all r. In this proof we implicitly assume that $l \geqq 0$. But $l<0$ means $Q r^{2}<6 v$ so that again $Q=\frac{1}{4}, r \geqq 5 v^{2 / 3}$ leads to a contradiction. Thus we proved:

Theorem. A maximum transversal of an STS (v) has size at least

$$
\frac{1}{3} v-\frac{5}{3} v^{2 / 3}
$$

It is easy to improve the constant 5 (a minor change in this proof gives 3 , and further improvement is possible) but I am presently unable to improve on the exponent $2 / 3$.

Note. An almost identical proof works for Steiner quadruple systems, and again gives $r=O\left(v^{2 / 3}\right)$.

References

1. C. C. Lindner and K. T. Phelps, A note on partial parallel classes in Steiner systems, Discr. Math. 24 (1978), 109-112.
2. S. P. Wang, On self orthogonal Latin squares and partial transversals of Latin squares, Ph.D. thesis, Ohio State University, Columbus, Ohio (1978).

Stichting Mathematisch Centrum, Amsterdam, The Netherlands

